1
|
Wang H, Ikwuagwu JO, Tran V, Tran NAK. Drug-drug interactions of Integrase Strand Transfer Inhibitors among older people living with HIV: Interazioni farmacologiche degli inibitori delle integrase tra le persone anziane che vivono con HIV. JOURNAL OF HIV AND AGEING 2022; 7:29-36. [PMID: 36714525 PMCID: PMC9879272 DOI: 10.19198/jha31533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advancement of Human Immunodeficiency Virus (HIV) treatment improves the life expectancy of HIV-positive individuals. People living with HIV have more polypharmacy and drug-drug interactions than those without HIV. Integrase strand transfer inhibitors (INSTIs) are the newest class commonly used for HIV treatment. There are five INSTIs currently approved by the Food and Drug Administration, including raltegravir, elvitegravir, dolutegravir, bictegravir, and cabotegravir. INSTIs class contributes to better safety and efficacy profile, making them the preferred or recommended antiretroviral regimens in HIV treatment guidelines worldwide. Despite the shared mechanism of action, INSTIs differ in pharmacokinetics, contributing to different drug-drug interactions. This review summarized the potential drug interactions of INSTIs and the management of the drug interactions in clinical practice.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pharmacy Practice, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| | - Judy O. Ikwuagwu
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| | - Vincent Tran
- Department of Pharmacy Practice, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA
| | - Nhat Anh K. Tran
- Department of Pharmacy Practice, Texas Southern University College of Pharmacy and Health Sciences, Houston, TX, USA
| |
Collapse
|
2
|
Jiao G, Wang C, Chen Y, Dai M, Zhang Y, Li W. Enhancing targeted transgene knock-in by donor recruitment. Cell Prolif 2021; 55:e13163. [PMID: 34854166 PMCID: PMC8780899 DOI: 10.1111/cpr.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Guanyi Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yangcan Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Moyu Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ojwach DBA, Madlala P, Gordon M, Ndung'u T, Mann JK. Vulnerable targets in HIV-1 Pol for attenuation-based vaccine design. Virology 2021; 554:1-8. [PMID: 33316731 PMCID: PMC7931244 DOI: 10.1016/j.virol.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
Identification of viral immune escape mutations that compromise HIV's ability to replicate may aid rational attenuation-based vaccine design. Previously we reported amino acids associated with altered viral replication capacity (RC) from a sequence-function analysis of 487 patient-derived RT-integrase sequences. In this study, site-directed mutagenesis experiments were performed to validate the effect of these mutations on RC. Viral reverse transcripts were measured by quantitative PCR and structural modelling was performed to gain further insight into the effect of reverse transcriptase (RT) mutations on reverse transcription. RT-integrase variants in or flanking cytotoxic T cell epitopes in the RT palm (158S), RT thumb (241I and 257V) and integrase catalytic core domain (124N) were confirmed to significantly reduce RC. RT mutants showed a delayed initiation of viral DNA synthesis. Structural models provide insight into how these attenuating RT mutations may affect amino acid interactions in the helix clamp, primer grip and catalytic site regions.
Collapse
Affiliation(s)
- Doty B A Ojwach
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Paradise Madlala
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Michelle Gordon
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA; Africa Health Research Institute, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Division of Infection and Immunity, University College London, London, UK
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
4
|
Wijting IEA, Lungu C, Rijnders BJA, van der Ende ME, Pham HT, Mesplede T, Pas SD, Voermans JJC, Schuurman R, van de Vijver DAMC, Boers PHM, Gruters RA, Boucher CAB, van Kampen JJA. HIV-1 Resistance Dynamics in Patients With Virologic Failure to Dolutegravir Maintenance Monotherapy. J Infect Dis 2019; 218:688-697. [PMID: 29617822 DOI: 10.1093/infdis/jiy176] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/18/2018] [Indexed: 11/14/2022] Open
Abstract
Background A high genetic barrier to resistance to the integrase strand transfer inhibitor (INSTI) dolutegravir has been reported in vitro and in vivo. We describe the dynamics of INSTI resistance-associated mutations (INSTI-RAMs) and mutations in the 3'-polypurine tract (3'-PPT) in relation to virologic failure (VF) observed in the randomized Dolutegravir as Maintenance Monotherapy for HIV-1 study (DOMONO, NCT02401828). Methods From 10 patients with VF, plasma samples were collected before the start of cART and during VF, and were used to generate Sanger sequences of integrase, the 5' terminal bases of the 3' long terminal repeat (LTR), and the 3'-PPT. Results Median human immunodeficiency virus RNA load at VF was 3490 copies/mL (interquartile range 1440-4990 copies/mL). INSTI-RAMs (S230R, R263K, N155H, and E92Q+N155H) were detected in 4 patients, no INSTI-RAMs were detected in 4 patients, and sequencing of the integrase gene was unsuccessful in 2 patients. The time to VF ranged from 4 weeks to 72 weeks. In 1 patient, mutations developed in the highly conserved 3'-PPT. No changes in the terminal bases of the 3'-LTR were observed. Conclusions The genetic barrier to resistance is too low to justify dolutegravir maintenance monotherapy because single INSTI-RAMs are sufficient to cause VF. The large variation in time to VF suggests that stochastic reactivation of a preexisting provirus containing a single INSTI-RAM is the mechanism for failure. Changes in the 3'-PPT point to a new dolutegravir resistance mechanism in vivo. Clinical Trials Registration NCT02401828.
Collapse
Affiliation(s)
- Ingeborg E A Wijting
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | - Cynthia Lungu
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | - Marchina E van der Ende
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | - Hanh T Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Thibault Mesplede
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Suzan D Pas
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Rob Schuurman
- Division of Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Rob A Gruters
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | |
Collapse
|
5
|
Yadav P, Sur S, Desai D, Kulkarni S, Sharma V, Tandon V. Interaction of HIV-1 integrase with polypyrimidine tract binding protein and associated splicing factor (PSF) and its impact on HIV-1 replication. Retrovirology 2019; 16:12. [PMID: 31036027 PMCID: PMC6489298 DOI: 10.1186/s12977-019-0474-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Background The different interactions between viral proteins and cellular host proteins are required for efficient replication of HIV-1. Various reports implicated host cellular proteins as a key factor that either interact directly with HIV-1 integrase (IN) or get involved in the integration process of virus resulting in the modulation of integration step. Polypyrimidine tract binding protein and associated splicing factor (PSF) has diverse functions inside the cell such as transcriptional regulation, DNA repair, acts as nucleic acids binding protein and regulate replication and infectivity of different viruses. Results The protein binding study identified the association of host protein PSF with HIV-1 integrase. The siRNA knockdown (KD) of PSF resulted in increased viral replication in TZM-bl cells, suggesting PSF has negative influence on viral replication. The quantitative PCR of virus infected PSF knockdown TZM-bl cells showed more integrated DNA and viral cDNA as compared to control cells. We did not observe any significant difference between the amount of early reverse transcription products as well as infectivity of virus in the PSF KD and control TZM-bl cells. Molecular docking study supported the argument that PSF hinders the binding of viral DNA with IN. Conclusion In an attempt to study the host interacting protein of IN, we have identified a new interacting host protein PSF which is a splicing factor and elucidated its role in integration and viral replication. Experimental as well as in silico analysis inferred that the host protein causes not only change in the integration events but also targets the incoming viral DNA or the integrase-viral DNA complex. The role of PSF was also investigated at early reverse transcript production as well as late stages. The PSF is causing changes in integration events, but it does not over all make any changes in the virus infectivity. MD trajectory analyses provided a strong clue of destabilization of Integrase-viral DNA complex occurred due to PSF interaction with the conserved bases of viral DNA ends that are extremely crucial contact points with integrase and indispensable for integration. Thus our study emphasizes the negative influence of PSF on HIV-1 replication. Electronic supplementary material The online version of this article (10.1186/s12977-019-0474-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dipen Desai
- National AIDS Research Institute, Pune, Maharashtra, 411026, India
| | - Smita Kulkarni
- National AIDS Research Institute, Pune, Maharashtra, 411026, India
| | - Vartika Sharma
- International Centre for Genetics Engineering and Biotechnology, New Delhi, 110067, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Abstract
: The oligomerization of HIV-1 integrase onto DNA is not well understood. Here we show that HIV-1 integrase binds the DNA in biphasic (high-affinity and low-affinity) modes. For HIV-1 subtype B, the high-affinity mode is ∼100-fold greater than the low-affinity mode (Kd.DNA = 37 and 3400 nmol/l, respectively). The Kd.DNA values of patient-derived integrases containing subtype-specific polymorphisms were affected two- to four-fold, suggesting that polymorphisms may have an influence on effective-concentrations of inhibitors, as these inhibitors preferably bind to integrase-DNA complex.
Collapse
|
7
|
Ghosh AK, Brindisi M, Sarkar A. The Curtius Rearrangement: Applications in Modern Drug Discovery and Medicinal Chemistry. ChemMedChem 2018; 13:2351-2373. [PMID: 30187672 DOI: 10.1002/cmdc.201800518] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 12/20/2022]
Abstract
The Curtius rearrangement is the thermal decomposition of an acyl azide derived from carboxylic acid to produce an isocyanate as the initial product. The isocyanate can undergo further reactions to provide amines and their derivatives. Due to its tolerance for a large variety of functional groups and complete retention of stereochemistry during rearrangement, the Curtius rearrangement has been used in the synthesis of a wide variety of medicinal agents with amines and amine-derived functional groups such as ureas and urethanes. The current review outlines various applications of the Curtius rearrangement in drug discovery and medicinal chemistry. In particular, the review highlights some widely used rearrangement methods, syntheses of some key agents for popular drug targets and FDA-approved drugs. In addition, the review highlights applications of the Curtius rearrangement in continuous-flow protocols for the scale-up of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Anindya Sarkar
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Rogers L, Obasa AE, Jacobs GB, Sarafianos SG, Sönnerborg A, Neogi U, Singh K. Structural Implications of Genotypic Variations in HIV-1 Integrase From Diverse Subtypes. Front Microbiol 2018; 9:1754. [PMID: 30116231 PMCID: PMC6083056 DOI: 10.3389/fmicb.2018.01754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) integrates viral DNA into the host genome using its 3′-end processing and strand-transfer activities. Due to the importance of HIV-1 IN, it is targeted by the newest class of approved drugs known as integrase strand transfer inhibitors (INSTIs). INSTIs are efficient in maintaining low viral load; however, as with other approved antivirals, resistance mutations emerge in patients receiving INSTI-containing therapy. As INSTIs are becoming increasingly accessible worldwide, it is important to understand the mechanism(s) of INSTI susceptibility. There is strong evidence suggesting differences in the patterns and mechanisms of drug resistance between HIV-1 subtype B, which dominates in United States, Western Europe and Australia, and non-B infections that are most prevalent in countries of Africa and Asia. IN polymorphisms and other genetic differences among diverse subtypes are likely responsible for these different patterns, but lack of a full-length high-resolution structure of HIV-1 IN has been a roadblock in understanding the molecular mechanisms of INSTI resistance and the impact of polymorphisms on therapy outcome. A recently reported full-length medium-resolution cryoEM structure of HIV-1 IN provides insights into understanding the mechanism of integrase function and the impact of genetic variation on the effectiveness of INSTIs. Here we use molecular modeling to explore the structural impact of IN polymorphisms on the IN reaction mechanism and INSTI susceptibility.
Collapse
Affiliation(s)
- Leonard Rogers
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Adetayo E Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Graeme B Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Galilee M, Britan-Rosich E, Griner SL, Uysal S, Baumgärtel V, Lamb DC, Kossiakoff AA, Kotler M, Stroud RM, Marx A, Alian A. The Preserved HTH-Docking Cleft of HIV-1 Integrase Is Functionally Critical. Structure 2016; 24:1936-1946. [PMID: 27692964 DOI: 10.1016/j.str.2016.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
HIV-1 integrase (IN) catalyzes viral DNA integration into the host genome and facilitates multifunctional steps including virus particle maturation. Competency of IN to form multimeric assemblies is functionally critical, presenting an approach for anti-HIV strategies. Multimerization of IN depends on interactions between the distinct subunit domains and among the flanking protomers. Here, we elucidate an overlooked docking cleft of IN core domain that anchors the N-terminal helix-turn-helix (HTH) motif in a highly preserved and functionally critical configuration. Crystallographic structure of IN core domain in complex with Fab specifically targeting this cleft reveals a steric overlap that would inhibit HTH-docking, C-terminal domain contacts, DNA binding, and subsequent multimerization. While Fab inhibits in vitro IN integration activity, in vivo it abolishes virus particle production by specifically associating with preprocessed IN within Gag-Pol and interfering with early cytosolic Gag/Gag-Pol assemblies. The HTH-docking cleft may offer a fresh hotspot for future anti-HIV intervention strategies.
Collapse
Affiliation(s)
- Meytal Galilee
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Elena Britan-Rosich
- Department of Immunology and Pathology, The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Sarah L Griner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Serdar Uysal
- Department of Biophysics, Bezmialem Vakif University, Istanbul 34093, Turkey
| | - Viola Baumgärtel
- Physical Chemistry, Department of Chemistry, Nanosystem Initiative Munich (NIM), Center for Integrated Protein Science Munich (CiPSM), Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Nanosystem Initiative Munich (NIM), Center for Integrated Protein Science Munich (CiPSM), Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Moshe Kotler
- Department of Immunology and Pathology, The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem 91120, Israel
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ailie Marx
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Akram Alian
- Department of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
10
|
Quashie PK, Han YS, Hassounah S, Mesplède T, Wainberg MA. Structural Studies of the HIV-1 Integrase Protein: Compound Screening and Characterization of a DNA-Binding Inhibitor. PLoS One 2015; 10:e0128310. [PMID: 26046987 PMCID: PMC4457863 DOI: 10.1371/journal.pone.0128310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/26/2015] [Indexed: 01/07/2023] Open
Abstract
Understanding the HIV integrase protein and mechanisms of resistance to HIV integrase inhibitors is complicated by the lack of a full length HIV integrase crystal structure. Moreover, a lentiviral integrase structure with co-crystallised DNA has not been described. For these reasons, we have developed a structural method that utilizes free software to create quaternary HIV integrase homology models, based partially on available full-length prototype foamy virus integrase structures as well as several structures of truncated HIV integrase. We have tested the utility of these models in screening of small anti-integrase compounds using randomly selected molecules from the ZINC database as well as a well characterized IN:DNA binding inhibitor, FZ41, and a putative IN:DNA binding inhibitor, HDS1. Docking studies showed that the ZINC compounds that had the best binding energies bound at the IN:IN dimer interface and that the FZ41 and HDS1 compounds docked at approximately the same location in integrase, i.e. behind the DNA binding domain, although there is some overlap with the IN:IN dimer interface to which the ZINC compounds bind. Thus, we have revealed two possible locations in integrase that could potentially be targeted by allosteric integrase inhibitors, that are distinct from the binding sites of other allosteric molecules such as LEDGF inhibitors. Virological and biochemical studies confirmed that HDS1 and FZ41 share a similar activity profile and that both can inhibit each of integrase and reverse transcriptase activities. The inhibitory mechanism of HDS1 for HIV integrase seems to be at the DNA binding step and not at either of the strand transfer or 3' processing steps of the integrase reaction. Furthermore, HDS1 does not directly interact with DNA. The modeling and docking methodology described here will be useful for future screening of integrase inhibitors as well as for the generation of models for the study of integrase drug resistance.
Collapse
Affiliation(s)
- Peter K. Quashie
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ying-Shan Han
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Said Hassounah
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark A. Wainberg
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
11
|
Xue W, Liu H, Yao X. Molecular mechanism of HIV-1 integrase-vDNA interactions and strand transfer inhibitor action: A molecular modeling perspective. J Comput Chem 2011; 33:527-36. [DOI: 10.1002/jcc.22887] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/25/2011] [Accepted: 10/20/2011] [Indexed: 01/03/2023]
|
12
|
Kessl JJ, Li M, Ignatov M, Shkriabai N, Eidahl JO, Feng L, Musier-Forsyth K, Craigie R, Kvaratskhelia M. FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75. Nucleic Acids Res 2011; 39:9009-22. [PMID: 21771857 PMCID: PMC3203615 DOI: 10.1093/nar/gkr581] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A tetramer of HIV-1 integrase (IN) stably associates with the viral DNA ends to form a fully functional concerted integration intermediate. LEDGF/p75, a key cellular binding partner of the lentiviral enzyme, also stabilizes a tetrameric form of IN. However, functional assays have indicated the importance of the order of viral DNA and LEDGF/p75 addition to IN for productive concerted integration. Here, we employed Förster Resonance Energy Transfer (FRET) to monitor assembly of individual IN subunits into tetramers in the presence of viral DNA and LEDGF/p75. The IN–viral DNA and IN–LEDGF/p75 complexes yielded significantly different FRET values suggesting two distinct IN conformations in these complexes. Furthermore, the order of addition experiments indicated that FRET for the preformed IN–viral DNA complex remained unchanged upon its subsequent binding to LEDGF/p75, whereas pre-incubation of LEDGF/p75 and IN followed by addition of viral DNA yielded FRET very similar to the IN–LEDGF/p75 complex. These findings provide new insights into the structural organization of IN subunits in functional concerted integration intermediates and suggest that differential multimerization of IN in the presence of various ligands could be exploited as a plausible therapeutic target for development of allosteric inhibitors.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research and Comprehensive Cancer Center, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pandey KK, Bera S, Vora AC, Grandgenett DP. Physical trapping of HIV-1 synaptic complex by different structural classes of integrase strand transfer inhibitors. Biochemistry 2010; 49:8376-87. [PMID: 20799722 PMCID: PMC2965028 DOI: 10.1021/bi100514s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Raltegravir is an FDA approved inhibitor directed against human immunodeficiency virus type 1 (HIV-1) integrase (IN). In this study, we investigated the mechanisms associated with multiple strand transfer inhibitors capable of inhibiting concerted integration by HIV-1 IN. The results show raltegravir, elvitegravir, MK-2048, RDS 1997, and RDS 2197 all appear to encompass a common inhibitory mechanism by modifying IN-viral DNA interactions. These structurally different inhibitors bind to and inactivate the synaptic complex, an intermediate in the concerted integration pathway in vitro. The inhibitors physically trap the synaptic complex, thereby preventing target DNA binding and thus concerted integration. The efficiency of a particular inhibitor to trap the synaptic complex observed on native agarose gels correlated with its potency for inhibiting the concerted integration reaction, defined by IC(50) values for each inhibitor. At low nanomolar concentrations (<50 nM), raltegravir displayed a time-dependent inhibition of concerted integration, a property associated with slow-binding inhibitors. Studies of raltegravir-resistant IN mutants N155H and Q148H without inhibitors demonstrated that their capacity to assemble the synaptic complex and promote concerted integration was similar to their reported virus replication capacities. The concerted integration activity of Q148H showed a higher cross-resistance to raltegravir than observed with N155H, providing evidence as to why the Q148H pathway with secondary mutations is the predominant pathway upon prolonged treatment. Notably, MK-2048 is equally potent against wild-type IN and raltegravir-resistant IN mutant N155H, suggesting this inhibitor may bind similarly within their drug-binding pockets.
Collapse
Affiliation(s)
- Krishan K Pandey
- Institute for Molecular Virology, Saint Louis University Health Sciences Center, 1100 South Grand Boulevard, Saint Louis, Missouri 63104, USA.
| | | | | | | |
Collapse
|
14
|
Menéndez-Arias L. Special issue: retroviral enzymes. Viruses 2010; 2:1181-1184. [PMID: 21994674 PMCID: PMC3187607 DOI: 10.3390/v2051181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/07/2010] [Indexed: 01/20/2023] Open
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" [Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid], Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|