1
|
King RE, Bilger A, Rademacher J, Lambert PF, Thibeault SL. Preclinical Models of Laryngeal Papillomavirus Infection: A Scoping Review. Laryngoscope 2023; 133:3256-3268. [PMID: 37227124 PMCID: PMC10674042 DOI: 10.1002/lary.30762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Laryngeal human papillomavirus (HPV) infection causes recurrent respiratory papillomatosis (RRP) and accounts for up to 25% of laryngeal cancers. Lack of satisfactory preclinical models is one reason that treatments for these diseases are limited. We sought to assess the literature describing preclinical models of laryngeal papillomavirus infection. DATA SOURCES PubMed, Web of Science, and Scopus were searched from the inception of database through October 2022. REVIEW METHODS Studies searched were screened by two investigators. Eligible studies were peer-reviewed, published in English, presented original data, and described attempted models of laryngeal papillomavirus infection. Data examined included type of papillomavirus, infection model, and results including success rate, disease phenotype, and viral retention. RESULTS After screening 440 citations and 138 full-text studies, 77 studies published between 1923 and 2022 were included. Models used low-risk HPV or RRP (n = 51 studies), high-risk HPV or laryngeal cancer (n = 16), both low- and high-risk HPV (n = 1), and animal papillomaviruses (n = 9). For RRP, 2D and 3D cell culture models and xenografts retained disease phenotypes and HPV DNA in the short term. Two laryngeal cancer cell lines were consistently HPV-positive in multiple studies. Animal laryngeal infections with animal papillomaviruses resulted in disease and long-term retention of viral DNA. CONCLUSIONS Laryngeal papillomavirus infection models have been researched for 100 years and primarily involve low-risk HPV. Most models lose viral DNA after a short duration. Future work is needed to model persistent and recurrent diseases, consistent with RRP and HPV-positive laryngeal cancer. LEVEL OF EVIDENCE NA Laryngoscope, 133:3256-3268, 2023.
Collapse
Affiliation(s)
- Renee E King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Josef Rademacher
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Susan L Thibeault
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| |
Collapse
|
2
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. PLoS One 2023; 18:e0292368. [PMID: 37792852 PMCID: PMC10550192 DOI: 10.1371/journal.pone.0292368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e., cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data (https://viz.datascience.arizona.edu/3DEpiEx/).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Esha V. Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, Arizona, United States of America
| | - Reid S. Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences, College of Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Caitlyn E. Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
3
|
Li Y, Wang C, Ma A, Rani AQ, Luo M, Li J, Liu X, Ma Q. Identification of HPV oncogene and host cell differentiation associated cellular heterogeneity in cervical cancer via single-cell transcriptomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552878. [PMID: 37645794 PMCID: PMC10462038 DOI: 10.1101/2023.08.10.552878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Human Papillomaviruses (HPVs) are associated with around 5-10% of human cancer, notably nearly 99% of cervical cancer. The mechanisms HPV interacts with stratified epithelium (differentiated layers) during the viral life cycle, and oncogenesis remain unclear. In this study, we used single-cell transcriptome analysis to study viral gene and host cell differentiation-associated heterogeneity of HPV-positive cervical cancer tissue. We examined the HPV16 genes - E1, E6, and E7, and found they expressed differently across nine epithelial clusters. We found that three epithelial clusters had the highest proportion of HPV-positive cells (33.6%, 37.5%, and 32.4%, respectively), while two exhibited the lowest proportions (7.21% and 5.63%, respectively). Notably, the cluster with the most HPV-positive cells deviated significantly from normal epithelial layer markers, exhibiting functional heterogeneity and altered epithelial structuring, indicating that significant molecular heterogeneity existed in cancer tissues and that these cells exhibited unique/different gene signatures compared with normal epithelial cells. These HPV-positive cells, compared to HPV-negative, showed different gene expressions related to the extracellular matrix, cell adhesion, proliferation, and apoptosis. Further, the viral oncogenes E6 and E7 appeared to modify epithelial function via distinct pathways, thus contributing to cervical cancer progression. We investigated the HPV and host transcripts from a novel viewpoint focusing on layer heterogeneity. Our results indicated varied HPV expression across epithelial clusters and epithelial heterogeneity associated with viral oncogenes, contributing biological insights to this critical field of study.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Abdul Qawee Rani
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Mingjue Luo
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Jenny Li
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Liu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- The Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
4
|
Li Y, Wang C, Ma A, Rani AQ, Luo M, Li J, Liu X, Ma Q. Identification of HPV oncogene and host cell differentiation associated cellular heterogeneity in cervical cancer via single-cell transcriptomic analysis. J Med Virol 2023; 95:e29060. [PMID: 37638381 DOI: 10.1002/jmv.29060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Human Papillomaviruses (HPVs) are associated with around 5%-10% of human cancer, notably nearly 99% of cervical cancer. The mechanisms HPV interacts with stratified epithelium (differentiated layers) during the viral life cycle, and oncogenesis remain unclear. In this study, we used single-cell transcriptome analysis to study viral gene and host cell differentiation-associated heterogeneity of HPV-positive cervical cancer tissue. We examined the HPV16 genes-E1, E6, and E7, and found they expressed differently across nine epithelial clusters. We found that three epithelial clusters had the highest proportion of HPV-positive cells (33.6%, 37.5%, and 32.4%, respectively), while two exhibited the lowest proportions (7.21% and 5.63%, respectively). Notably, the cluster with the most HPV-positive cells deviated significantly from normal epithelial layer markers, exhibiting functional heterogeneity and altered epithelial structuring, indicating that significant molecular heterogeneity existed in cancer tissues and that these cells exhibited unique/different gene signatures compared with normal epithelial cells. These HPV-positive cells, compared to HPV-negative, showed different gene expressions related to the extracellular matrix, cell adhesion, proliferation, and apoptosis. Further, the viral oncogenes E6 and E7 appeared to modify epithelial function via distinct pathways, thus contributing to cervical cancer progression. We investigated the HPV and host transcripts from a novel viewpoint focusing on layer heterogeneity. Our results indicated varied HPV expression across epithelial clusters and epithelial heterogeneity associated with viral oncogenes, contributing biological insights to this critical field of study.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Abdul Qawee Rani
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Mingjue Luo
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Jenny Li
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- The Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Rani AQ, Nurmemet D, Liffick J, Khan A, Mitchell D, Li J, Zhao B, Liu X. Conditional Cell Reprogramming and Air-Liquid Interface Modeling Life Cycle of Oncogenic Viruses (HPV and EBV) in Epithelial Cells and Virus-Associated Human Carcinomas. Viruses 2023; 15:1388. [PMID: 37376685 DOI: 10.3390/v15061388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several oncogenic viruses are associated with approximately 20% of human cancers. Experimental models are crucial for studying the pathogenicity and biological aspects of oncogenic viruses and their potential mechanisms in tumorigenesis. Current cell models have considerable limitations such as: their low yield, genetic and epigenetic modification, and reduction in tumor heterogeneity during long propagation. Cancer cell lines are limited and not appropriate for studying the viral life cycle, for example, natural viral life cycles of HPV and EBV, and their persistence and latency in epithelial cells are poorly understood, since these processes are highly related to epithelial differentiation. Therefore, there is an urgent need of reliable human physiological cell models to study viral life cycle and cancer initiation. Conditional cell reprogramming (CCR) is a rapid and robust cell culture system, where the cells can be established from minimally invasive or noninvasive specimens and their lineage functions preserved during the long-term culture. These CR cells retain their ability to differentiate at air-liquid interface (ALI). Here, we recapitulated the applications of CR and ALI approaches in modeling host-virus interactions and viral-mediated tumorigenesis.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Dilber Nurmemet
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Joseph Liffick
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Anam Khan
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Bedard MC, Chihanga T, Carlile A, Jackson R, Brusadelli MG, Lee D, VonHandorf A, Rochman M, Dexheimer PJ, Chalmers J, Nuovo G, Lehn M, Williams DEJ, Kulkarni A, Carey M, Jackson A, Billingsley C, Tang A, Zender C, Patil Y, Wise-Draper TM, Herzog TJ, Ferris RL, Kendler A, Aronow BJ, Kofron M, Rothenberg ME, Weirauch MT, Van Doorslaer K, Wikenheiser-Brokamp KA, Lambert PF, Adam M, Steven Potter S, Wells SI. Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer. Nat Commun 2023; 14:1975. [PMID: 37031202 PMCID: PMC10082832 DOI: 10.1038/s41467-023-37377-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/15/2023] [Indexed: 04/10/2023] Open
Abstract
Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.
Collapse
Affiliation(s)
- Mary C Bedard
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Adrean Carlile
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Jackson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Denis Lee
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Phillip J Dexheimer
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeffrey Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| | - Gerard Nuovo
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Maria Lehn
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - David E J Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- Medical Scientist Training M.D.-Ph.D. Program (MSTP), College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Molly Carey
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Amanda Jackson
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Caroline Billingsley
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Alice Tang
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Chad Zender
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yash Patil
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Trisha M Wise-Draper
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Thomas J Herzog
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Ady Kendler
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Divisions of Human Genetics, Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- The BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85721, USA
- UA Cancer Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Pathology & Laboratory Medicine and The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
7
|
Jackson R, Rajadhyaksha EV, Loeffler RS, Flores CE, Van Doorslaer K. Characterization of 3D organotypic epithelial tissues reveals tonsil-specific differences in tonic interferon signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524743. [PMID: 36711548 PMCID: PMC9882319 DOI: 10.1101/2023.01.19.524743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Three-dimensional (3D) culturing techniques can recapitulate the stratified nature of multicellular epithelial tissues. Organotypic 3D epithelial tissue culture methods have several applications, including the study of tissue development and function, drug discovery and toxicity testing, host-pathogen interactions, and the development of tissue-engineered constructs for use in regenerative medicine. We grew 3D organotypic epithelial tissues from foreskin, cervix, and tonsil-derived primary cells and characterized the transcriptome of these in vitro tissue equivalents. Using the same 3D culturing method, all three tissues yielded stratified squamous epithelium, validated histologically using basal and superficial epithelial cell markers. The goal of this study was to use RNA-seq to compare gene expression patterns in these three types of epithelial tissues to gain a better understanding of the molecular mechanisms underlying their function and identify potential therapeutic targets for various diseases. Functional profiling by over-representation and gene set enrichment analysis revealed tissue-specific differences: i.e. , cutaneous homeostasis and lipid metabolism in foreskin, extracellular matrix remodeling in cervix, and baseline innate immune differences in tonsil. Specifically, tonsillar epithelia may play an active role in shaping the immune microenvironment of the tonsil balancing inflammation and immune responses in the face of constant exposure to microbial insults. Overall, these data serve as a resource, with gene sets made available for the research community to explore, and as a foundation for understanding the epithelial heterogeneity and how it may impact their in vitro use. An online resource is available to investigate these data ( https://viz.datascience.arizona.edu/3DEpiEx/ ).
Collapse
Affiliation(s)
- Robert Jackson
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Esha V Rajadhyaksha
- College of Medicine and College of Science, University of Arizona, Tucson, AZ, USA
| | - Reid S Loeffler
- Biosystems Engineering, College of Agriculture and Life Sciences; College of Engineering, University of Arizona, Tucson, AZ, USA
| | - Caitlyn E Flores
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology; Cancer Biology Graduate Interdisciplinary Program; Genetics Graduate Interdisciplinary Program; and University of Arizona Cancer Center, University of Arizona, Tucson, AZ USA
| |
Collapse
|
8
|
King RE, Ward-Shaw ET, Hu R, Lambert PF, Thibeault SL. Expanded Basal Compartment and Disrupted Barrier in Vocal Fold Epithelium Infected with Mouse Papillomavirus MmuPV1. Viruses 2022; 14:v14051059. [PMID: 35632798 PMCID: PMC9146965 DOI: 10.3390/v14051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Laryngeal infection with low-risk human papillomaviruses can cause recurrent respiratory papillomatosis (RRP), a disease with severe effects on vocal fold epithelium resulting in impaired voice function and communication. RRP research has been stymied by limited preclinical models. We recently reported a murine model of laryngeal MmuPV1 infection and disease in immunodeficient mice. In the current study, we compare quantitative and qualitative measures of epithelial proliferation, apoptosis, differentiation, and barrier between mice with MmuPV1-induced disease of the larynx and surrounding tissues and equal numbers of uninfected controls. Findings supported our hypothesis that laryngeal MmuPV1 infection recapitulates many features of RRP. Like RRP, MmuPV1 increased proliferation in infected vocal fold epithelium, expanded the basal compartment of cells, decreased differentiated cells, and altered cell–cell junctions and basement membrane. Effects of MmuPV1 on apoptosis were equivocal, as with RRP. Barrier markers resembled human neoplastic disease in severe MmuPV1-induced disease. We conclude that MmuPV1 infection of the mouse larynx provides a useful, if imperfect, preclinical model for RRP that will facilitate further study and treatment development for this intractable and devastating disease.
Collapse
Affiliation(s)
- Renee E. King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ella T. Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.E.K.); (E.T.W.-S.); (P.F.L.)
| | - Susan L. Thibeault
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
9
|
A Novel In Vivo Model of Laryngeal Papillomavirus-Associated Disease Using Mus musculus Papillomavirus. Viruses 2022; 14:v14051000. [PMID: 35632742 PMCID: PMC9147793 DOI: 10.3390/v14051000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
Recurrent respiratory papillomatosis (RRP), caused by laryngeal infection with low-risk human papillomaviruses, has devastating effects on vocal communication and quality of life. Factors in RRP onset, other than viral presence in the airway, are poorly understood. RRP research has been stalled by limited preclinical models. The only known papillomavirus able to infect laboratory mice, Mus musculus papillomavirus (MmuPV1), induces disease in a variety of tissues. We hypothesized that MmuPV1 could infect the larynx as a foundation for a preclinical model of RRP. We further hypothesized that epithelial injury would enhance the ability of MmuPV1 to cause laryngeal disease, because injury is a potential factor in RRP and promotes MmuPV1 infection in other tissues. In this report, we infected larynges of NOD scid gamma mice with MmuPV1 with and without vocal fold abrasion and measured infection and disease pathogenesis over 12 weeks. Laryngeal disease incidence and severity increased earlier in mice that underwent injury in addition to infection. However, laryngeal disease emerged in all infected mice by week 12, with or without injury. Secondary laryngeal infections and disease arose in nude mice after MmuPV1 skin infections, confirming that experimentally induced injury is dispensable for laryngeal MmuPV1 infection and disease in immunocompromised mice. Unlike RRP, lesions were relatively flat dysplasias and they could progress to cancer. Similar to RRP, MmuPV1 transcript was detected in all laryngeal disease and in clinically normal larynges. MmuPV1 capsid protein was largely absent from the larynx, but productive infection arose in a case of squamous metaplasia at the level of the cricoid cartilage. Similar to RRP, disease spread beyond the larynx to the trachea and bronchi. This first report of laryngeal MmuPV1 infection provides a foundation for a preclinical model of RRP.
Collapse
|
10
|
HPV Strain Predicts Severity of Juvenile-Onset Recurrent Respiratory Papillomatosis with Implications for Disease Screening. Cancers (Basel) 2021; 13:cancers13112556. [PMID: 34070981 PMCID: PMC8197133 DOI: 10.3390/cancers13112556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Juvenile-onset recurrent respiratory papillomatosis (JoRRP) is the most common benign neoplasm of the larynx in children, presenting with significant variation in clinical course and potential for progression to malignancy. Since JoRRP is driven by human papillomavirus (HPV), we evaluated viral factors in a prospective cohort to identify predictive factors of disease severity. Twenty children with JoRRP undergoing routine debridement of papillomas were recruited and followed for ≥1 year. Demographical features, clinical severity scores, and surgeries over time were tabulated. Biopsies were used to establish a tissue bank and primary cell cultures for HPV6 vs. HPV11 genotyping and evaluation of viral gene expression. We found that patients with HPV11+ disease had an earlier age at disease onset, higher frequency of surgeries, increased number of lifetime surgeries, and were more likely to progress to malignancy. However, the amplitude of viral E6/E7 gene expression did not account for increased disease severity in HPV11+ patients. Determination of HPV strain is not routinely performed in the standard of care for JoRRP patients; we demonstrate the utility and feasibility of HPV genotyping using RNA-ISH for screening of HPV11+ disease as a biomarker for disease severity and progression in JoRRP patients.
Collapse
|
11
|
Coordinated Expression of HPV-6 Genes with Predominant E4 and E5 Expression in Laryngeal Papilloma. Microorganisms 2021; 9:microorganisms9030520. [PMID: 33802595 PMCID: PMC7998961 DOI: 10.3390/microorganisms9030520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Laryngeal papilloma (LP) associated with human papillomavirus (HPV)-6 or -11 infection shows aggressive growth. However, the detailed molecular mechanism of virus-driven tumorigenesis has not been uncovered fully. HPV-6 viral gene expression and dynamic alterations were investigated with in situ localization of viral DNA and RNA in 13 patients with HPV-6-infected laryngeal papilloma. The average viral load was 4.80 × 105 ± 1.86 × 105 copies/ng DNA. E4, E5a, and E5b mRNAs accounted for 96% of the expression of 9 mRNAs. The alteration of viral DNA load during recurrence paralleled the mRNA expression levels, and the expression of all mRNAs showed a similar curve. E4, E5a, and E5b were expressed in the middle to upper part of the epithelium and were co-expressed in the same cells. E4 immunohistochemistry demonstrated an extensively positive reaction in the upper cell layer in accordance with E4 mRNA expression. These results suggest that individual viral genes are coordinately expressed for viral replication, virus release, and immunosurveillance avoidance. The newly developed E4-specific monoclonal antibody can be applied to further functional studies and clinical applications such as targeted molecular therapies.
Collapse
|