1
|
Tayebwa DS, Hyeroba D, Dunn CD, Dunay E, Richard JC, Biryomumaisho S, Acai JO, Goldberg TL. Viruses of free-roaming and hunting dogs in Uganda show elevated prevalence, richness and abundance across a gradient of contact with wildlife. J Gen Virol 2024; 105:002011. [PMID: 39045787 PMCID: PMC11316573 DOI: 10.1099/jgv.0.002011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Domestic dogs (Canis lupus familiaris) live with humans, frequently contact other animals and may serve as intermediary hosts for the transmission of viruses. Free-roaming dogs, which account for over 70% of the world's domestic dog population, may pose a particularly high risk in this regard. We conducted an epidemiological study of dog viromes in three locations in Uganda, representing low, medium and high rates of contact with wildlife, ranging from dogs owned specifically for traditional hunting in a biodiversity and disease 'hotspot' to pets in an affluent suburb. We quantified rates of contact between dogs and wildlife through owner interviews and conducted canine veterinary health assessments. We then applied broad-spectrum viral metagenomics to blood plasma samples, from which we identified 46 viruses, 44 of which were previously undescribed, in three viral families, Sedoreoviridae, Parvoviridae and Anelloviridae. All 46 viruses (100 %) occurred in the high-contact population of dogs compared to 63 % and 39 % in the medium- and low-contact populations, respectively. Viral prevalence ranged from 2.1 % to 92.0 % among viruses and was highest, on average, in the high-contact population (22.3 %), followed by the medium-contact (12.3 %) and low-contact (4.8 %) populations. Viral richness (number of viruses per dog) ranged from 0 to 27 and was markedly higher, on average, in the high-contact population (10.2) than in the medium-contact (5.7) or low-contact (2.3) populations. Viral richness was strongly positively correlated with the number of times per year that a dog was fed wildlife and negatively correlated with the body condition score, body temperature and packed cell volume. Viral abundance (cumulative normalized metagenomic read density) varied 124-fold among dogs and was, on average, 4.1-fold higher and 2.4-fold higher in the high-contact population of dogs than in the low-contact or medium-contact populations, respectively. Viral abundance was also strongly positively correlated with the number of times per year that a dog was fed wildlife, negatively correlated with packed cell volume and positively correlated with white blood cell count. These trends were driven by nine viruses in the family Anelloviridae, genus Thetatorquevirus, and by one novel virus in the family Sedoreoviridae, genus Orbivirus. The genus Orbivirus contains zoonotic viruses and viruses that dogs can acquire through ingestion of infected meat. Overall, our findings show that viral prevalence, richness and abundance increased across a gradient of contact between dogs and wildlife and that the health status of the dog modified viral infection. Other ecological, geographic and social factors may also have contributed to these trends. Our finding of a novel orbivirus in dogs with high wildlife contact supports the idea that free-roaming dogs may serve as intermediary hosts for viruses of medical importance to humans and other animals.
Collapse
Affiliation(s)
- Dickson S. Tayebwa
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - David Hyeroba
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Jordan C. Richard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Savino Biryomumaisho
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - James O. Acai
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin, 53706, USA
| |
Collapse
|
2
|
Van Brussel K, Mahar JE, Hall J, Bender H, Ortiz-Baez AS, Chang WS, Holmes EC, Rose K. Gammaretroviruses, novel viruses and pathogenic bacteria in Australian bats with neurological signs, pneumonia and skin lesions. Virology 2023; 586:43-55. [PMID: 37487325 DOI: 10.1016/j.virol.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
More than 70 bat species are found in mainland Australia. While most studies of bat viromes focus on sampling seemingly healthy individuals, little is known about the viruses and bacteria associated with diseased bats. We performed traditional diagnostic techniques and metatranscriptomic sequencing on tissue samples from 43 Australian bats, comprising three flying fox (Pteropodidae) and two microbat species experiencing a range of disease syndromes, including mass mortality, neurological signs, pneumonia and skin lesions. Of note, we identified the recently discovered Hervey pteropid gammaretrovirus in a bat with lymphoid leukemia, with evidence of replication consistent with an exogenous virus. The possible association of Hervey pteropid gammaretrovirus with lymphoid leukemia clearly merits additional investigation. One novel picornavirus and at least three new astroviruses and bat pegiviruses were also identified in a variety of tissue types, as well as a number of likely bacterial pathogens or opportunistic infections, most notably Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Kate Van Brussel
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Jackie E Mahar
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Jane Hall
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Hannah Bender
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Ayda Susana Ortiz-Baez
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Wei-Shan Chang
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia.
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, New South Wales, Australia.
| |
Collapse
|
3
|
Dunay E, Owens LA, Dunn CD, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in sanctuary chimpanzees across Africa. Am J Primatol 2023; 85:e23452. [PMID: 36329642 PMCID: PMC9812903 DOI: 10.1002/ajp.23452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Infectious disease is a major concern for both wild and captive primate populations. Primate sanctuaries in Africa provide critical protection to thousands of wild-born, orphan primates confiscated from the bushmeat and pet trades. However, uncertainty about the infectious agents these individuals potentially harbor has important implications for their individual care and long-term conservation strategies. We used metagenomic next-generation sequencing to identify viruses in blood samples from chimpanzees (Pan troglodytes) in three sanctuaries in West, Central, and East Africa. Our goal was to evaluate whether viruses of human origin or other "atypical" or unknown viruses might infect these chimpanzees. We identified viruses from eight families: Anelloviridae, Flaviviridae, Genomoviridae, Hepadnaviridae, Parvoviridae, Picobirnaviridae, Picornaviridae, and Rhabdoviridae. The majority (15/26) of viruses identified were members of the family Anelloviridae and represent the genera Alphatorquevirus (torque teno viruses) and Betatorquevirus (torque teno mini viruses), which are common in chimpanzees and apathogenic. Of the remaining 11 viruses, 9 were typical constituents of the chimpanzee virome that have been identified in previous studies and are also thought to be apathogenic. One virus, a novel tibrovirus (Rhabdoviridae: Tibrovirus) is related to Bas-Congo virus, which was originally thought to be a human pathogen but is currently thought to be apathogenic, incidental, and vector-borne. The only virus associated with disease was rhinovirus C (Picornaviridae: Enterovirus) infecting one chimpanzee subsequent to an outbreak of respiratory illness at that sanctuary. Our results suggest that the blood-borne virome of African sanctuary chimpanzees does not differ appreciably from that of their wild counterparts, and that persistent infection with exogenous viruses may be less common than often assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Leah A. Owens
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee TrustEntebbeUganda
| | - Rebeca Atencia
- Jane Goodall Institute CongoPointe‐NoireRepublic of Congo
| | - Megan F. Cole
- Department of AnthropologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Averill Cantwell
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Alexandra G. Rosati
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
4
|
Huaman JL, Pacioni C, Sarker S, Doyle M, Forsyth DM, Pople A, Carvalho TG, Helbig KJ. Novel Picornavirus Detected in Wild Deer: Identification, Genomic Characterisation, and Prevalence in Australia. Viruses 2021; 13:v13122412. [PMID: 34960681 PMCID: PMC8706930 DOI: 10.3390/v13122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The use of high-throughput sequencing has facilitated virus discovery in wild animals and helped determine their potential threat to humans and other animals. We report the complete genome sequence of a novel picornavirus identified by next-generation sequencing in faeces from Australian fallow deer. Genomic analysis revealed that this virus possesses a typical picornavirus-like genomic organisation of 7554 nt with a single open reading frame (ORF) encoding a polyprotein of 2225 amino acids. Based on the amino acid identity comparison and phylogenetic analysis of the P1, 2C, 3CD, and VP1 regions, this novel picornavirus was closely related to but distinct from known bopiviruses detected to date. This finding suggests that deer/bopivirus could belong to a novel species within the genus Bopivirus, tentatively designated as "Bopivirus C". Epidemiological investigation of 91 deer (71 fallow, 14 sambar and 6 red deer) and 23 cattle faecal samples showed that six fallow deer and one red deer (overall prevalence 7.7%, 95% confidence interval [CI] 3.8-15.0%) tested positive, but deer/bopivirus was undetectable in sambar deer and cattle. In addition, phylogenetic and sequence analyses indicate that the same genotype is circulating in south-eastern Australia. To our knowledge, this study reports for the first time a deer-origin bopivirus and the presence of a member of genus Bopivirus in Australia. Further epidemiological and molecular studies are needed to investigate the geographic distribution and pathogenic potential of this novel Bopivirus species in other domestic and wild animal species.
Collapse
Affiliation(s)
- Jose L. Huaman
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Carlo Pacioni
- Department of Environment, Land, Water, and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, VIC 3084, Australia;
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Mark Doyle
- South East Local Land Services, Bega, NSW 2550, Australia;
| | - David M. Forsyth
- Vertebrate Pest Research Unit, Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia;
| | - Anthony Pople
- Department of Agriculture and Fisheries, Invasive Plants & Animals Research, Biosecurity Queensland, Ecosciences Precinct, Brisbane, QLD 4102, Australia;
| | - Teresa G. Carvalho
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Karla J. Helbig
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
- Correspondence: ; Tel.: +61-3-9479-6650
| |
Collapse
|