1
|
Zhang L, Li D, Li X, Zong L, Bian H, Lu J. CutIn: a ready-to-use construct for rapid generation of urgently needed transgenic cell lines in emerging infection research. Funct Integr Genomics 2025; 25:67. [PMID: 40111512 DOI: 10.1007/s10142-025-01566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Site-directed exogenous gene knock-in for stable cell line generation remains a multi-step procedure that heavily relies on expertise. Therefore, there is a need for a competent and easily manageable method, particularly when there is an urgent demand for cell lines, especially for emerging infection research. We present here a universal construct called CutIn that expresses the Cas9 protein and dual sgRNAs targeting a host cell genome locus and the ampicillin resistance (AmpR) gene of a cotransfected donor plasmid commercially available. This construct specifically induces double-strand breaks (DSBs) in cotransfected plasmids and host cell genomes, thereby facilitating whole plasmid integration through nonhomologous end joining (NHEJ) repair mechanisms. As pilot tests, adeno-associated virus integration site 1 (AAVS1) or hypoxanthine phosphoribosyl transferase (HPRT) locus was selected as host genome target, commonly used human cell lines 293T, HeLa and HCT116 were employed. CutIn was subjected for reporter plasmid knock-in in all three cell lines, either AAVS1 and AmpR or HPRT and AmpR loci were efficiently targeted. Fluorescent protein, human angiotensin-converting enzyme 2 (ACE2) and dengue virus (DENV) infection reporter transgenic cells were rapidly obtained via CutIn-mediated whole expression vector integration. This method is designed to be user-friendly and shows potential for supporting the investigation of emerging/re-emerging infectious diseases. Further validation in diverse research contexts will be necessary to fully assess its applicability and effectiveness.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China
| | - Dandan Li
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China
| | - Xiaowei Li
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China
| | - Liang Zong
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China
| | - Haibo Bian
- Department of Respiratory and Critical Care Medicine, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China.
| | - Junnan Lu
- Department of Central Laboratory, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, No. 502 Changxing Middle Road, Changzhi, 046000, Shanxi Province, P. R. China.
| |
Collapse
|
2
|
Ivanova L, Naumenko K, Varjak M, Koit S, Morozovsky Y, Merits A, Karelson M, Zusinaite E. Dengue Virus Inhibitors as Potential Broad-Spectrum Flavivirus Inhibitors. Pharmaceuticals (Basel) 2025; 18:283. [PMID: 40143061 PMCID: PMC11944514 DOI: 10.3390/ph18030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Background. Flaviviruses spread from endemic to non-endemic areas, causing illness in millions of people worldwide. The lack of effective therapies and the rapid expansion of flaviviral infections worldwide emphasize the importance of finding effective antivirals to treat such diseases. Objectives. To find out the potential broad-spectrum flavivirus inhibitors among previously reported inhibitors of DENV2/DENV4. Methods. The cytotoxicity of compounds was tested using WST-1 assay. The compounds were tested for their ability to inhibit the infection of DENV2, ZIKV, KUNV, and TBEV, and the most active compounds were also analyzed using the replicon-based assay. Interactions of one of the identified inhibitors with possible viral targets were studied using molecular dynamics simulations. Results. Two out of eight previously reported DENV2/DENV4 inhibitors demonstrated the ability to inhibit all studied viruses at low micromolar concentrations. Compound C6 demonstrated the ability to inhibit both DENV2 and TBEV. Compounds C1 (lycorine), C3 (mycophenolic acid), and C7 (vidarabine) were demonstrated as inhibitors of TBEV infection for the first time. Conclusions. Several compounds, previously described as inhibitors of DENV, are also able to inhibit other flaviviruses. This work is the first report on the anti-TBEV activity of lycorine (C1) and mycophenolic acid (C3), as well as vidarabine (C7). In addition, this is the first experimental confirmation of the antiviral activity of compound C5 and the lack of detectable antiviral activity of compound C8, demonstrating the necessity of experimental verification of the computational predictions.
Collapse
Affiliation(s)
- Larisa Ivanova
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; (L.I.); (Y.M.)
| | - Krystyna Naumenko
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.N.); (S.K.); (A.M.)
- Zabolotny Institute of Microbiology and Virology of NASU, 154 Acad. Zabolotny St., Kyiv 03143, Ukraine
| | - Margus Varjak
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Sandra Koit
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.N.); (S.K.); (A.M.)
| | - Yehudit Morozovsky
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; (L.I.); (Y.M.)
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.N.); (S.K.); (A.M.)
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; (L.I.); (Y.M.)
| | - Eva Zusinaite
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (K.N.); (S.K.); (A.M.)
| |
Collapse
|
3
|
Yang P, Wang ZJ, Lu HT, Feng XM, Ye JL, Wang G, Qin CF, Ye Q, Liu ZY. Imaging of viral replication in live cells by using split fluorescent protein-tagged reporter flaviviruses. Virology 2025; 603:110374. [PMID: 39754862 DOI: 10.1016/j.virol.2024.110374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
The knowledge on the life cycle of flaviviruses is still incomplete, and no direct-acting antivirals against their infections are clinically available. Herein, by screening via a Zika virus (ZIKV) replicon assay, we found that the N-terminus of NS2A exhibited great tolerance to the insertions of different split fluorescent proteins (split-FPs). Furthermore, both ZIKV and dengue virus encoding a split-FP-tagged NS2A propagated efficiently, and the split-FP-tagged ZIKVs had good genetic stability. Robust green fluorescence was observed in the reporter cell lines infected with these viruses and the fluorescence responded to anti-flavivirus chemicals with high specificity and sensitivity. Moreover, the sites of viral RNA replication were illuminated in live cells. Interestingly, by blocking viral RNA synthesis with an NS5 inhibitor, we found a correlation between the morphological characteristics of potential replication organelles and RNA amplification, highlighting that the NS2A-tagged viruses are of great value for the in-depth understanding of flavivirus replication mechanisms.
Collapse
Affiliation(s)
- Ping Yang
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zheng-Jian Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hai-Tao Lu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xu-Meng Feng
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Guangchuan Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
4
|
Diaz J, Sears J, Chang CK, Burdick J, Law I, Sanders W, Linnertz C, Sylvester P, Moorman N, Ferris MT, Heise MT. U-CAN-seq: A Universal Competition Assay by Nanopore Sequencing. Viruses 2024; 16:636. [PMID: 38675976 PMCID: PMC11054411 DOI: 10.3390/v16040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
RNA viruses quickly evolve subtle genotypic changes that can have major impacts on viral fitness and host range, with potential consequences for human health. It is therefore important to understand the evolutionary fitness of novel viral variants relative to well-studied genotypes of epidemic viruses. Competition assays are an effective and rigorous system with which to assess the relative fitness of viral genotypes. However, it is challenging to quickly and cheaply distinguish and quantify fitness differences between very similar viral genotypes. Here, we describe a protocol for using reverse transcription PCR in combination with commercial nanopore sequencing services to perform competition assays on untagged RNA viruses. Our assay, called the Universal Competition Assay by Nanopore Sequencing (U-CAN-seq), is relatively cheap and highly sensitive. We used a well-studied N24A mutation in the chikungunya virus (CHIKV) nsp3 gene to confirm that we could detect a competitive disadvantage using U-CAN-seq. We also used this approach to show that mutations to the CHIKV 5' conserved sequence element that disrupt sequence but not structure did not affect the fitness of CHIKV. However, similar mutations to an adjacent CHIKV stem loop (SL3) did cause a fitness disadvantage compared to wild-type CHIKV, suggesting that structure-independent, primary sequence determinants in this loop play an important role in CHIKV biology. Our novel findings illustrate the utility of the U-CAN-seq competition assay.
Collapse
Affiliation(s)
- Jennifer Diaz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (J.D.)
| | - John Sears
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (J.D.)
| | - Che-Kang Chang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (J.D.)
| | - Jane Burdick
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Isabella Law
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Wes Sanders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (J.D.)
| | - Colton Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Sylvester
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Nathaniel Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (J.D.)
- The Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 275114, USA
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Mark T. Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (J.D.)
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- The Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 275114, USA
| |
Collapse
|
5
|
Miao Y, Zheng Y, Wang T, Yi W, Zhang N, Zhang W, Zheng Z. Breast milk transmission and involvement of mammary glands in tick-borne flavivirus infected mice. J Virol 2024; 98:e0170923. [PMID: 38305156 PMCID: PMC10949448 DOI: 10.1128/jvi.01709-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.
Collapse
Affiliation(s)
- Yuanjiu Miao
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zheng
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfu Yi
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nailou Zhang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenhua Zheng
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
6
|
Yin C, Yang P, Xiao Q, Sun P, Zhang X, Zhao J, Hu X, Shan C. Novel antiviral discoveries for Japanese encephalitis virus infections through reporter virus-based high-throughput screening. J Med Virol 2024; 96:e29382. [PMID: 38235833 DOI: 10.1002/jmv.29382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Japanese encephalitis (JE) caused by JE virus (JEV), remains a global public health concern. Currently, there is no specific antiviral drug approved for the treatment of JE. While vaccines are available for prevention, they may not cover all at-risk populations. This underscores the urgent need for prophylaxis and potent anti-JEV drugs. In this context, a high-content JEV reporter system expressing Nanoluciferase (Nluc) was developed and utilized for a high-throughput screening (HTS) of a commercial antiviral library to identify potential JEV drug candidates. Remarkably, this screening process led to the discovery of five drugs with outstanding antiviral activity. Further mechanism of action analysis revealed that cepharanthine, an old clinically approved drug, directly inhibited virus replication by blocking GTP binding to the JEV RNA-dependent RNA polymerase. Additionally, treatment with cepharanthine in mice models alleviated JEV infection. These findings warrant further investigation into the potential anti-JEV activity of cepharanthine as a new therapeutic approach for the treatment of JEV infection. The HTS method employed here proves to be an accurate and convenient approach that facilitates the rapid development of antiviral drugs.
Collapse
Affiliation(s)
- Chunhong Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peipei Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qingcui Xiao
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Sun
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuekai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaxuan Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
7
|
Nagashima S, Primadharsini PP, Nishiyama T, Takahashi M, Murata K, Okamoto H. Development of a HiBiT-tagged reporter hepatitis E virus and its utility as an antiviral drug screening platform. J Virol 2023; 97:e0050823. [PMID: 37681960 PMCID: PMC10537679 DOI: 10.1128/jvi.00508-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023] Open
Abstract
Previously, we developed an infectious hepatitis E virus (HEV) harboring the nanoKAZ gene in the hypervariable region of the open reading frame 1 (ORF1) of the HEV3b (JE03-1760F/P10) genome and demonstrated the usefulness for screening anti-HEV drugs that inhibit the early infection process. In the present study, we constructed another reporter HEV (HEV3b-HiBiT) by placing a minimized HiBiT tag derived from NanoLuc luciferase at the 3'-end of the viral capsid (ORF2) coding sequence. It replicated efficiently in PLC/PRF/5 cells, produced membrane-associated particles identical to those of the parental virus, and was genetically stable and infectious. The HiBiT tag was fused to both secreted ORF2s (ORF2s-HiBiT) and ORF2c capsid protein (ORF2c-HiBiT). The ORF2c-HiBiT formed membrane-associated HEV particles (eHEV3b-HiBiT). By treating these particles with digitonin, we demonstrated that the HiBiT tag was expressed on the surface of capsid and was present inside the lipid membrane. To simplify the measurement of luciferase activity and provide a more convenient screening platform, we constructed an ORF2s-defective mutant (HEV3b-HiBiT/ΔORF2s) in which the secreted ORF2s are suppressed. We used this system to evaluate the effects of introducing small interfering RNAs and treatment with an inhibitor or accelerator of exosomal release on HEV egress and demonstrated that the effects on virus release can readily be analyzed. Therefore, HEV3b-HiBiT and HEV3b-HiBiT/ΔORF2s reporters may be useful for investigating the virus life cycle and can serve as a more convenient screening platform to search for candidate drugs targeting the late stage of HEV infection such as particle formation and release. IMPORTANCE The construction of recombinant infectious viruses harboring a stable luminescence reporter gene is essential for investigations of the viral life cycle, such as viral replication and pathogenesis, and the development of novel antiviral drugs. However, it is difficult to maintain the stability of a large foreign gene inserted into the viral genome. In the present study, we successfully generated a recombinant HEV harboring the 11-amino acid HiBiT tag in the ORF2 coding region and demonstrated the infectivity, efficient virus growth, particle morphology, and genetic stability, suggesting that this recombinant HEV is useful for in vitro assays. Furthermore, this system can serve as a more convenient screening platform for anti-HEV drugs. Thus, an infectious recombinant HEV is a powerful approach not only for elucidating the molecular mechanisms of the viral life cycle but also for the screening and development of novel antiviral agents.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takashi Nishiyama
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
8
|
Cherkashchenko L, Gros N, Trausch A, Neyret A, Hénaut M, Dubois G, Villeneuve M, Chable-Bessia C, Lyonnais S, Merits A, Muriaux D. Validation of flavivirus infectious clones carrying fluorescent markers for antiviral drug screening and replication studies. Front Microbiol 2023; 14:1201640. [PMID: 37779700 PMCID: PMC10541152 DOI: 10.3389/fmicb.2023.1201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Flaviviruses have emerged as major arthropod-transmitted pathogens and represent an increasing public health problem worldwide. High-throughput screening can be facilitated using viruses that easily express detectable marker proteins. Therefore, developing molecular tools, such as reporter-carrying versions of flaviviruses, for studying viral replication and screening antiviral compounds represents a top priority. However, the engineering of flaviviruses carrying either fluorescent or luminescent reporters remains challenging due to the genetic instability caused by marker insertion; therefore, new approaches to overcome these limitations are needed. Here, we describe reverse genetic methods that include the design and validation of infectious clones of Zika, Kunjin, and Dengue viruses harboring different reporter genes for infection, rescue, imaging, and morphology using super-resolution microscopy. It was observed that different flavivirus constructs with identical designs displayed strikingly different genetic stabilities, and corresponding virions resembled wild-type virus particles in shape and size. A successful strategy was assessed to increase the stability of rescued reporter virus and permit antiviral drug screening based on quantitative automated fluorescence microscopy and replication studies.
Collapse
Affiliation(s)
- Liubov Cherkashchenko
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Nathalie Gros
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | - Alice Trausch
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | - Aymeric Neyret
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | - Mathilde Hénaut
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | - Gregor Dubois
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
| | | | | | | | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Delphine Muriaux
- CEMIPAI UAR3725 CNRS, University of Montpellier, Montpellier, France
- IRIM UMR9004 CNRS, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Conde JN, Himmler GE, Mladinich MC, Setoh YX, Amarilla AA, Schutt WR, Saladino N, Gorbunova EE, Salamango DJ, Benach J, Kim HK, Mackow ER. Establishment of a CPER reverse genetics system for Powassan virus defines attenuating NS1 glycosylation sites and an infectious NS1-GFP11 reporter virus. mBio 2023; 14:e0138823. [PMID: 37489888 PMCID: PMC10470542 DOI: 10.1128/mbio.01388-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus. NS1 proteins are highly conserved glycoproteins that regulate replication, spread, and neurovirulence. POWV NS1 contains three putative N-linked glycosylation sites that we modified individually in infectious recLI9 mutants (N85Q, N208Q, and N224Q). NS1 glycosylation site mutations reduced replication kinetics and were attenuated, with 1-2 log decreases in titer. Severely attenuated recLI9-N224Q exhibited a 2- to 3-day delay in focal cell-to-cell spread and reduced NS1 secretion but was lethal when intracranially inoculated into suckling mice. However, footpad inoculation of recLI9-N224Q resulted in the survival of 80% of mice and demonstrated that NS1-N224Q mutations reduce POWV neuroinvasion in vivo. To monitor NS1 trafficking, we CPER fused a split GFP11-tag to the NS1 C-terminus and generated an infectious reporter virus, recLI9-NS1-GFP11. Cells infected with recLI9-NS1-GFP11 revealed NS1 trafficking in live cells and the novel formation of large NS1-lined intracellular vesicles. An infectious recLI9-NS1-GFP11 reporter virus permits real-time analysis of NS1 functions in POWV replication, assembly, and secretion and provides a platform for evaluating antiviral compounds. Collectively, our robust POWV reverse genetics system permits analysis of viral spread and neurovirulence determinants in vitro and in vivo and enables the rational genetic design of live attenuated POWV vaccines. IMPORTANCE Our findings newly establish a mechanism for genetically modifying Powassan viruses (POWVs), systematically defining pathogenic determinants and rationally designing live attenuated POWV vaccines. This initial study demonstrates that mutating POWV NS1 glycosylation sites attenuates POWV spread and neurovirulence in vitro and in vivo. Our findings validate a robust circular polymerase extension reaction approach as a mechanism for developing, and evaluating, attenuated genetically modified POWVs. We further designed an infectious GFP-tagged reporter POWV that permits us to monitor secretory trafficking of POWV in live cells, which can be applied to screen potential POWV replication inhibitors. This robust system for modifying POWVs provides the ability to define attenuating POWV mutations and create genetically attenuated recPOWV vaccines.
Collapse
Affiliation(s)
- Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Yin Xiang Setoh
- Microbiology and Molecular Epidemiology Division, Environmental Health Institute, National Environmental Agency, Singapore, Singapore
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Saladino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Daniel J. Salamango
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jorge Benach
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
10
|
Oechslin N, Ankavay M, Moradpour D, Gouttenoire J. Expanding the Hepatitis E Virus Toolbox: Selectable Replicons and Recombinant Reporter Genomes. Viruses 2023; 15:v15040869. [PMID: 37112849 PMCID: PMC10147066 DOI: 10.3390/v15040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Hepatitis E virus (HEV) has received relatively little attention for decades although it is now considered as one of the most frequent causes of acute hepatitis worldwide. Our knowledge of this enterically-transmitted, positive-strand RNA virus and its life cycle remains scarce but research on HEV has gained momentum more recently. Indeed, advances in the molecular virology of hepatitis E, including the establishment of subgenomic replicons and infectious molecular clones, now allow study of the entire viral life cycle and to explore host factors required for productive infection. Here, we provide an overview on currently available systems, with an emphasis on selectable replicons and recombinant reporter genomes. Furthermore, we discuss the challenges in developing new systems which should enable to further investigate this widely distributed and important pathogen.
Collapse
|
11
|
A Recombinant Genotype I Japanese Encephalitis Virus Expressing a Gaussia Luciferase Gene for Antiviral Drug Screening Assay and Neutralizing Antibodies Detection. Int J Mol Sci 2022; 23:ijms232415548. [PMID: 36555192 PMCID: PMC9778660 DOI: 10.3390/ijms232415548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in humans throughout Asia. In the past twenty years, the emergence of the genotype I (GI) JEV as the dominant genotype in Asian countries has raised a significant threat to public health security. However, no clinically approved drug is available for the specific treatment of JEV infection, and the commercial vaccines derived from the genotype III JEV strains merely provided partial protection against the GI JEV. Thus, an easy-to-perform platform in high-throughput is urgently needed for the antiviral drug screening and assessment of neutralizing antibodies specific against the GI JEV. In this study, we established a reverse genetics system for the GI JEV strain (YZ-1) using a homologous recombination strategy. Using this reverse genetic system, a gaussia luciferase (Gluc) expression cassette was inserted into the JEV genome to generate a reporter virus (rGI-Gluc). The reporter virus exhibited similar growth kinetics to the parental virus and remained genetically stable for at least ten passages in vitro. Of note, the bioluminescence signal strength of Gluc in the culture supernatants was well correlated with the viral progenies determined by viral titration. Taking advantage of this reporter virus, we established Gluc readout-based assays for antiviral drug screening and neutralizing antibody detection against the GI JEV. These Gluc readout-based assays exhibited comparable performance to the assays using an actual virus and are less time consuming and are applicable for a high-throughput format. Taken together, we generated a GI JEV reporter virus expressing a Gluc gene that could be a valuable tool for an antiviral drug screening assay and neutralization assay.
Collapse
|
12
|
Zhou C, Chen Q, Chen Y, Qin CF. Oncolytic Zika Virus: New Option for Glioblastoma Treatment. DNA Cell Biol 2022. [DOI: 10.1089/dna.2022.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
13
|
Saipin K, Thaisomboonsuk B, Siridechadilok B, Chaitaveep N, Ramasoota P, Puttikhunt C, Sangiambut S, Jones A, Kraivong R, Sriburi R, Keelapang P, Sittisombut N, Junjhon J. A replication competent luciferase-secreting DENV2 reporter for sero-epidemiological surveillance of neutralizing and enhancing antibodies. J Virol Methods 2022; 308:114577. [PMID: 35843366 DOI: 10.1016/j.jviromet.2022.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Dengue virus (DENV) specific neutralizing and enhancing antibodies play crucial roles in dengue disease prevention and pathogenesis. DENV reporters are gaining popularity in the evaluation of these antibodies; their accessibility and acceptance may improve with more efficient production systems and indications of their antigenic equivalence to the wild-type virus. This study aimed to generate a replication competent luciferase-secreting DENV reporter (LucDENV2) and evaluate its feasibility in neutralizing and infection-enhancing antibody assays in comparison with wild-type DENV2, strain 16681, and a luciferase-secreting, single-round infectious DENV2 reporter (LucSIP). LucDENV2 replicated to similarly high levels as that of the parent 16681 virus in a commonly used mosquito cell line. LucDENV2 was neutralized in an antibody concentration-dependent manner by a monoclonal antibody specific to the flavivirus fusion loop and two antibodies specific to the E domain III, which closely resembled the neutralization patterns employing the LucSIP and wild-type DENV2. Parallel analysis of LucDENV2 and wild-type DENV2 revealed good agreement between the luciferase-based and focus-based neutralization and enhancement assays in a 96-well microplate format when employed against a set of clinical sera, suggesting comparable antigenic properties of LucDENV2 with those of the parent virus. The high-titer, replication competent, luciferase-secreting DENV reporter presented here should be a useful tool for fast and reliable quantitation of neutralizing and infection-enhancing antibodies in populations living in DENV-endemic areas.
Collapse
Affiliation(s)
- Krongkan Saipin
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok 10400, Thailand
| | - Bunpote Siridechadilok
- Frontier Biodesign and Bioengineering Research Team, National Center for Genetic Engineering and Biotechnology, Pathum-thani 12120, Thailand
| | - Nithinart Chaitaveep
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok 10400, Thailand
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research (CEAR), Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum-thani 12120, Thailand; Division of Dengue Hemorrhagic Fever Research and Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sutha Sangiambut
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum-thani 12120, Thailand; Division of Dengue Hemorrhagic Fever Research and Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Anthony Jones
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok 10400, Thailand
| | - Romchat Kraivong
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum-thani 12120, Thailand; Division of Dengue Hemorrhagic Fever Research and Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraphan Junjhon
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
14
|
Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion. Viruses 2022; 14:v14071501. [PMID: 35891480 PMCID: PMC9317482 DOI: 10.3390/v14071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/29/2022] Open
Abstract
Binjari virus (BinJV) is a lineage II or dual-host affiliated insect-specific flavivirus previously demonstrated as replication-deficient in vertebrate cells. Previous studies have shown that BinJV is tolerant to exchanging its structural proteins (prM-E) with pathogenic flaviviruses, making it a safe backbone for flavivirus vaccines. Here, we report generation by circular polymerase extension reaction of BinJV expressing zsGreen or mCherry fluorescent protein. Recovered BinJV reporter viruses grew to high titres (107−8 FFU/mL) in Aedes albopictus C6/36 cells assayed using immunoplaque assays (iPA). We also demonstrate that BinJV reporters could be semi-quantified live in vitro using a fluorescence microplate reader with an observed linear correlation between quantified fluorescence of BinJV reporter virus-infected C6/36 cells and iPA-quantitated virus titres. The utility of the BinJV reporter viruses was then examined in homologous and heterologous superinfection exclusion assays. We demonstrate that primary infection of C6/36 cells with BinJVzsGreen completely inhibits a secondary infection with homologous BinJVmCherry or heterologous ZIKVmCherry using fluorescence microscopy and virus quantitation by iPA. Finally, BinJVzsGreen infections were examined in vivo by microinjection of Aedes aegypti with BinJVzsGreen. At seven days post-infection, a strong fluorescence in the vicinity of salivary glands was detected in frozen sections. This is the first report on the construction of reporter viruses for lineage II insect-specific flaviviruses and establishes a tractable system for exploring flavivirus superinfection exclusion in vitro and in vivo.
Collapse
|
15
|
Fang E, Liu X, Li M, Liu J, Zhang Z, Liu X, Li X, Li W, Peng Q, Yu Y, Li Y. Construction of a Dengue NanoLuc Reporter Virus for In Vivo Live Imaging in Mice. Viruses 2022; 14:v14061253. [PMID: 35746724 PMCID: PMC9230669 DOI: 10.3390/v14061253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Since the first isolation in 1943, the dengue virus (DENV) has spread throughout the world, but effective antiviral drugs or vaccines are still not available. To provide a more stable reporter DENV for vaccine development and antiviral drug screening, we constructed a reporter DENV containing the NanoLuc reporter gene, which was inserted into the 5′ untranslated region and capsid junction region, enabling rapid virus rescue by in vitro ligation. In addition, we established a live imaging mouse model and found that the reporter virus maintained the neurovirulence of prototype DENV before engineering. DENV-4 exhibited dramatically increased neurovirulence following a glycosylation site-defective mutation in the envelope protein. Significant mice mortality with neurological onset symptoms was observed after intracranial infection of wild-type (WT) mice, thus providing a visualization tool for DENV virulence assessment. Using this model, DENV was detected in the intestinal tissues of WT mice after infection, suggesting that intestinal lymphoid tissues play an essential role in DENV pathogenesis.
Collapse
Affiliation(s)
- Enyue Fang
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan 430207, China
| | - Xiaohui Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Miao Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Jingjing Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Zelun Zhang
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Xinyu Liu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Xingxing Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Wenjuan Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Qinhua Peng
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
| | - Yongxin Yu
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
- Correspondence: (Y.Y.); (Y.L.); Tel.: +86-010-5385-2137 (Y.Y.); +86-010-5385-2128 (Y.L.)
| | - Yuhua Li
- Department of Arbovirus Vaccine, National Institutes for Food and Drug Control, Beijing 102629, China; (E.F.); (X.L.); (M.L.); (J.L.); (Z.Z.); (X.L.); (X.L.); (W.L.); (Q.P.)
- Correspondence: (Y.Y.); (Y.L.); Tel.: +86-010-5385-2137 (Y.Y.); +86-010-5385-2128 (Y.L.)
| |
Collapse
|
16
|
Novel reverse genetics of genotype I and III Japanese encephalitis viruses assembled through transformation associated recombination in yeast: The reporter viruses expressing a green fluorescent protein for the antiviral screening assay. Antiviral Res 2022; 197:105233. [DOI: 10.1016/j.antiviral.2021.105233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/24/2022]
|
17
|
Zhong C, Xia H, Adam A, Wang B, Hajnik RL, Liang Y, Rafael GH, Zou J, Wang X, Sun J, Soong L, Barrett ADT, Weaver SC, Shi PY, Wang T, Hu H. Mucosal vaccination induces protection against SARS-CoV-2 in the absence of detectable neutralizing antibodies. NPJ Vaccines 2021; 6:139. [PMID: 34845215 PMCID: PMC8630013 DOI: 10.1038/s41541-021-00405-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
A candidate multigenic SARS-CoV-2 vaccine based on an MVA vector expressing both viral N and S proteins (MVA-S + N) was immunogenic, and induced T-cell responses and binding antibodies to both antigens but in the absence of detectable neutralizing antibodies. Intranasal immunization with the vaccine diminished viral loads and lung inflammation in mice after SARS-CoV-2 challenge, which correlated with the T-cell response induced by the vaccine in the lung, indicating that T-cell immunity is also likely critical for protection against SARS-CoV-2 infection in addition to neutralizing antibodies.
Collapse
Affiliation(s)
- Chaojie Zhong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Binbin Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Renee L Hajnik
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Grace H Rafael
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Xiaofang Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.,World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.,World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA. .,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
18
|
Li D, Ye JL, Liu ZY. Generation and Application of a Luciferase Reporter Virus Based on Yellow Fever Virus 17D. Virol Sin 2021; 36:1456-1464. [PMID: 34342842 DOI: 10.1007/s12250-021-00428-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 11/29/2022] Open
Abstract
Yellow fever virus (YFV) is a re-emerging virus that can cause life-threatening yellow fever disease in humans. Despite the availability of an effective vaccine, little is known about the replication mechanism of YFV, and there are still no available specific anti-YFV medicines. Herein, by introducing the Renilla luciferase gene (Rluc) into an infectious clone of YFV vaccine strain 17D, we generated a recombinant virus 17D-Rluc.2A via reverse genetics approaches. The 17D-Rluc.2A had similar plaque morphology and comparable in vitro growth characteristics with its parental strain. Importantly, the reporter luciferase was efficiently expressed in 17D-Rluc.2A-infected mammalian and mosquito cells, and there was a good linear correlation between intracellular luciferase expression and extracellular infectious virion reproduction. Furthermore, by a combination of the 17D-Rluc.2A reporter virus and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) technology, the conserved 5'-SLA element was shown to be essential for YFV replication, highlighting the capability of 17D-Rluc.2A in the investigation of YFV replication. At last, we demonstrated that two compounds with distinct anti-viral mechanisms can effectively inhibit the viral propagation in 17D-Rluc.2A-infected cells, demonstrating its potential application in the evaluation of anti-viral medicines. Taken together, the 17D-Rluc.2A serves as a useful tool for the study of YFV replication and anti-YFV medicine development.
Collapse
Affiliation(s)
- Dan Li
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing-Long Ye
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhong-Yu Liu
- The Centre for Infection and Immunity Studies, School of Medicine, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|