1
|
Santos AFB, Nunes M, Filipa-Silva A, Pimentel V, Pingarilho M, Abrantes P, Miranda MNS, Crespo MTB, Abecasis AB, Parreira R, Seabra SG. Wastewater Metavirome Diversity: Exploring Replicate Inconsistencies and Bioinformatic Tool Disparities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:707. [PMID: 40427823 PMCID: PMC12111215 DOI: 10.3390/ijerph22050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
This study investigates viral composition in wastewater through metagenomic analysis, evaluating the performance of four bioinformatic tools-Genome Detective, CZ.ID, INSaFLU-TELEVIR and Trimmomatic + Kraken2-on samples collected from four sites in each of two wastewater treatment plants (WWTPs) in Lisbon, Portugal in April 2019. From each site, we collected and processed separately three replicates and one pool of nucleic acids extracted from the replicates. A total of 32 samples were processed using sequence-independent single-primer amplification (SISPA) and sequenced on an Illumina MiSeq platform. Across the 128 sample-tool combinations, viral read counts varied widely, from 3 to 288,464. There was a lack of consistency between replicates and their pools in terms of viral abundance and diversity, revealing the heterogeneity of the wastewater matrix and the variability in sequencing effort. There was also a difference between software tools highlighting the impact of tool selection on community profiling. A positive correlation between crAssphage and human pathogens was found, supporting crAssphage as a proxy for public health surveillance. A custom Python pipeline automated viral identification report processing, taxonomic assignments and diversity calculations, streamlining analysis and ensuring reproducibility. These findings emphasize the importance of sequencing depth, software tool selection and standardized pipelines in advancing wastewater-based epidemiology.
Collapse
Affiliation(s)
- André F. B. Santos
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Mónica Nunes
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Andreia Filipa-Silva
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal;
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Patrícia Abrantes
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Mafalda N. S. Miranda
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Maria Teresa Barreto Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal;
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana B. Abecasis
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Ricardo Parreira
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| | - Sofia G. Seabra
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (A.F.B.S.); (V.P.); (M.P.); (P.A.); (M.N.S.M.); (A.B.A.); (R.P.)
| |
Collapse
|
2
|
Pérot P, Tondeur L, Moutailler S, Chrétien D, Corre-Catelin N, Vayssier-Taussat M, Eloit M, Chirouze C, Cazorla C. Broad range molecular detection methods identify only Borrelia spp. in erythema migrans biopsies and blood of tick-bitten patients. One Health 2024; 19:100886. [PMID: 39287136 PMCID: PMC11403503 DOI: 10.1016/j.onehlt.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
In this multicenter study conducted in France, we challenged the hypothesis of the transmission of pathogens other than Borrelia spp. in 22 patients developing erythema migrans following a tick bite. Using a combination of high-throughput microfluidic PCRs and agnostic metagenomics on skin biopsies and blood samples, no microorganisms other than Borrelia spp. was found.
Collapse
Affiliation(s)
- Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, The WOAH (OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, F-75015 Paris, France
| | - Laura Tondeur
- Emerging Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, The WOAH (OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, F-75015 Paris, France
| | - Nicole Corre-Catelin
- Institut Pasteur, Université Paris Cité, Clinical Investigation and Access to Research Bioresources (ICAReB) Platform, Paris, France
| | | | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, The WOAH (OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, F-75015 Paris, France
- Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France
| | - Catherine Chirouze
- Chrono-Environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
- Infectious Disease Department, University Hospital of Besançon, F-25000, France
| | - Céline Cazorla
- Infectious Disease department, University Hospital of Saint Etienne, Avenue Albert-Raimond, 42055, Saint Etienne Cedex 02, France
| |
Collapse
|
3
|
Medina JE, Castañeda S, Camargo M, Garcia-Corredor DJ, Muñoz M, Ramírez JD. Exploring viral diversity and metagenomics in livestock: insights into disease emergence and spillover risks in cattle. Vet Res Commun 2024; 48:2029-2049. [PMID: 38865041 DOI: 10.1007/s11259-024-10403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Cattle have a significant impact on human societies in terms of both economics and health. Viral infections pose a relevant problem as they directly or indirectly disrupt the balance within cattle populations. This has negative consequences at the economic level for producers and territories, and also jeopardizes human health through the transmission of zoonotic diseases that can escalate into outbreaks or pandemics. To establish prevention strategies and control measures at various levels (animal, farm, region, or global), it is crucial to identify the viral agents present in animals. Various techniques, including virus isolation, serological tests, and molecular techniques like PCR, are typically employed for this purpose. However, these techniques have two major drawbacks: they are ineffective for non-culturable viruses, and they only detect a small fraction of the viruses present. In contrast, metagenomics offers a promising approach by providing a comprehensive and unbiased analysis for detecting all viruses in a given sample. It has the potential to identify rare or novel infectious agents promptly and establish a baseline of healthy animals. Nevertheless, the routine application of viral metagenomics for epidemiological surveillance and diagnostics faces challenges related to socioeconomic variables, such as resource availability and space dedicated to metagenomics, as well as the lack of standardized protocols and resulting heterogeneity in presenting results. This review aims to provide an overview of the current knowledge and prospects for using viral metagenomics to detect and identify viruses in cattle raised for livestock, while discussing the epidemiological and clinical implications.
Collapse
Affiliation(s)
- Julián Esteban Medina
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Mosquera, Cundinamarca, Colombia
| | - Diego J Garcia-Corredor
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología - UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Gangopadhayya A, Lole K, Ghuge O, Ramdasi A, Kamble A, Roy D, Thakar S, Nath A, Sudeep AB, Cherian S. Metagenomic Analysis of Viromes of Aedes Mosquitoes across India. Viruses 2024; 16:109. [PMID: 38257809 PMCID: PMC10818685 DOI: 10.3390/v16010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
Metagenomic analysis of Aedes aegypti and Ae. albopictus mosquitoes from diverse geographical regions of India revealed the presence of several insect viruses of human interest. Most abundant reads found in Ae. aegypti mosquitoes were of Phasi Charoen-like virus (PCLV), Choristoneura fumiferana granulovirus (CfGV), Cell fusing agent virus (CFAV), and Wenzhou sobemo-like virus 4 (WSLV4), whereas WSLV4 and CfGV constituted the highest percentage of reads in Ae. albopictus viromes. Other reads that were of low percentage included Hubei mosquito virus 2 (HMV2), Porcine astrovirus 4 (PAstV4), and Wild Boar astrovirus (WBAstV). PCLV and CFAV, which were found to be abundant in Ae. aegypti viromes were absent in Ae. albopictus viromes. Among the viromes analyzed, Ae. aegypti sampled from Pune showed the highest percentage (79.82%) of viral reads, while Ae. aegypti mosquitoes sampled from Dibrugarh showed the lowest percentage (3.47%). Shamonda orthobunyavirus (SHAV), African swine fever virus (ASFV), Aroa virus (AROAV), and Ilheus virus (ILHV), having the potential to infect vertebrates, including humans, were also detected in both mosquito species, albeit with low read numbers. Reads of gemykibivirus, avian retrovirus, bacteriophages, herpesviruses, and viruses infecting protozoans, algae, etc., were also detected in the mosquitoes. A high percentage of reads in the Ae. albopictus mosquito samples belonged to unclassified viruses and warrant further investigation. The data generated in the present work may not only lead to studies to explain the influence of these viruses on the replication and transmission of viruses of clinical importance but also to find applications as biocontrol agents against pathogenic viruses.
Collapse
Affiliation(s)
- Abhranil Gangopadhayya
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Kavita Lole
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Onkar Ghuge
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Ashwini Ramdasi
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Asmita Kamble
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (A.K.); (D.R.)
| | - Diya Roy
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (A.K.); (D.R.)
| | - Shivani Thakar
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Amol Nath
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - AB Sudeep
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune 411021, India; (A.G.); (K.L.); (O.G.); (A.R.); (S.T.); (A.N.)
| | - Sarah Cherian
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India; (A.K.); (D.R.)
| |
Collapse
|
5
|
Ordóñez CD, Mayoral-Campos C, Egas C, Redrejo-Rodríguez M. A primer-independent DNA polymerase-based method for competent whole-genome amplification of intermediate to high GC sequences. NAR Genom Bioinform 2023; 5:lqad073. [PMID: 37608803 PMCID: PMC10440786 DOI: 10.1093/nargab/lqad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/03/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Multiple displacement amplification (MDA) has proven to be a useful technique for obtaining large amounts of DNA from tiny samples in genomics and metagenomics. However, MDA has limitations, such as amplification artifacts and biases that can interfere with subsequent quantitative analysis. To overcome these challenges, alternative methods and engineered DNA polymerase variants have been developed. Here, we present new MDA protocols based on the primer-independent DNA polymerase (piPolB), a replicative-like DNA polymerase endowed with DNA priming and proofreading capacities. These new methods were tested on a genomes mixture containing diverse sequences with high-GC content, followed by deep sequencing. Protocols relying on piPolB as a single enzyme cannot achieve competent amplification due to its limited processivity and the presence of ab initio DNA synthesis. However, an alternative method called piMDA, which combines piPolB with Φ29 DNA polymerase, allows proficient and faithful amplification of the genomes. In addition, the prior denaturation step commonly performed in MDA protocols is dispensable, resulting in a more straightforward protocol. In summary, piMDA outperforms commercial methods in the amplification of genomes and metagenomes containing high GC sequences and exhibits similar profiling, error rate and variant determination as the non-amplified samples.
Collapse
Affiliation(s)
- Carlos D Ordóñez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Carmen Mayoral-Campos
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Biocant, Transfer Technology Association, Cantanhede, Portugal
| | - Modesto Redrejo-Rodríguez
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| |
Collapse
|
6
|
A case for investment in clinical metagenomics in low-income and middle-income countries. THE LANCET. MICROBE 2023; 4:e192-e199. [PMID: 36563703 DOI: 10.1016/s2666-5247(22)00328-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Clinical metagenomics is the diagnostic approach with the broadest capacity to detect both known and novel pathogens. Clinical metagenomics is costly to run and requires infrastructure, but the use of next-generation sequencing for SARS-CoV-2 molecular epidemiology in low-income and middle-income countries (LMICs) offers an opportunity to direct this infrastructure to the establishment of clinical metagenomics programmes. Local implementation of clinical metagenomics is important to create relevant systems and evaluate cost-effective methodologies for its use, as well as to ensure that reference databases and result interpretation tools are appropriate to local epidemiology. Rational implementation, based on the needs of LMICs and the available resources, could ultimately improve individual patient care in instances in which available diagnostics are inadequate and supplement emerging infectious disease surveillance systems to ensure the next pandemic pathogen is quickly identified.
Collapse
|
7
|
Pérot P, Fourgeaud J, Rouzaud C, Regnault B, Da Rocha N, Fontaine H, Le Pavec J, Dolidon S, Garzaro M, Chrétien D, Morcrette G, Molina TJ, Ferroni A, Leruez-Ville M, Lortholary O, Jamet A, Eloit M. Circovirus Hepatitis Infection in Heart-Lung Transplant Patient, France. Emerg Infect Dis 2023; 29:286-293. [PMID: 36596569 PMCID: PMC9881760 DOI: 10.3201/eid2902.221468] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In March 2022, a 61-year-old woman in France who had received a heart-lung transplant sought treatment with chronic hepatitis mainly characterized by increased liver enzymes. After ruling out common etiologies, we used metagenomic next-generation sequencing to analyze a liver biopsy sample and identified an unknown species of circovirus, tentatively named human circovirus 1 (HCirV-1). We found no other viral or bacterial sequences. HCirV-1 shared 70% amino acid identity with the closest known viral sequences. The viral genome was undetectable in blood samples from 2017-2019, then became detectable at low levels in September 2020 and peaked at very high titers (1010 genome copies/mL) in January 2022. In March 2022, we found >108 genome copies/g or mL in the liver and blood, concomitant with hepatic cytolysis. We detected HCirV-1 transcripts in 2% of hepatocytes, demonstrating viral replication and supporting the role of HCirV-1 in liver damage.
Collapse
Affiliation(s)
| | | | | | - Béatrice Regnault
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Nicolas Da Rocha
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Hélène Fontaine
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Jérôme Le Pavec
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Samuel Dolidon
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Margaux Garzaro
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Delphine Chrétien
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Guillaume Morcrette
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Thierry Jo Molina
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Agnès Ferroni
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | - Marianne Leruez-Ville
- Institut Pasteur Pathogen Discovery Laboratory, Paris, France (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- The OIE Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris (P. Pérot, B. Regnault, N. Da Rocha, D. Chrétien, M. Eloit)
- Institut Imagine, Paris (J. Fourgeaud, M. Leruez-Ville); Université Paris Cité, Paris (J. Fourgeaud, A. Jamet)
- Necker-Enfants Malades Hospital, Paris (J. Fourgeaud, G. Morcrette, T.J. Molina, A. Ferroni, M. Leruez-Ville, A. Jamet)
- Hôpital Necker Enfants-Malades Centre d'Infectiologie Necker-Pasteur, Paris (C. Rouzaud, M. Garzaro, O. Lortholary)
- Groupe Hospitalier Paris Saint Joseph-Marie Lannelongue, Équipe Mobile de Microbiologie Clinique, Paris (C. Rouzaud)
- Hôpital Cochin Département d'Hépatologie-Addictologie, Paris (H. Fontaine)
- Université Paris–Sud, Paris (J. Le Pavec)
- Hôpital Marie Lannelongue Service de Pneumologie et Transplantation Pulmonaire, Le Plessis-Robinson, France (J. Le Pavec, S. Dolidon)
- Institut Necker Enfants Malades, Paris (A. Jamet)
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (M. Eloit)
| | | | | | | |
Collapse
|
8
|
Detection of Hepatitis E Virus Genotype 3 in Feces of Capybaras (Hydrochoeris hydrochaeris) in Brazil. Viruses 2023; 15:v15020335. [PMID: 36851548 PMCID: PMC9959927 DOI: 10.3390/v15020335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen associated with relevant public health issues. The aim of this study was to investigate HEV presence in free-living capybaras inhabiting urban parks in São Paulo state, Brazil. Molecular characterization of HEV positive samples was undertaken to elucidate the genetic diversity of the virus in these animals. A total of 337 fecal samples were screened for HEV using RT-qPCR and further confirmed by conventional nested RT-PCR. HEV genotype and subtype were determined using Sanger and next-generation sequencing. HEV was detected in one specimen (0.3%) and assigned as HEV-3f. The IAL-HEV_921 HEV-3f strain showed a close relationship to European swine, wild boar and human strains (90.7-93.2% nt), suggesting an interspecies transmission. Molecular epidemiology of HEV is poorly investigated in Brazil; subtype 3f has been reported in swine. This is the first report of HEV detected in capybara stool samples worldwide.
Collapse
|
9
|
Jansen D, Matthijnssens J. The Emerging Role of the Gut Virome in Health and Inflammatory Bowel Disease: Challenges, Covariates and a Viral Imbalance. Viruses 2023; 15:173. [PMID: 36680214 PMCID: PMC9861652 DOI: 10.3390/v15010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Virome research is a rapidly growing area in the microbiome field that is increasingly associated with human diseases, such as inflammatory bowel disease (IBD). Although substantial progress has been made, major methodological challenges limit our understanding of the virota. In this review, we describe challenges that must be considered to accurately report the virome composition and the current knowledge on the virome in health and IBD. First, the description of the virome shows strong methodological biases related to wetlab (e.g., VLP enrichment) and bioinformatics approaches (viral identification and classification). Second, IBD patients show consistent viral imbalances characterized by a high relative abundance of phages belonging to the Caudovirales and a low relative abundance of phages belonging to the Microviridae. Simultaneously, a sporadic contraction of CrAss-like phages and a potential expansion of the lysogenic potential of the intestinal virome are observed. Finally, despite numerous studies that have conducted diversity analysis, it is difficult to draw firm conclusions due to methodological biases. Overall, we present the many methodological and environmental factors that influence the virome, its current consensus in health and IBD, and a contributing hypothesis called the "positive inflammatory feedback loop" that may play a role in the pathophysiology of IBD.
Collapse
Affiliation(s)
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Department of Microbiology, Immunology and Transplantation, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
10
|
Microseek: A Protein-Based Metagenomic Pipeline for Virus Diagnostic and Discovery. Viruses 2022; 14:v14091990. [PMID: 36146797 PMCID: PMC9500916 DOI: 10.3390/v14091990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
We present Microseek, a pipeline for virus identification and discovery based on RVDB-prot, a comprehensive, curated and regularly updated database of viral proteins. Microseek analyzes metagenomic Next Generation Sequencing (mNGS) raw data by performing quality steps, de novo assembly, and by scoring the Lowest Common Ancestor (LCA) from translated reads and contigs. Microseek runs on a local computer. The outcome of the pipeline is displayed through a user-friendly and dynamic graphical interface. Based on two representative mNGS datasets derived from human tissue and plasma specimens, we illustrate how Microseek works, and we report its performances. In silico spikes of known viral sequences, but also spikes of fake Neopneumovirus viral sequences generated with variable evolutionary distances from known members of the Pneumoviridae family, were used. Results were compared to Chan Zuckerberg ID (CZ ID), a reference cloud-based mNGS pipeline. We show that Microseek reliably identifies known viral sequences and performs well for the detection of distant pseudoviral sequences, especially in complex samples such as in human plasma, while minimizing non-relevant hits.
Collapse
|
11
|
Charon J, Buchmann JP, Sadiq S, Holmes EC. RdRp-Scan: A Bioinformatic Resource to Identify and Annotate Divergent RNA Viruses in Metagenomic Sequence Data. Virus Evol 2022; 8:veac082. [PMID: 36533143 PMCID: PMC9752661 DOI: 10.1093/ve/veac082] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Despite a rapid expansion in the number of documented viruses following the advent of metagenomic sequencing, the identification and annotation of highly divergent RNA viruses remains challenging, particularly from poorly characterized hosts and environmental samples. Protein structures are more conserved than primary sequence data, such that structure-based comparisons provide an opportunity to reveal the viral “dusk matter”: viral sequences with low, but detectable, levels of sequence identity to known viruses with available protein structures. Here, we present a new open computational and resource – RdRp-scan – that contains a standardized bioinformatic toolkit to identify and annotate divergent RNA viruses in metagenomic sequence data based on the detection of RNA dependent RNA polymerase (RdRp) sequences. By combining RdRp-specific Hidden Markov models (HMM) and structural comparisons we show that RdRp-scan can efficiently detect RdRp sequences with identity levels as low as 10% to those from known viruses and not identifiable using standard sequence-to-sequence comparisons. In addition, to facilitate the annotation and placement of newly detected and divergent virus-like sequences into the diversity of RNA viruses, RdRp-scan provides new custom and curated databases of viral RdRp sequences and core motifs, as well as pre-built RdRp multiple sequence alignments. In parallel, our analysis of the sequence diversity detected by RdRp-scan revealed that while most of the taxonomically unassigned RdRps fell into pre-established clusters, with some falling into potentially new orders of RNA viruses related to the Wolframvirales and Tolivirales. Finally, a survey of the conserved A, B and C RdRp motifs within the RdRp-scan sequence database revealed additional variations of both sequence and position that might provide new insights into the structure, function and evolution of viral polymerases.
Collapse
Affiliation(s)
- Justine Charon
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney , Sydney, NSW 2006, Australia
| | - Jan P Buchmann
- Institute for Biological Data Science, Heinrich-Heine-University , Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Sabrina Sadiq
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney , Sydney, NSW 2006, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney , Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Smith SE, Huang W, Tiamani K, Unterer M, Khan Mirzaei M, Deng L. Emerging technologies in the study of the virome. Curr Opin Virol 2022; 54:101231. [DOI: 10.1016/j.coviro.2022.101231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
13
|
Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 2022; 604:330-336. [PMID: 35172323 DOI: 10.1038/s41586-022-04532-4] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
The animal reservoir of SARS-CoV-2 is unknown despite reports of various SARS-CoV-2-related viruses in Asian Rhinolophus bats1-4, including the closest virus from R. affinis, RaTG135,6 and in pangolins7-9. SARS-CoV-2 presents a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain (RBD) to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range10-12. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 pathway have not yet been identified, though they would be key in understanding the origin of the epidemics. Here we show that such viruses indeed circulate in cave bats living in the limestone karstic terrain in North Laos, within the Indochinese peninsula. We found that the RBDs of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than the SARS-CoV-2 Wuhan strain isolated in early human cases, and mediate hACE2-dependent entry and replication in human cells, which is inhibited by antibodies neutralizing SARS-CoV-2. None of these bat viruses harbors a furin cleavage site in the spike. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses potentially infectious for humans circulate in Rhinolophus spp. in the Indochinese peninsula.
Collapse
|
14
|
Greninger AL, Zerr DM. NGSocomial Infections: High-Resolution Views of Hospital-Acquired Infections Through Genomic Epidemiology. J Pediatric Infect Dis Soc 2021; 10:S88-S95. [PMID: 34951469 PMCID: PMC8755322 DOI: 10.1093/jpids/piab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hospital outbreak investigations are high-stakes epidemiology. Contacts between staff and patients are numerous; environmental and community exposures are plentiful; and patients are highly vulnerable. Having the best data is paramount to understanding an outbreak in order to stop ongoing transmission and prevent future outbreaks. In the past 5 years, the high-resolution view of transmission offered by analyzing pathogen whole-genome sequencing (WGS) is increasingly part of hospital outbreak investigations. Concerns over speed and actionability, assay validation, liability, cost, and payment models lead to further opportunities for work in this area. Now accelerated by funding for COVID-19, the use of genomics in hospital outbreak investigations has firmly moved from the academic literature to more quotidian operations, with associated concerns involving regulatory affairs, data integration, and clinical interpretation. This review details past uses of WGS data in hospital-acquired infection outbreaks as well as future opportunities to increase its utility and growth in hospital infection prevention.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, Washington, USA,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,Corresponding Author: Alexander L. Greninger MD, PhD, MS, MPhil, 1616 Eastlake Ave East Suite 320, Seattle, WA 98102, USA. E-mail:
| | - Danielle M Zerr
- Department of Pediatrics, University of Washington Medical Center, Seattle, Washington, USA,Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, Washington, USA
| |
Collapse
|