1
|
Wang N, Yang F, Qiu Z, Zhang L, Zou D, Tang Y, Zhang R, Sun C, Liu P, Qi K, Wang J, He H, Gan L. Curcumin prevents dexamethasone-induced activation of the pseudorabies virus in rat pheochromocytoma cells through the miR-155-5p-Aak1-Numb/Notch2 signalling axis. Vet Res 2025; 56:86. [PMID: 40259414 PMCID: PMC12010530 DOI: 10.1186/s13567-025-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 04/23/2025] Open
Abstract
Pseudorabies virus (PRV) causes neurological disorders and organ damage in diseased animals. After initial infection, PRV activity is gradually inhibited; however, stress stimulation increases the host's glucocorticoid levels, which overcomes the inhibition of PRV activity. Curcumin (Cur) helps maintain the inhibitory state of the Epstein-Barr virus, although further research is needed to establish whether Cur can prevent PRV activation triggered by stress hormones. In this study, we used PC-12 cells to determine the effects of Cur on PRV activation. The cells were successfully infected with PRV at a multiplicity of infection of 1 for 24 h, resulting in the inhibition of PRV activity. Following incubation with 0.5 µM dexamethasone (DEX) for 4 h, the inhibition of PRV activity was blocked. Further mechanistic analyses using a dual-luciferase assay revealed that miR-155-5p directly targets and regulates Aak1 and its downstream signalling molecules, Numb and Notch2, in maintaining and disrupting PRV inhibition. Moreover, in vitro experiments using miR-155-5p mimics and inhibitors, combined with Aak1 overexpression and interference, confirmed that the miR-155-5p-Aak1-Numb/Notch2 axis prevented DEX-induced disruption of PRV inhibition by Cur. These findings provide a novel regulatory target for preventing stress-activated PRV and provide evidence for the potential use of Cur as a stress modulator in practical applications.
Collapse
Affiliation(s)
- Naixiu Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Fan Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Zhiyun Qiu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Lin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Dingqiu Zou
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yanru Tang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Ruihan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Chenlu Sun
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Pei Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Kexin Qi
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Jingyi Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hua He
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, 611130, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
2
|
Hui Z, Deng H, Xu Y, Gao Y, Zhai C, Mao ND, Che H, Li Z, Zhang Y, Zhang H, Xie T, Ye XY. Discovery and optimization of AAK1 inhibitors based on 1H-indazole scaffold for the potential treatment of SARS-CoV-2 infection. Mol Divers 2025:10.1007/s11030-025-11135-4. [PMID: 40175846 DOI: 10.1007/s11030-025-11135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/11/2025] [Indexed: 04/04/2025]
Abstract
The process of various virus entry into host cells, including SARS-CoV-2, is mediated by clathrin-mediated endocytosis (CME). AP-2 plays a crucial role in this process by recognizing membrane receptors and binding with clathrin, facilitating the formation of clathrin-coated vesicles and promoting CME. AAK1 catalyzes the phosphorylation of AP2M1 subunit at Thr156. Therefore, suppressing AAK1 activity can hinder virus invasion by blocking CME. indicating that AAK1 could be a potential target for developing novel antiviral drugs against SARS-CoV-2. In this study, we present a series of novel AAK1 inhibitors based on previously reported AAK1 inhibitors. Drug design was carried out by fusing the 1H-indazole scaffold of SGC-AAK1-1 with pharmacophore groups of compound 6, and further optimized with the assistance of molecular docking. Among the 42 compounds novelly synthesized, compounds 9i, 9s, 11f and 11l exhibited comparable antiviral activity against SARS-CoV-2 infection compared to reference compound 6 at the concentration of 3 μM. Particularly, 11f showed almost no cytotoxicity at all tested concentrations. Additionally, 11f exhibited favorable predictive pharmacokinetic properties. These findings support the potential of 11f as a lead compound for developing antiviral drugs targeting SARS-CoV-2 infection, as well as potentially other viruses which are dependent on the CME process to enter host cells. In summary, we have expanded the structural types of AAK1 inhibitors and successfully obtained effective AAK1 inhibitors with antiviral capabilities.
Collapse
Affiliation(s)
- Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
- Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, P. R. China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yueying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yuan Gao
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, 311121, Zhejiang, P. R. China
| | - Chenfeng Zhai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Nian-Dong Mao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zhen Li
- SanOmics AI Co. Ltd, Hangzhou, 3l1103, Zhejiang, P. R. China
| | - Yuting Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China.
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China.
| |
Collapse
|
3
|
Nawaz M, Huiyuan Y, Akhtar F, Tianyue M, Zheng H. Deep learning in the discovery of antiviral peptides and peptidomimetics: databases and prediction tools. Mol Divers 2025:10.1007/s11030-025-11173-y. [PMID: 40153158 DOI: 10.1007/s11030-025-11173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
Antiviral peptides (AVPs) represent a novel and promising therapeutic alternative to conventional antiviral treatments, due to their broad-spectrum activity, high specificity, and low toxicity. The emergence of zoonotic viruses such as Zika, Ebola, and SARS-CoV-2 have accelerated AVP research, driven by advancements in data availability and artificial intelligence (AI). This review focuses on the development of AVP databases, their physicochemical properties, and predictive tools utilizing machine learning for AVP discovery. Machine learning plays a pivotal role in advancing and developing antiviral peptides and peptidomimetics, particularly through the development of specialized databases such as DRAVP, AVPdb, and DBAASP. These resources facilitate AVP characterization but face limitations, including small datasets, incomplete annotations, and inadequate integration with multi-omics data.The antiviral efficacy of AVPs is closely linked to their physicochemical properties, such as hydrophobicity and amphipathic α-helical structures, which enable viral membrane disruption and specific target interactions. Computational prediction tools employing machine learning and deep learning have significantly advanced AVP discovery. However, challenges like overfitting, limited experimental validation, and a lack of mechanistic insights hinder clinical translation.Future advancements should focus on improved validation frameworks, integration of in vivo data, and the development of interpretable models to elucidate AVP mechanisms. Expanding predictive models to address multi-target interactions and incorporating complex biological environments will be crucial for translating AVPs into effective clinical therapies.
Collapse
Affiliation(s)
- Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China
| | - Yao Huiyuan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China
| | - Fahad Akhtar
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China
| | - Ma Tianyue
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China.
| |
Collapse
|
4
|
Shen B, Liu N, Dai Y. Exosomes derived from umbilical cord mesenchymal stem cells ameliorate ischemic brain injury in mice by regulating AAK1 via miR-664a-5p. Int J Neurosci 2024:1-15. [PMID: 39655875 DOI: 10.1080/00207454.2024.2441120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVE To identify the molecular targets of mesenchymal stem cell (MSC)-derived exosomes in treating cerebral ischemia and elucidate their therapeutic mechanisms. METHODS We utilized a mouse model of middle cerebral artery occlusion and treated mice with umbilical cord mesenchymal stem cells derived exosomes. Proteomic analysis identified AAK1(AP2 associated kinase 1) as a key target protein. Functional studies confirmed that AAK1 modulates the NF-κB signaling pathway in ischemic stroke. MicroRNA profiling, bioinformatic prediction and cell experiments identified miR-664a-5p as the specific microRNA regulating AAK1 expression. Finally, we validated the therapeutic effects of umbilical cord mesenchymal stem cell-derived exosomes using engineered miR-664a-5p-deficient exosomes. RESULTS Our findings demonstrate that umbilical cord mesenchymal stem cells-derived exosomes exert neuroprotective effects in ischemic stroke by modulating the AAK1/NF-κB axis via miR-664a-5p. CONCLUSION This study provides novel insights into the therapeutic mechanism of mesenchymal stem cell-derived exosomes in ischemic stroke, highlighting their potential for developing exosome-based therapies.
Collapse
Affiliation(s)
- Baoxi Shen
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ning Liu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yiwu Dai
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Mao ND, Xu Y, Yao X, Gao Y, Hui Z, Che H, Wang C, Lu J, Yu J, Hu S, Zhang H, Ye XY. Design, synthesis, and biological evaluation of novel AAK1/HDACs dual inhibitors against SARS-CoV-2 entry. Bioorg Chem 2024; 153:107973. [PMID: 39581172 DOI: 10.1016/j.bioorg.2024.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
AP2-associated protein kinase 1 (AAK1) is a crucial regulator of clathrin-mediated endocytosis, involved in various cellular processes, including viral infection. Histone deacetylases (HDACs) are essential in regulating gene transcription through the process of histone deacetylation and have become promising therapeutic targets for the treatment of cancer and viral infections. In this study, several AAK1/HDACs dual inhibitors based on our previous reported compounds were designed and synthesized, and the antiviral activity of these dual inhibitors were evaluated. Among them, compound 12 showed remarkable dual inhibitory activity against both AAK1 and HDACs, with IC50 values of 15.9 nM for AAK1, 148.7 nM for HDAC1, and 5.2 nM for HDAC6. Notably, this compound exhibited superior efficacy in suppressing SARS-CoV-2 entry into host cells compared to its close analogs 4, 13a, and 13b. Mechanistically, compound 12 attenuated AAK1-induced phosphorylation of adaptor protein-2 μ subunit (AP2M1) threonine 156, disrupting the direct interaction between AP2M1 and ACE2, thus inhibiting the CME-mediated SARS-CoV-2 endocytosis. Additionally, compound 12 increased the acetylation levels of H3K27 and α-tubulin, suggesting its potential as an epigenetic modulator. Overall, our findings propose compound 12 as a promising dual inhibitor against AAK1 and HDACs, highlighting its therapeutic potential in antiviral infections.
Collapse
Affiliation(s)
- Nian-Dong Mao
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yueying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xia Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenchen Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinshan Lu
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jie Yu
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Suwen Hu
- Fujian Provincial Drug Evaluation and Monitoring Center Xiamen Branch, Xiamen, Fujian 361013, China.
| | - Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xiang-Yang Ye
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
6
|
Moalem Y, Katz R, Subramaniam AG, Malis Y, Yaffe Y, Borenstein-Auerbach N, Tadmor K, Raved R, Maoz BM, Yoo JS, Lustig Y, Luxenburg C, Perlson E, Einav S, Sklan EH. Numb-associated kinases regulate sandfly-borne Toscana virus entry. Emerg Microbes Infect 2024; 13:2382237. [PMID: 39017647 PMCID: PMC11285224 DOI: 10.1080/22221751.2024.2382237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Sandfly-borne Toscana virus (TOSV) is an enveloped tri-segmented negative single-strand RNA Phlebovirus. It is an emerging virus predominantly endemic in southwestern Europe and Northern Africa. Although TOSV infection is typically asymptomatic or results in mild febrile disease, it is neurovirulent and ranks among the three most common causes of summer meningitis in certain regions. Despite this clinical significance, our understanding of the molecular aspects and host factors regulating phlebovirus infection is limited. This study characterized the early steps of TOSV infection. Our findings reveal that two members of the Numb-associated kinases family of Ser/Thr kinases, namely adaptor-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), play a role in regulating the early stages of TOSV entry. FDA-approved inhibitors targeting these kinases demonstrated significant inhibition of TOSV infection. This study suggests that AAK1 and GAK represent druggable targets for inhibiting TOSV infection and, potentially, related Phleboviruses.
Collapse
Affiliation(s)
- Yarden Moalem
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rodolfo Katz
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anand G. Subramaniam
- Department of Physiology and Pharmacology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yehonathan Malis
- Department of Pathology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yakey Yaffe
- The Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nofit Borenstein-Auerbach
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Keshet Tadmor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roey Raved
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ben M. Maoz
- The Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ji Seung Yoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Public Health, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Mao ND, Xu Y, Che H, Yao X, Gao Y, Wang C, Deng H, Hui Z, Zhang H, Ye XY. Design, synthesis and biological evaluation of novel 1,2,4a,5-tetrahydro-4H-benzo[b][1,4]oxazino[4,3-d][1,4]oxazine-based AAK1 inhibitors with anti-viral property against SARS-CoV-2. Eur J Med Chem 2024; 268:116232. [PMID: 38377825 DOI: 10.1016/j.ejmech.2024.116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Coronavirus entry into host cells hinges on the interaction between the spike glycoprotein of the virus and the cell-surface receptor angiotensin-converting enzyme 2 (ACE2), initiating the subsequent clathrin-mediated endocytosis (CME) pathway. AP-2-associated protein kinase 1 (AAK1) holds a pivotal role in this pathway, regulating CME by modulating the phosphorylation of the μ subunit of adaptor protein 2 (AP2M1). Herein, we report a series of novel AAK1 inhibitors based on previously reported 1,2,4a,5-tetrahydro-4H-benzo[b] [1,4]oxazino[4,3-d] [1,4]oxazine scaffold. Among 23 synthesized compounds, compound 12e is the most potent one with an IC50 value of 9.38 ± 0.34 nM against AAK1. The in vitro antiviral activity of 12e against SARS-CoV-2 was evaluated using a model involving SARS-CoV-2 pseudovirus infecting hACE2-HEK293 host cells. The results revealed that 12e was superior in vitro antiviral activity against SARS-CoV-2 entry into host cells when compared to SGC-AAK1-1 and LX9211, and its activity was comparable to that of a related and reference compound 8. Mechanistically, all AAK1 inhibitors attenuated AAK1-induced phosphorylation of AP2M1 threonine 156 and disrupted the direct interaction between AP2M1 and ACE2, ultimately inhibiting SARS-CoV-2 infection. Notably, compounds 8 and 12e exhibited a more potent effect in suppressing the phosphorylation of AP2M1 T156 and the interaction between AP2M1 and ACE2. In conclusion, novel AAK1 inhibitor 12e demonstrates significant efficacy in suppressing SARS-CoV-2 infection, and holds promise as a potential candidate for developing novel antiviral drugs against SARS-CoV-2 and other coronavirus infections.
Collapse
Affiliation(s)
- Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yueying Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xia Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenchen Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
8
|
Pandey S, Catto M, Roberts P, Bag S, Jacobson AL, Srinivasan R. Aphid gene expression following polerovirus acquisition is host species dependent. FRONTIERS IN PLANT SCIENCE 2024; 15:1341781. [PMID: 38525153 PMCID: PMC10957536 DOI: 10.3389/fpls.2024.1341781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Upon acquisition of persistent circulative viruses such as poleroviruses, the virus particles transcytose through membrane barriers of aphids at the midgut and salivary glands via hemolymph. Such intricate interactions can influence aphid behavior and fitness and induce associated gene expression in viruliferous aphids. Differential gene expression can be evaluated by omics approaches such as transcriptomics. Previously conducted aphid transcriptome studies used only one host species as the source of virus inoculum. Viruses typically have alternate hosts. Hence, it is not clear how alternate hosts infected with the same virus isolate alter gene expression in viruliferous vectors. To address the question, this study conducted a transcriptome analysis of viruliferous aphids that acquired the virus from different host species. A polerovirus, cotton leafroll dwarf virus (CLRDV), which induced gene expression in the cotton aphid, Aphis gossypii Glover, was assessed using four alternate hosts, viz., cotton, hibiscus, okra, and prickly sida. Among a total of 2,942 differentially expressed genes (DEGs), 750, 310, 1,193, and 689 genes were identified in A. gossypii that acquired CLRDV from infected cotton, hibiscus, okra, and prickly sida, respectively, compared with non-viruliferous aphids that developed on non-infected hosts. A higher proportion of aphid genes were overexpressed than underexpressed following CLRDV acquisition from cotton, hibiscus, and prickly sida. In contrast, more aphid genes were underexpressed than overexpressed following CLRDV acquisition from okra plants. Only four common DEGs (heat shock protein, juvenile hormone acid O-methyltransferase, and two unannotated genes) were identified among viruliferous aphids from four alternate hosts. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that the acquisition of CLRDV induced DEGs in aphids associated with virus infection, signal transduction, immune systems, and fitness. However, these induced changes were not consistent across four alternate hosts. These data indicate that alternate hosts could differentially influence gene expression in aphids and presumably aphid behavior and fitness despite being infected with the same virus isolate.
Collapse
Affiliation(s)
- Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Michael Catto
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Phillip Roberts
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Alana L. Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | | |
Collapse
|
9
|
Carriazo S, Abasheva D, Duarte D, Ortiz A, Sanchez-Niño MD. SCARF Genes in COVID-19 and Kidney Disease: A Path to Comorbidity-Specific Therapies. Int J Mol Sci 2023; 24:16078. [PMID: 38003268 PMCID: PMC10671056 DOI: 10.3390/ijms242216078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-related death. Moreover, CKD increases the risk of acute kidney injury (AKI), and COVID-19 patients with AKI are at an increased risk of death. However, the molecular basis underlying this risk has not been well characterized. CKD patients are at increased risk of death from multiple infections, to which immune deficiency in non-specific host defenses may contribute. However, COVID-19-associated AKI has specific molecular features and CKD modulates the local (kidney) and systemic (lung, aorta) expression of host genes encoding coronavirus-associated receptors and factors (SCARFs), which SARS-CoV-2 hijacks to enter cells and replicate. We review the interaction between kidney disease and COVID-19, including the over 200 host genes that may influence the severity of COVID-19, and provide evidence suggesting that kidney disease may modulate the expression of SCARF genes and other key host genes involved in an effective adaptive defense against coronaviruses. Given the poor response of certain CKD populations (e.g., kidney transplant recipients) to SARS-CoV-2 vaccines and their suboptimal outcomes when infected, we propose a research agenda focusing on CKD to develop the concept of comorbidity-specific targeted therapeutic approaches to SARS-CoV-2 infection or to future coronavirus infections.
Collapse
Affiliation(s)
- Sol Carriazo
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
- RICORS2040, 28049 Madrid, Spain;
| | - Daria Abasheva
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Deborah Duarte
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
| | - Alberto Ortiz
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28049 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain; (D.A.); (D.D.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
10
|
Dzierba CD, Dasgupta B, Karageorge G, Kostich W, Hamman B, Allen J, Esposito KM, Padmanabha R, Grace J, Lentz K, Morrison J, Morgan D, Easton A, Bourin C, Browning MR, Rajamani R, Good A, Parker DD, Muckelbauer JK, Khan J, Camac D, Ghosh K, Halan V, Lippy JS, Santone KS, Denton RR, Westphal R, Bristow LJ, Conway CM, Bronson JJ, Macor JE. Discovery of pyrrolo[2,1- f][1,2,4]triazine-based inhibitors of adaptor protein 2-associated kinase 1 for the treatment of pain. Med Chem Res 2023; 32:1-7. [PMID: 37362320 PMCID: PMC10238246 DOI: 10.1007/s00044-023-03079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
Adaptor protein 2-associated kinase 1 (AAK1) is a member of the Ark1/Prk1 family of serine/threonine kinases and plays a role in modulating receptor endocytosis. AAK1 was identified as a potential therapeutic target for the treatment of neuropathic pain when it was shown that AAK1 knock out (KO) mice had a normal response to the acute pain phase of the mouse formalin model, but a reduced response to the persistent pain phase. Herein we report our early work investigating a series of pyrrolo[2,1-f][1,2,4]triazines as part of our efforts to recapitulate this KO phenotype with a potent, small molecule inhibitor of AAK1. The synthesis, structure-activity relationships (SAR), and in vivo evaluation of these AAK1 inhibitors is described. Graphical Abstract
Collapse
Affiliation(s)
- Carolyn D. Dzierba
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 250 Water St, Cambridge, MA 02141 USA
| | - Bireshwar Dasgupta
- Department of Neuroscience Chemistry, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - George Karageorge
- Department of Neuroscience Chemistry, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Walter Kostich
- Department of Neuroscience Biology, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Brian Hamman
- Lexicon Pharmaceuticals 8800 Technology Forest Place, The Woodlands, TX 77381 USA
| | - Jason Allen
- Lexicon Pharmaceuticals 8800 Technology Forest Place, The Woodlands, TX 77381 USA
| | - Kim M. Esposito
- Department of Leads Discovery and Optimization, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ramesh Padmanabha
- Department of Leads Discovery and Optimization, Bristol Myers Squibb, Research and Development, P.O. Box 5400, Princeton, NJ 08543 USA
| | - James Grace
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Kimberley Lentz
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - John Morrison
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Daniel Morgan
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Amy Easton
- Department of Neuroscience Biology, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Clotilde Bourin
- Department of Neuroscience Biology, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Marc R. Browning
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Ramkumar Rajamani
- Department of Molecular Structure and Design, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Andrew Good
- Department of Molecular Structure and Design, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Dawn D. Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Jodi K. Muckelbauer
- Department of Molecular Structure and Design, Bristol Myers Squibb, Research and Development, P.O. Box 5400, Princeton, NJ 08543 USA
| | - Javed Khan
- Department of Molecular Structure and Design, Bristol Myers Squibb, Research and Development, P.O. Box 5400, Princeton, NJ 08543 USA
| | - Daniel Camac
- Department of Molecular Structure and Design, Bristol Myers Squibb, Research and Development, P.O. Box 5400, Princeton, NJ 08543 USA
| | - Kaushik Ghosh
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore, 560099 India
| | - Vivek Halan
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore, 560099 India
| | - Jonathan S. Lippy
- Department of Leads Discovery and Optimization, Bristol Myers Squibb, Research and Development, P.O. Box 5400, Princeton, NJ 08543 USA
| | - Kenneth S. Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - R. Rex Denton
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Research and Development, 250 Water St, Cambridge, MA 02141 USA
| | - Ryan Westphal
- Department of Neuroscience Biology, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Linda J. Bristow
- Department of Neuroscience Biology, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Charles M. Conway
- Department of Neuroscience Biology, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| | - Joanne J. Bronson
- Small Molecule Drug Discovery, Bristol Myers Squibb, Research and Development, 250 Water St, Cambridge, MA 02141 USA
| | - John E. Macor
- Department of Neuroscience Chemistry, Bristol Myers Squibb, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, CT 06492 USA
| |
Collapse
|
11
|
Zhang Y, Xiong X, Sun R, Zhu X, Wang C, Jiang B, Yang X, Li D, Fan G. Development of the non-receptor tyrosine kinase FER-targeting PROTACs as a potential strategy for antagonizing ovarian cancer cell motility and invasiveness. J Biol Chem 2023:104825. [PMID: 37196766 DOI: 10.1016/j.jbc.2023.104825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Aberrant overexpression of non-receptor tyrosine kinase FER has been reported in various ovarian carcinoma-derived tumor cells and is a poor prognosis factor for patient survival. It plays an essential role in tumor cell migration and invasion, acting concurrently in both kinase-dependent and -independent manners, which is not easily suppressed by conventional enzymatic inhibitors. Nevertheless, the proteolysis-targeting chimeras (PROTACs) technology offers superior efficacy over traditional activity-based inhibitors by simultaneously targeting enzymatic and scaffold functions. Hence in this study, we report the development of two PROTAC compounds that promote robust FER degradation in a cereblon-dependent manner. Both PROTAC degraders outperform an FDA-approved drug, Brigatinib, in ovarian cancer cell motility suppression. Importantly, these PROTAC compounds also degrade multiple oncogenic FER fusion proteins identified in human tumor samples. These results lay an experimental foundation to apply the PROTAC strategy to antagonize cell motility and invasiveness in ovarian and other types of cancers with aberrant expression of FER kinase and highlight PROTACs as a superior strategy for targeting proteins with multiple tumor-promoting functions.
Collapse
Affiliation(s)
- Yanchun Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuexue Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Dake Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
12
|
Anderson C, Baha H, Boghdeh N, Barrera M, Alem F, Narayanan A. Interactions of Equine Viruses with the Host Kinase Machinery and Implications for One Health and Human Disease. Viruses 2023; 15:v15051163. [PMID: 37243249 DOI: 10.3390/v15051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Zoonotic pathogens that are vector-transmitted have and continue to contribute to several emerging infections globally. In recent years, spillover events of such zoonotic pathogens have increased in frequency as a result of direct contact with livestock, wildlife, and urbanization, forcing animals from their natural habitats. Equines serve as reservoir hosts for vector-transmitted zoonotic viruses that are also capable of infecting humans and causing disease. From a One Health perspective, equine viruses, therefore, pose major concerns for periodic outbreaks globally. Several equine viruses have spread out of their indigenous regions, such as West Nile virus (WNV) and equine encephalitis viruses (EEVs), making them of paramount concern to public health. Viruses have evolved many mechanisms to support the establishment of productive infection and to avoid host defense mechanisms, including promoting or decreasing inflammatory responses and regulating host machinery for protein synthesis. Viral interactions with the host enzymatic machinery, specifically kinases, can support the viral infectious process and downplay innate immune mechanisms, cumulatively leading to a more severe course of the disease. In this review, we will focus on how select equine viruses interact with host kinases to support viral multiplication.
Collapse
Affiliation(s)
- Carol Anderson
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Niloufar Boghdeh
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Michael Barrera
- School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - Farhang Alem
- Institute of Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
13
|
Lian J, Zhu X, Du J, Huang B, Zhao F, Ma C, Guo R, Zhang Y, Ji L, Yahaya BH, Lin J. Extracellular vesicle-transmitted miR-671-5p alleviates lung inflammation and injury by regulating the AAK1/NF-κB axis. Mol Ther 2023; 31:1365-1382. [PMID: 36733250 PMCID: PMC10188640 DOI: 10.1016/j.ymthe.2023.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells regulate remote intercellular signaling communication via their secreted extracellular vesicles. Here, we report that menstrual blood-derived stem cells alleviate acute lung inflammation and injury via their extracellular vesicle-transmitted miR-671-5p. Disruption of this abundantly expressed miR-671-5p dramatically reduced the ameliorative effect of extracellular vesicles released by menstrual blood-derived stem cells on lipopolysaccharide (LPS)-induced pulmonary inflammatory injury. Mechanistically, miR-671-5p directly targets the kinase AAK1 for post-transcriptional degradation. AAK1 is found to positively regulate the activation of nuclear factor κB (NF-κB) signaling by controlling the stability of the inhibitory protein IκBα. This study identifies a potential molecular basis of how extracellular vesicles derived from mesenchymal stem cells improve pulmonary inflammatory injury and highlights the functional importance of the miR-671-5p/AAK1 axis in the progression of pulmonary inflammatory diseases. More importantly, this study provides a promising cell-based approach for the treatment of pulmonary inflammatory disorders through an extracellular vesicle-dependent pathway.
Collapse
Affiliation(s)
- Jie Lian
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, SAINS@Bertam, 13200 Kepala Batas, Penang, Malaysia; Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xinxing Zhu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jiang Du
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Beijia Huang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Fengting Zhao
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunya Ma
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui Guo
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Yangxia Zhang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Longkai Ji
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Badrul Hisham Yahaya
- Lung Stem Cells and Gene Therapy Group, Department of Biomedical Sciences, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, SAINS@Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Juntang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
14
|
Abstract
Rabies virus (RABV) is a prototypical neurotropic virus that causes rabies in human and animals with an almost 100% mortality rate. Once RABV enters the central nervous system, no treatment is proven to prevent death. RABV glycoprotein (G) interacts with cell surface receptors and then enters cells via clathrin-mediated endocytosis (CME); however, the key host factors involved remain largely unknown. Here, we identified transferrin receptor 1 (TfR1), a classic receptor that undergoes CME, as an entry factor for RABV. TfR1 interacts with RABV G and is involved in the endocytosis of RABV. An antibody against TfR1 or the TfR1 ectodomain soluble protein significantly blocked RABV infection in HEK293 cells, N2a cells, and mouse primary neuronal cells. We further found that the endocytosis of TfR1 is coupled with the endocytosis of RABV and that TfR1 and RABV are transported to early and late endosomes. Our results suggest that RABV hijacks the transport pathway of TfR1 for entry, thereby deepening our understanding of the entry mechanism of RABV. IMPORTANCE For most viruses, cell entry involves engagement with many distinct plasma membrane components, each of which is essential. After binding to its specific receptor(s), rabies virus (RABV) enters host cells through the process of clathrin-mediated endocytosis. However, whether the receptor-dependent clathrin-mediated endocytosis of RABV requires other plasma membrane components remain largely unknown. Here, we demonstrate that transferrin receptor 1 (TfR1) is a functional entry factor for RABV infection. The endocytosis of RABV is coupled with the endocytosis of TfR1. Our results indicate that RABV hijacks the transport pathway of TfR1 for entry, which deepens our understanding of the entry mechanism of RABV.
Collapse
|
15
|
Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed, SCOPUS, Science Direct, Research Gate and Google Scholars. Result: We presented the concept of novel nanotechnology researched discovery, including nano-devices, electrochemical biosensing, nano-assisted vaccine, and nanomedicines, for use in recent times, which could be a formidable step for future management of COVID-19.
Collapse
|
16
|
Mugerwa H, Gautam S, Catto MA, Dutta B, Brown JK, Adkins S, Srinivasan R. Differential Transcriptional Responses in Two Old World Bemisia tabaci Cryptic Species Post Acquisition of Old and New World Begomoviruses. Cells 2022; 11:cells11132060. [PMID: 35805143 PMCID: PMC9265393 DOI: 10.3390/cells11132060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Begomoviruses are transmitted by several cryptic species of the sweetpotato whitefly, Bemisia tabaci (Gennadius), in a persistent and circulative manner. Upon virus acquisition and circulative translocation within the whitefly, a multitude of molecular interactions occur. This study investigated the differentially expressed transcript profiles associated with the acquisition of the Old World monopartite begomovirus, tomato yellow leaf curl virus (TYLCV), and two New World bipartite begomoviruses, sida golden mosaic virus (SiGMV) and cucurbit leaf crumple virus (CuLCrV), in two invasive B. tabaci cryptic species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED). A total of 881 and 559 genes were differentially expressed in viruliferous MEAM1 and MED whiteflies, respectively, compared with their non-viruliferous counterparts, of which 146 genes were common between the two cryptic species. For both cryptic species, the number of differentially expressed genes (DEGs) associated with TYLCV and SiGMV acquisition were higher compared with DEGs associated with CuLCrV acquisition. Pathway analysis indicated that the acquisition of begomoviruses induced differential changes in pathways associated with metabolism and organismal systems. Contrasting expression patterns of major genes associated with virus infection and immune systems were observed. These genes were generally overexpressed and underexpressed in B. tabaci MEAM1 and MED adults, respectively. Further, no specific expression pattern was observed among genes associated with fitness (egg production, spermatogenesis, and aging) in viruliferous whiteflies. The weighted gene correlation network analysis of viruliferous B. tabaci MEAM1 and MED adults identified different hub genes potentially implicated in the vector competence and circulative tropism of viruses. Taken together, the results indicate that both vector cryptic species and the acquired virus species could differentially affect gene expression.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Michael A. Catto
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, 3250 Rainwater Road, Tifton, GA 31793, USA;
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tuscon, AZ 85721, USA;
| | - Scott Adkins
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; (H.M.); (S.G.); (M.A.C.)
- Correspondence: ; Tel.: +1-770-229-3099
| |
Collapse
|
17
|
Liu X, Nawaz Z, Guo C, Ali S, Naeem MA, Jamil T, Ahmad W, Siddiq MU, Ahmed S, Asif Idrees M, Ahmad A. Rabies Virus Exploits Cytoskeleton Network to Cause Early Disease Progression and Cellular Dysfunction. Front Vet Sci 2022; 9:889873. [PMID: 35685339 PMCID: PMC9172992 DOI: 10.3389/fvets.2022.889873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2023] Open
Abstract
Rabies virus (RABV) is a cunning neurotropic pathogen and causes top priority neglected tropical diseases in the developing world. The genome of RABV consists of nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and RNA polymerase L protein (L), respectively. The virus causes neuronal dysfunction instead of neuronal cell death by deregulating the polymerization of the actin and microtubule cytoskeleton and subverts the associated binding and motor proteins for efficient viral progression. These binding proteins mainly maintain neuronal structure, morphology, synaptic integrity, and complex neurophysiological pathways. However, much of the exact mechanism of the viral-cytoskeleton interaction is yet unclear because several binding proteins of the actin-microtubule cytoskeleton are involved in multifaceted pathways to influence the retrograde and anterograde axonal transport of RABV. In this review, all the available scientific results regarding cytoskeleton elements and their possible interactions with RABV have been collected through systematic methodology, and thereby interpreted to explain sneaky features of RABV. The aim is to envisage the pathogenesis of RABV to understand further steps of RABV progression inside the cells. RABV interacts in a number of ways with the cell cytoskeleton to produce degenerative changes in the biochemical and neuropathological trails of neurons and other cell types. Briefly, RABV changes the gene expression of essential cytoskeleton related proteins, depolymerizes actin and microtubules, coordinates the synthesis of inclusion bodies, manipulates microtubules and associated motors proteins, and uses actin for clathrin-mediated entry in different cells. Most importantly, the P is the most intricate protein of RABV that performs complex functions. It artfully operates the dynein motor protein along the tracks of microtubules to assist the replication, transcription, and transport of RABV until its egress from the cell. New remedial insights at subcellular levels are needed to counteract the destabilization of the cytoskeleton under RABV infection to stop its life cycle.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Hand Surgery, Presidents' Office of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zeeshan Nawaz
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Caixia Guo
- Department of Hand Surgery, Presidents' Office of China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sultan Ali
- Faculty of Veterinary Science, Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Tariq Jamil
- Department of Clinical Sciences, Section of Epidemiology and Public Health, College of Veterinary and Animal Sciences, Jhang, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Muhammad Usman Siddiq
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Muhammad Asif Idrees
- Department of Pathobiology, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Ali Ahmad
- Department of Pathobiology, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| |
Collapse
|
18
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
19
|
A Review on Transcriptional Responses of Interactions between Insect Vectors and Plant Viruses. Cells 2022; 11:cells11040693. [PMID: 35203347 PMCID: PMC8870222 DOI: 10.3390/cells11040693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
This review provides a synopsis of transcriptional responses pertaining to interactions between plant viruses and the insect vectors that transmit them in diverse modes. In the process, it attempts to catalog differential gene expression pertinent to virus–vector interactions in vectors such as virus reception, virus cell entry, virus tissue tropism, virus multiplication, and vector immune responses. Whiteflies, leafhoppers, planthoppers, and thrips are the main insect groups reviewed, along with aphids and leaf beetles. Much of the focus on gene expression pertinent to vector–virus interactions has centered around whole-body RNA extraction, whereas data on virus-induced tissue-specific gene expression in vectors is limited. This review compares transcriptional responses in different insect groups following the acquisition of non-persistent, semi-persistent, and persistent (non-propagative and propagative) plant viruses and identifies parallels and divergences in gene expression patterns. Understanding virus-induced changes in vectors at a transcriptional level can aid in the identification of candidate genes for targeting with RNAi and/or CRISPR editing in insect vectors for management approaches.
Collapse
|
20
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
21
|
The pros and cons of cytokines for fowl adenovirus serotype 4 infection. Arch Virol 2021; 167:281-292. [PMID: 34839444 DOI: 10.1007/s00705-021-05318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Hepatitis-hydropericardium syndrome (HHS), caused by fowl adenovirus serotype 4 (FAdV-4), has spread on chicken farms worldwide, causing huge economic losses. Currently, the exact mechanism of pathogenesis of FAdV-4 remains unknown. Despite the severe inflammatory damage observed in chickens infected with pathogenic FAdV-4, few studies have focused on the host immune system-virus interactions and cytokine secretion. Host immunity acts as one of the most robust defense mechanisms against infection by pathogens, and cytokines are important in their elimination. However, excessive inflammatory cytokine secretion could contribute to the pathogenesis of FAdV-4. Understanding of the roles of cytokines produced during FAdV-4 infection is important for the study of pathogenicity and for developing strategies to control FAdV-4. Several previous studies have addressed the immune responses to FAdV-4 infection, but there has not been a systematic review of this work. The present review provides a detailed summary of the current findings on cytokine production induced by FAdV-4 infection to accelerate our understanding of FAdV-4 pathogenesis.
Collapse
|
22
|
Involvement of adaptor proteins in clathrin-mediated endocytosis of virus entry. Microb Pathog 2021; 161:105278. [PMID: 34740810 DOI: 10.1016/j.micpath.2021.105278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
The first step in the initiation of effective viral infection is breaking through the cytomembrane to enter the cell. Clathrin-mediated endocytosis is a key vesicular trafficking process in which a variety of cargo molecules are transported from the outside to the inside of the cell. This process is hijacked by numerous families of enveloped or non-enveloped viruses, which use it to enter host cells, followed by trafficking to their replicating sites. Various adaptor proteins that assist in cargo selection, coat assembly, and clathrin-coated bud maturation are important in this process. Research data documented on the involvement of adaptor proteins, such as AP-2, Eps-15, Epsin1, and AP180/CALM, in the invasion of viruses via the clathrin-mediated endocytosis have provided novel insights into understanding the viral life cycle and have led to the development of novel therapeutics. Here, we summarize the latest discoveries on the role of these adaptor proteins in clathrin-mediated endocytosis of virus entry and also discuss the future trends in this field.
Collapse
|
23
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
24
|
Ayele AG, Enyew EF, Kifle ZD. Roles of existing drug and drug targets for COVID-19 management. Metabol Open 2021; 11:100103. [PMID: 34222852 PMCID: PMC8239316 DOI: 10.1016/j.metop.2021.100103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
In December 2019, a highly transmissible, pneumonia epidemic caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), erupted in China and other countries, resulting in devastation and health crisis worldwide currently. The search and using existing drugs support to curb the current highly contagious viral infection is spirally increasing since the pandemic began. This is based on these drugs had against other related RNA-viruses such as MERS-Cov, and SARS-Cov. Moreover, researchers are scrambling to identify novel drug targets and discover novel therapeutic options to vanquish the current pandemic. Since there is no definitive treatment to control Covid-19 vaccines are remain to be a lifeline. Currently, many vaccine candidates are being developed with most of them are reported to have positive results. Therapeutic targets such as helicases, transmembrane serine protease 2, cathepsin L, cyclin G-associated kinase, adaptor-associated kinase 1, two-pore channel, viral virulence factors, 3-chymotrypsin-like protease, suppression of excessive inflammatory response, inhibition of viral membrane, nucleocapsid, envelope, and accessory proteins, and inhibition of endocytosis were identified as a potential target against COVID-19 infection. This review also summarizes plant-based medicines for the treatment of COVID-19 such as saposhnikoviae divaricata, lonicerae japonicae flos, scutellaria baicalensis, lonicera japonicae, and some others. Thus, this review aimed to focus on the most promising therapeutic targets being repurposed against COVID-19 and viral elements that are used in COVID-19 vaccine candidates.
Collapse
Key Words
- 3CLpro, 3-chymotrypsin-like protease
- AAK1, adaptor-associated kinase 1
- ACE-2, Angiotensin-Converting Enzyme-2
- CEF, Cepharanthine
- COVID-19
- COVID-19, coronavirus disease-2019
- Existing drug
- GAK, cyclin G-associated kinase
- MERS-CoV, Middle East respiratory syndrome coronavirus
- Management
- Nsp, non-structure protein
- ORF, open reading frame
- PLpro, papain-like protease
- RdRp, RNA-dependence RNA-polymerase
- SARS-COV-2, severe acute respiratory syndrome coronavirus-2
- TMPRSS2, transmembrane Serine Protease 2
- TPC2, two-pore channel 2
- Therapeutic target
Collapse
Affiliation(s)
- Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Engidaw Fentahun Enyew
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Sciences, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
25
|
Gong Y, Wu F, Li H, Zhang X, Zhang S. Identification and functional characterization of AP-2 complex subunit mu-A as a new member of antimicrobial protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104099. [PMID: 33848529 DOI: 10.1016/j.dci.2021.104099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
AP-2 complex subunit mu-A (AP2M1A) is a component of the adaptor complexes that link clathrin to receptors in coated vesicles. It has recently been shown to be involved in the resistance to oxidative damage, challenging the conventional role of AP2M1A. Here we demonstrated that AP2M1A was a heparin-binding protein abundantly stored in eggs and embryos of zebrafish, and its gene expression was markedly up-regulated by LPS and LTA treatment. We also showed that recombinant AP2M1A (rAP2M1A) was not only able to interact with Gram-negative and Gram-positive bacteria as well as their signature molecules LPS and LTA, but also able to inhibit the growth of the bacteria. Additionally, we found that AP2M1A354-382 that contained 2 closely positioned heparin-binding motifs could also bind to LPS and LTA, and inhibit the bacterial growth. Both rAP2M1A and AP2M1A354-382 were shown to execute antibacterial activity by a combined action of destabilization/destruction of bacterial cell wall through interaction with LPS and LTA, disturbance of the usually polarized membrane through depolarization, and apoptosis/necrosis through intracellular ROS production. Finally, we showed that AP2M1A could protect zebrafish developing embryos/larvae against attack by the potential pathogen Aeromonas hydrophila. All these demonstrate for the first time that AP2M1A is a maternal antimicrobial protein previously uncharacterized. It also establishes a correlation between antibacterial activity and heparin-binding motifs.
Collapse
Affiliation(s)
- Yi Gong
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Fei Wu
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haoyi Li
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiangmin Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
26
|
Martinez-Gualda B, Schols D, De Jonghe S. A patent review of adaptor associated kinase 1 (AAK1) inhibitors (2013-present). Expert Opin Ther Pat 2021; 31:911-936. [PMID: 33971786 DOI: 10.1080/13543776.2021.1928637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Adaptor-associated kinase 1 (AAK1) has been proposed as being a promising drug target for the treatment of a variety of neurological and psychiatric disorders, such as schizophrenia, cognitive deficits in schizophrenia, Parkinson's disease, bipolar disorder, Alzheimer's disease and neuropathic pain. More recently, AAK1 was shown to be an essential cellular factor for viral replication and therefore has been pursued as a host target for the development of broad-spectrum antiviral agents. AREAS COVERED This review provides an overview of the patented AAK1 inhibitors from 2013 to present. EXPERT OPINION The promise of AAK1 as drug target for the treatment of neuropathic pain stimulated the search for AAK1 inhibitors. However, only two companies (i.e. Lexicon Pharmaceuticals and Bristol Myers Squibb) seemed to be active in this field and filed patent applications in the last few years. The most promising congeners showed promising in vitro activity in a variety of AAK1-related assays. Moreover, selected compounds were also endowed with in vivo activity in various preclinical animal models for neuropathic pain.
Collapse
Affiliation(s)
- Belén Martinez-Gualda
- Rega Institute for Medical Research, Laboratory of Medicinal ChemistryKU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and ChemotherapyKU Leuven, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and ChemotherapyKU Leuven, Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and ChemotherapyKU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020; 63:12359-12386. [PMID: 32511912 PMCID: PMC7323060 DOI: 10.1021/acs.jmedchem.0c00606] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Currently, humans are immersed in a pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which threatens public health worldwide. To date, no drug or vaccine has been approved to treat the severe disease caused by this coronavirus, COVID-19. In this paper, we will focus on the main virus-based and host-based targets that can guide efforts in medicinal chemistry to discover new drugs for this devastating disease. In principle, all CoV enzymes and proteins involved in viral replication and the control of host cellular machineries are potentially druggable targets in the search for therapeutic options for SARS-CoV-2. This Perspective provides an overview of the main targets from a structural point of view, together with reported therapeutic compounds with activity against SARS-CoV-2 and/or other CoVs. Also, the role of innate immune response to coronavirus infection and the related therapeutic options will be presented.
Collapse
Affiliation(s)
- Carmen Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Tiziana Ginex
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Inés Maestro
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Vanesa Nozal
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Lucía Barrado-Gil
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Ángel Cuesta-Geijo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Jesús Urquiza
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas,
Universidad Autónoma de Chile,
Llano Subercaseaux 2801- piso 6, 7500912 Santiago,
Chile
| | - Covadonga Alonso
- Department of Biotechnology,
Instituto Nacional de Investigación y
Tecnología Agraria y Alimentaria (INIA),
Ctra. de la Coruña km 7.5, 28040 Madrid,
Spain
| | - Nuria E. Campillo
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones
Biológicas Margarita Salas (CSIC), Ramiro
de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
28
|
Kumar D, Chauhan G, Kalra S, Kumar B, Gill MS. A perspective on potential target proteins of COVID-19: Comparison with SARS-CoV for designing new small molecules. Bioorg Chem 2020; 104:104326. [PMID: 33142431 PMCID: PMC7524440 DOI: 10.1016/j.bioorg.2020.104326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023]
Abstract
SARS-CoV-2 (COVID-19) epidemic has created an unprecedented medical and economic crisis all over the world. SARS-CoV-2 is found to have more contagious character as compared to MERS-CoV and is spreading in a very fast manner all around the globe. It has affected over 31 million people all over the world till date. This virus shares around 80% of genome similarity with SARS-CoV. In this perspective, we have explored three major targets namely; SARS-CoV-2 spike (S) protein, RNA dependent RNA polymerase, and 3CL or Mpro Protease for the inhibition of SARS-CoV-2. These targets have attracted attention of the medicinal chemists working on computer-aided drug design in developing new small molecules that might inhibit these targets for combating COVID-19 disease. Moreover, we have compared the similarity of these target proteins with earlier reported coronavirus (SARS-CoV). We have observed that both the coronaviruses share around 80% similarity in their amino acid sequence. The key amino acid interactions which can play a crucial role in designing new small molecule inhibitors against COVID-19 have been reported in this perspective. Authors believe that this study will help the medicinal chemists to understand the key amino acids essential for interactions at the active site of target proteins in SARS-CoV-2, based on their similarity with earlier reported viruses. In this review, we have also described the lead molecules under various clinical trials for their efficacy against COVID-19.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| | - Sourav Kalra
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, SAS Nagar, Sector 67, Mohali, Punjab 160062, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| | - Manjinder Singh Gill
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, SAS Nagar, Sector 67, Mohali, Punjab 160062, India.
| |
Collapse
|
29
|
Wang PG, Tang DJ, Hua Z, Wang Z, An J. Sunitinib reduces the infection of SARS-CoV, MERS-CoV and SARS-CoV-2 partially by inhibiting AP2M1 phosphorylation. Cell Discov 2020; 6:71. [PMID: 33083006 PMCID: PMC7550610 DOI: 10.1038/s41421-020-00217-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Dong-Jiang Tang
- Zhuhai SanMed Biotech Ltd, Zhuhai, 519000 China.,Joint Research Center of Liquid Biopsy in Guangdong, Hong Kong and Macau, Zhuhai, 519000 China
| | - Zhan Hua
- Department of General Surgery, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, 100029 Beijing, China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
30
|
Alantolactone inhibits cell autophagy and promotes apoptosis via AP2M1 in acute lymphoblastic leukemia. Cancer Cell Int 2020; 20:442. [PMID: 32943990 PMCID: PMC7488238 DOI: 10.1186/s12935-020-01537-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is an aggressive hematopoietic malignancy that is most commonly observed in children. Alantolactone (ALT) has been reported to exhibit anti-tumor activity in different types of cancer. The aim of the present study was to investigate the anti-tumor activity and molecular mechanism of ALT in ALL. Methods ALL cell lines were treated with 1, 5 and 10 μM ALT, and cell viability was assessed using an MTT assay and RNA sequencing. Flow cytometry, JC-1 staining and immunofluorescence staining assays were used to measure cell apoptosis and autophagy. Additionally, western blot analysis was used to detect expression of apoptosis and autophagy related proteins. Finally, the effects of ALT on tumor growth were assessed in a BV173 xenograft nude mouse model. Results ALT inhibited the proliferation of ALL cells in a dose-dependent manner. Additionally, it was demonstrated that ALT inhibited cell proliferation, colony formation, autophagy, induced apoptosis and reduced tumor growth in vivo through upregulating the expression of adaptor related protein complex 2 subunit mu 1 (AP2M1). Moreover, the autophagy activator rapamycin, attenuated the pro-apoptotic effects of ALT on BV173 and NALM6 cell lines. Overexpression of AP2M1 decreased the expression of Beclin1 and the LC3-II/LC3-1 ratio, and increased p62 expression. Knockdown of Beclin1 increased the levels of bax, cleaved caspase 3 and cytochrome C, and decreased bcl-2 expression. Conclusions The present study demonstrated that ALT exerts anti-tumor activity through inducing apoptosis and inhibiting autophagy by upregulating AP2M1 in ALL, highlighting a potential therapeutic strategy for treatment of ALL.
Collapse
|
31
|
Luo J, Zhang Y, Wang Y, Liu Q, Chen L, Zhang B, Luo Y, Huang S, Guo X. Rhabdovirus Infection Is Dependent on Serine/Threonine Kinase AP2-Associated Kinase 1. Life (Basel) 2020; 10:E170. [PMID: 32872567 PMCID: PMC7554979 DOI: 10.3390/life10090170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023] Open
Abstract
Rabies virus (RABV) causes a fatal neurological disease in both humans and animals. Understanding the mechanism of RABV infection is vital for prevention and therapy of virulent rabies infection. Our previous proteomics analysis based on isobaric tags for relative and absolute quantitation to identify factors revealed that RABV infection enhanced AP-2-associated protein kinase 1 (AAK1) in N2a cells. In this study, to further confirm the role of AAK1, we showed that RABV infection increased the transcription and expression of AAK1 in N2a cells. AAK1 knockdown significantly decreased RABV infection in both N2a and BHK-21 cells. AAK1 knockout inhibited RABV infection in N2a cells. Furthermore, inhibition of AAK1 kinase activity using sunitinib decreased RABV infection. However, AAK1 overexpression did not change RABV infection in vitro. Therapeutic administration of sunitinib did not significantly improve the survival rate of mice following lethal RABV challenge. In addition, AAK1 knockdown decreased infection in N2a cells by vesicular stomatitis virus, which is another rhabdovirus. These results indicate that rhabdovirus infection is dependent on AAK1 and inhibition of AAK1 is a potential strategy for the prevention and therapy of rabies.
Collapse
Affiliation(s)
- Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Y.Z.); (Y.W.); (Q.L.); (L.C.); (B.Z.); (Y.L.)
| | - Yue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Y.Z.); (Y.W.); (Q.L.); (L.C.); (B.Z.); (Y.L.)
| | - Yang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Y.Z.); (Y.W.); (Q.L.); (L.C.); (B.Z.); (Y.L.)
| | - Qing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Y.Z.); (Y.W.); (Q.L.); (L.C.); (B.Z.); (Y.L.)
| | - Luman Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Y.Z.); (Y.W.); (Q.L.); (L.C.); (B.Z.); (Y.L.)
| | - Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Y.Z.); (Y.W.); (Q.L.); (L.C.); (B.Z.); (Y.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Y.Z.); (Y.W.); (Q.L.); (L.C.); (B.Z.); (Y.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.L.); (Y.Z.); (Y.W.); (Q.L.); (L.C.); (B.Z.); (Y.L.)
| |
Collapse
|
32
|
Chen Q, Men Y, Wang D, Xu D, Liu S, Xiao S, Fang L. Porcine reproductive and respiratory syndrome virus infection induces endoplasmic reticulum stress, facilitates virus replication, and contributes to autophagy and apoptosis. Sci Rep 2020; 10:13131. [PMID: 32753633 PMCID: PMC7403369 DOI: 10.1038/s41598-020-69959-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023] Open
Abstract
During viral infection, the host cell synthesizes high amounts of viral proteins, which often causes stress to the endoplasmic reticulum (ER). To manage abnormal ER stress, mammalian cells trigger a response called the unfolded protein response (UPR). Previous studies have indicated that porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has been devastating the swine industry worldwide, can induce ER stress and activate UPR, however, the activation pathways and the biological significance requires further investigation. In this study, we demonstrated that, among the three types of UPR pathways, PRRSV infection induced PERK and IRE1 pathways, but not the ATF6 pathway. Furthermore, the induction of UPR promoted PRRSV replication. We also found that PRRSV-induced UPR, particularly the PERK pathway, was involved in the induction of autophagy, a cellular degradation process that can alleviate cell stress. Besides, we also provided insights into the ER stress-mediated apoptosis in response to PRRSV infection. PRRSV infection induced the expression of the transcription factor CHOP, which activated caspase 3 and PARP led to ER stress-mediated apoptosis. Using 3-Methyladenine (3-MA) to inhibit autophagy, the increased ER stress and cell apoptosis were observed in the PRRSV infected cell. Taken together, our results revealed the associations of ER stress, autophagy, and apoptosis during PRRSV infection, helping us to further understand how PRRSV interacts with host cells.
Collapse
Affiliation(s)
- Quangang Chen
- School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yanjuan Men
- School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Deqin Xu
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Suyan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|