1
|
Duan SH, Li ZM, Yu XJ, Li D. Alphaherpesvirus in Pets and Livestock. Microorganisms 2025; 13:82. [PMID: 39858850 PMCID: PMC11767655 DOI: 10.3390/microorganisms13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Herpesviruses are a group of DNA viruses capable of infecting multiple mammalian species, including humans. This review primarily summarizes four common alphaherpesviruses found in pets and livestock (feline, swine, canine, and bovine) in aspects such as epidemiology, immune evasion, and latency and reactivation. Despite the fact that they primarily infect specific hosts, these viruses have the potential for cross-species transmission due to genetic mutations and/or recombination events. During infection, herpesviruses not only stimulate innate immune responses in host cells but also interfere with signaling pathways through specific proteins to achieve immune evasion. These viruses can remain latent within the host for extended periods and reactivate under certain conditions to trigger disease recurrence. They not only affect the health of animals and cause economic losses but may also pose a potential threat to humans under certain circumstances. This review deepens our understanding of the biological characteristics of these animal alphaherpesviruses and provides an important scientific basis for the prevention and control of related diseases.
Collapse
Affiliation(s)
- Shu-Hui Duan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Dan Li
- Hubei Provincial Center for Disease Control and Prevention, Institute for Infectious Disease Prevention and Control, Wuhan 430079, China
| |
Collapse
|
2
|
Trybus M, Hryniewicz-Jankowska A, Wójtowicz K, Trombik T, Czogalla A, Sikorski AF. EFR3A: a new raft domain organizing protein? Cell Mol Biol Lett 2023; 28:86. [PMID: 37880612 PMCID: PMC10601247 DOI: 10.1186/s11658-023-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Membrane rafts play a crucial role in the regulation of many important biological processes. Our previous data suggest that specific interactions of flotillins with MPP1 are responsible for membrane raft domain organization and regulation in erythroid cells. Interaction of the flotillin-based protein network with specific membrane components underlies the mechanism of raft domain formation and regulation, including in cells with low expression of MPP1. METHODS We sought to identify other flotillin partners via the immobilized recombinant flotillin-2-based affinity approach and mass spectrometry technique. The results were further confirmed via immunoblotting and via co-immunoprecipitation. In order to study the effect of the candidate protein on the physicochemical properties of the plasma membrane, the gene was knocked down via siRNA, and fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy was employed. RESULTS EFR3A was identified as a candidate protein that interacts with flotillin-2. Moreover, this newly discovered interaction was demonstrated via overlay assay using recombinant EFR3A and flotillin-2. EFR3A is a stable component of the detergent-resistant membrane fraction of HeLa cells, and its presence was sensitive to the removal of cholesterol. While silencing the EFR3A gene, we observed decreased order of the plasma membrane of living cells or giant plasma membrane vesicles derived from knocked down cells and altered mobility of the raft probe, as indicated via fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy. Moreover, silencing of EFR3A expression was found to disturb epidermal growth factor receptor and phospholipase C gamma phosphorylation and affect epidermal growth factor-dependent cytosolic Ca2+ concentration. CONCLUSIONS Altogether, our results suggest hitherto unreported flotillin-2-EFR3A interaction, which might be responsible for membrane raft organization and regulation. This implies participation of this interaction in the regulation of multiple cellular processes, including those connected with cell signaling which points to the possible role in human health, in particular human cancer biology.
Collapse
Affiliation(s)
- Magdalena Trybus
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Anita Hryniewicz-Jankowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Karolina Wójtowicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Tomasz Trombik
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| | - Aleksander F Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamienskiego73a, 51-154, Wroclaw, Poland.
| |
Collapse
|
3
|
Liu C, Yuan W, Yang H, Ni J, Tang L, Zhao H, Neumann D, Ding X, Zhu L. Associating bovine herpesvirus 1 envelope glycoprotein gD with activated phospho-PLC-γ1(S1248). Microbiol Spectr 2023; 11:e0196323. [PMID: 37655900 PMCID: PMC10580943 DOI: 10.1128/spectrum.01963-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/23/2023] [Indexed: 09/02/2023] Open
Abstract
Phospholipase C gamma 1 (PLC-γ1) may locate at distinct subcellular locations, such as cytosol, plasma membrane, and nucleus for varied biological functions. Bovine herpesvirus 1 (BoHV-1) productive infection activates PLC-γ1 signaling, as demonstrated by increased protein levels of phosphorylated-PLC-γ1 at Ser1248 [p-PLC-γ1(S1248)], which benefits virus productive infection. Here, for the first time, we reported that Golgi apparatus also contains activated p-PLC-γ1(S1248). And BoHV-1 productive infection at later stages (24 hpi) increased the accumulation of p-PLC-γ1(S1248) in the Golgi apparatus, where p-PLC-γ1(S1248) forms highlighted puncta observed via a confocal microscope. Coimmunoprecipitation studies demonstrated that the Golgi p-PLC-γ1(S1248) is specifically associated with the viral protein gD but not gC. In addition, we found that p-PLC-γ1(S1248) is consistently associated with both the plasma membrane-associated virions and the released virions. When the virus-infected cells were treated with PLC-γ1-specific inhibitor, U73122, for a short duration of 4 hours prior to the endpoint of virus infection, we found that the viral protein gD was trapped in the Golgi apparatus, suggesting that the PLC-γ1 signaling may facilitate trafficking of progeny virions out of this organelle. These findings provide a novel insight into the interplay between PLC-γ1 signaling and BoHV-1 replication. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) productive infection increases protein levels of phosphorylated-phospholipase C gamma 1 at Ser1248 [p-PLC-γ1(S1248)]. However, whether it causes any variations to p-PLC-γ1(S1248) localization is not well understood. Here, for the first time, we found that partial p-PLC-γ1(S1248) is residing in the Golgi apparatus, where the accumulation is enhanced by virus infection. p-PLC-γ1(S1248) is consistently associated with virions, partially via binding to gD, in both the Golgi apparatus and cytoplasm membranes. Surprisingly, it also associates with the released virions. Of note, this is the first evidenced BoHV-1 virion-bound host protein. It seems that p-PLC-γ1(S1248) works as an escort during trafficking of progeny virions out of Golgi apparatus to the plasma membranes as well as releasing outside of the cell membranes. Furthermore, we showed that the activated p-PLC-γ1(S1248) is potentially implicated in the transport of virions out of Golgi apparatus, which may represent a novel mechanism to regulate virus productive infection.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Junqing Ni
- Animal Husbandry and Improved Breeds Work Station of Hebei Province, Shijiazhuang, China
| | - Linke Tang
- College of Life Sciences, Hebei University, Baoding, China
| | - Heci Zhao
- College of Life Sciences, Hebei University, Baoding, China
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
4
|
Dinarvand M, Koch FC, Al Mouiee D, Vuong K, Vijayan A, Tanzim AF, Azad AKM, Penesyan A, Castaño-Rodríguez N, Vafaee F. dRNASb: a systems biology approach to decipher dynamics of host-pathogen interactions using temporal dual RNA-seq data. Microb Genom 2022; 8. [PMID: 36136078 DOI: 10.1099/mgen.0.000862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection triggers a dynamic cascade of reciprocal events between host and pathogen wherein the host activates complex mechanisms to recognise and kill pathogens while the pathogen often adjusts its virulence and fitness to avoid eradication by the host. The interaction between the pathogen and the host results in large-scale changes in gene expression in both organisms. Dual RNA-seq, the simultaneous detection of host and pathogen transcripts, has become a leading approach to unravelling complex molecular interactions between the host and the pathogen and is particularly informative for intracellular organisms. The amount of in vitro and in vivo dual RNA-seq data is rapidly growing, which demands computational pipelines to effectively analyse such data. In particular, holistic, systems-level, and temporal analyses of dual RNA-seq data are essential to enable further insights into the host-pathogen transcriptional dynamics and potential interactions. Here, we developed an integrative network-driven bioinformatics pipeline, dRNASb, a systems biology-based computational pipeline to analyse temporal transcriptional clusters, incorporate molecular interaction networks (e.g. protein-protein interactions), identify topologically and functionally key transcripts in host and pathogen, and associate host and pathogen temporal transcriptome to decipher potential between-species interactions. The pipeline is applicable to various dual RNA-seq data from different species and experimental conditions. As a case study, we applied dRNASb to analyse temporal dual RNA-seq data of Salmonella-infected human cells, which enabled us to uncover genes contributing to the infection process and their potential functions and to identify putative associations between host and pathogen genes during infection. Overall, dRNASb has the potential to identify key genes involved in bacterial growth or host defence mechanisms for future uses as therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Dinarvand
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Forrest C Koch
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Al Mouiee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| | - Kaylee Vuong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Abhishek Vijayan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Afia Fariha Tanzim
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - A K M Azad
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Zhang YG, Chen HW, Zhang HX, Wang K, Su J, Chen YR, Wang XR, Fu ZF, Cui M. EGFR Activation Impairs Antiviral Activity of Interferon Signaling in Brain Microvascular Endothelial Cells During Japanese Encephalitis Virus Infection. Front Microbiol 2022; 13:894356. [PMID: 35847084 PMCID: PMC9279666 DOI: 10.3389/fmicb.2022.894356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The establishment of Japanese encephalitis virus (JEV) infection in brain microvascular endothelial cells (BMECs) is thought to be a critical step to induce viral encephalitis with compromised blood–brain barrier (BBB), and the mechanisms involved in this process are not completely understood. In this study, we found that epidermal growth factor receptor (EGFR) is related to JEV escape from interferon-related host innate immunity based on a STRING analysis of JEV-infected primary human brain microvascular endothelial cells (hBMECs) and mouse brain. At the early phase of the infection processes, JEV induced the phosphorylation of EGFR. In JEV-infected hBMECs, a rapid internalization of EGFR that co-localizes with the endosomal marker EEA1 occurred. Using specific inhibitors to block EGFR, reduced production of viral particles was observed. Similar results were also found in an EGFR-KO hBMEC cell line. Even though the process of viral infection in attachment and entry was not noticeably influenced, the induction of IFNs in EGFR-KO hBMECs was significantly increased, which may account for the decreased viral production. Further investigation demonstrated that EGFR downstream cascade ERK, but not STAT3, was involved in the antiviral effect of IFNs, and a lowered viral yield was observed by utilizing the specific inhibitor of ERK. Taken together, the results revealed that JEV induces EGFR activation, leading to a suppression of interferon signaling and promotion of viral replication, which could provide a potential target for future therapies for the JEV infection.
Collapse
Affiliation(s)
- Ya-Ge Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hao-Wei Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Hong-Xin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Jie Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Yan-Ru Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiang-Ru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Zhen-Fang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
- *Correspondence: Min Cui
| |
Collapse
|
6
|
Abstract
Viruses are intracellular pathogen that exploit host cellular machinery for their propagation. Extensive research on virus-host interaction have shed light on an alternative antiviral strategy that targets host cell factors. Epidermal growth factor receptor (EGFR) is a versatile signal transducer that is involved in a range of cellular processes. Numerous studies have revealed how viruses exploit the function of EGFR in different stages of viral life cycle. In general, viruses attach onto the host cell surface and interacts with EGFR to facilitate viral entry, viral replication and spread as well as evasion from host immunosurveillance. Moreover, virus-induced activation of EGFR signalling is associated with mucin expression, tissue damage and carcinogenesis that contribute to serious complications. Herein, we review our current understanding of roles of EGFR in viral infection and its potential as therapeutic target in managing viral infection. We also discuss the available EGFR-targeted therapies and their limitations.
Collapse
Affiliation(s)
- Kah Man Lai
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
7
|
Ding X, Yuan W, Yang H, Liu C, Li S, Zhu L. β-Catenin-Specific Inhibitor, iCRT14, Promotes BoHV-1 Infection-Induced DNA Damage in Human A549 Lung Adenocarcinoma Cells by Enhancing Viral Protein Expression. Int J Mol Sci 2022; 23:ijms23042328. [PMID: 35216447 PMCID: PMC8878024 DOI: 10.3390/ijms23042328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic bovine herpesvirus type 1 (BoHV-1) infection induces DNA damage in human lung adenocarcinoma cell line A549. However, the underlying mechanisms are not fully understood. We found that BoHV-1 infection decreased the steady-state protein levels of p53-binding protein 1 (53BP1), which plays a central role in dictating DNA damage repair and maintaining genomic stability. Furthermore, BoHV-1 impaired the formation of 53BP1 foci, suggesting that BoHV-1 inhibits 53BP1-mediated DNA damage repair. Interestingly, BoHV-1 infection redistributed intracellular β-catenin, and iCRT14 (5-[[2,5-Dimethyl-1-(3-pyridinyl)-1H-pyrrol-3-yl]methylene]-3-phenyl-2,4-thiazolidinedione), a β-catenin-specific inhibitor, enhanced certain viral protein expression, such as the envelope glycoproteins gC and gD, and enhanced virus infection-induced DNA damage. Therefore, for the first time, we provide evidence showing that BoHV-1 infection disrupts 53BP1-mediated DNA damage repair and suggest β-catenin as a potential host factor restricting both virus replication and DNA damage in A549 cells.
Collapse
Affiliation(s)
- Xiuyan Ding
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.D.); (H.Y.); (C.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Hao Yang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.D.); (H.Y.); (C.L.)
| | - Chang Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.D.); (H.Y.); (C.L.)
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70118, USA;
| | - Liqian Zhu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China; (X.D.); (H.Y.); (C.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding 071002, China
- Correspondence:
| |
Collapse
|