1
|
Dunowska M, Bain H, Bond S. Molecular survey of canine parvovirus type 2: the emergence of subtype 2c in New Zealand. N Z Vet J 2025; 73:178-186. [PMID: 39929241 DOI: 10.1080/00480169.2025.2456245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/16/2025] [Indexed: 03/21/2025]
Abstract
AIMS To determine the genetic makeup of carnivore parvoviruses currently circulating in New Zealand; to investigate their evolutionary patterns; and to compare these viruses with those detected during the previous New Zealand-based survey (2009-2010). METHODS Faecal samples from dogs (n = 40) with a clinical diagnosis of parvovirus enteritis were voluntarily submitted by veterinarians from throughout New Zealand. In addition, one sample was collected from a cat with comparable clinical presentation. The samples were used for DNA extraction and PCR amplification of viral protein 2 (VP2) of canine parvovirus type 2 (CPV-2). All samples produced amplicons of the expected sizes, which were then sequenced. The viruses were subtyped based on the presence of specific amino acids at defined locations. In addition, VP2 sequences were analysed using phylogeny and molecular network analysis. RESULTS The majority (30/40; 75%) of CPV-2-infected dogs were younger than 6 months and 8/40 (20%) were aged between 9 months and 1 year. Most (39/41; 95%) parvoviruses were subtyped as CPV-2c, and one as the original CPV-2. The faecal sample from a cat was positive for feline panleukopenia virus. The majority (37/39; 95%) of New Zealand CPV-2c viruses were monophyletic. The remaining two New Zealand CPV-2c viruses clustered with Chinese and Sri Lankan CPV-2c viruses, separately from the main New Zealand clade. CONCLUSIONS There has been an apparent replacement of the CPV-2a viruses with CPV-2c viruses in New Zealand between 2011 and 2019. The source of the current CPV-2c viruses remains undetermined. The monophyletic nature of the majority of viruses detected most likely reflects a country-wide spread of the most successful genotype. However, an occasional introduction of CPV-2 from overseas cannot be excluded. CLINICAL RELEVANCE Current vaccines appear to be protective against disease caused by the CPV-2c viruses currently circulating in New Zealand. Vaccination and protection from environmental sources of CPV-2 until the development of vaccine-induced immunity remains the cornerstone of protection in young dogs against parvovirus enteritis. Ongoing monitoring of the genetic changes in CPV-2 is important, as it would allow early detection of variants that may be more likely to escape vaccine-induced immunity.
Collapse
Affiliation(s)
- M Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - H Bain
- MSD Animal Health, Upper Hutt, New Zealand
| | - S Bond
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Chen H, Zhang H, Guo J, Meng X, Yao M, He L, Nie X, Xu H, Liu C, Sun J, Wang F, Sun Y, Jiang Z, He Y, Zhang J, Wang J. Rapid detection of feline parvovirus using RAA-CRISPR/Cas12a-based lateral flow strip and fluorescence. Front Microbiol 2025; 16:1501635. [PMID: 40135058 PMCID: PMC11932995 DOI: 10.3389/fmicb.2025.1501635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Feline parvovirus (FPV) causes severe gastroenteritis and leukopenia in cats, with high morbidity and mortality, necessitating a rapid and effective antigen diagnostic test with high sensitivity and specificity. In this study, a diagnostic platform based on a combination of Recombinase-Aided Amplification (RAA) and CRISPR/Cas12a was established for detecting FPV. Cas12a recombinant protein was purified using Nickel-Nitriloacetic Acid resin after heterologous expression in Escherichia coli. The results of RAA-CRISPR/Cas12a can be detected with a fluorescence reader or lateral flow strips (LFS) for on-site detection. The RAA-CRISPR/Cas12a-LFS had a detection limit of 2.1 × 100 copies of recombinant plasmids per reaction, compared with 2.1 × 103 copies for conventional PCR analysis. Furthermore, no cross-reactivity was observed for the RAA-CRISPR/Cas12a assay with feline coronavirus, feline herpesvirus, and feline calicivirus, demonstrating reasonable specificity. Additionally, 43 cat fecal samples with suspected clinical signs were assayed with RAA-CRISPR/Cas12a-LFS and conventional PCR in parallel. The RAA-CRISPR/Cas12a-LFS showed a 100% coincident rate with PCR. In summary, a novel, visual, sensitive, and specific detection assay based on RAA and CRISPR/Cas12a was developed for FPV.
Collapse
Affiliation(s)
- Han Chen
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Hailing Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jie Guo
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiangshu Meng
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Mengfan Yao
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Longbin He
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaoxuan Nie
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Han Xu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Chao Liu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jian Sun
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Weihai Ocean Vocational College, Rongcheng, China
| | - Fei Wang
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Yuelong Sun
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Zhong Jiang
- Agriculture Bureau of Zhuozhou City, Zhuozhou, China
| | - Yanliang He
- Sinovet (Jiangsu) Biopharmaceuticals Co., Ltd., Taizhou, China
| | - Jianlou Zhang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jianke Wang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Safwat MS, El-Sayed M S, Ali ME, Saeed OS, Amer HM, Mansour ONO, Hassan AM, Farouk MM. Molecular typing of Protoparvovirus carnivoran 1 in Egyptian cats diagnosed with feline panleukopenia. Comp Immunol Microbiol Infect Dis 2024; 115:102273. [PMID: 39520796 DOI: 10.1016/j.cimid.2024.102273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Feline panleukopenia (FPL) in cats is caused by either feline parvovirus (FPV) or canine parvovirus (CPV-2), which belong to the same species "Protoparvovirus carnivoran 1". While FPV is widely recognized as the principal cause of FPL, CPV-2 has been detected at a higher rate than FPV in sick cats in a recent Egyptian study. To assess this conflict, the present study aimed to determine which Protoparvovirus carnivoran 1 is commonly associated with FPL in Egyptian cats. From Dec-2022 to Jan-2024, 43 cats presenting with acute gastroenteritis and testing positive for FPL using in-clinic assay, SNAP® parvo, were tested for Protoparvovirus carnivoran 1 DNA using conventional PCR. Typing of Protoparvovirus carnivoran 1 was conducted by partial VP2 gene sequencing. Additional epidemiological aspects of the disease were investigated, including seasonal pattern, case-fatality rate, median survival time to death, and the association between FPL outcomes and selected factors like age, sex, vaccination status, and clinical signs (vomiting and diarrhea). All cats tested positive for Protoparvovirus carnivoran 1 DNA and FPV was detected in all cats with strong PCR amplicons (n=39). The following seasonal pattern was recorded: cases emerging in autumn, peaking during winter, declining in spring, and disappearing in summer. The case-fatality rate was 41.6 %, and the median time to death was two days. None of the studied factors affected FPL outcomes. In conclusion, FPL in Egyptian cat populations is primarily caused by FPV, not CPV-2, and is particularly prevalent in winter.
Collapse
Affiliation(s)
- Mahmoud S Safwat
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Samah El-Sayed M
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mohamed E Ali
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Omar S Saeed
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Haitham M Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Othman N O Mansour
- Genome Research Unit, Animal Health Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Ayah M Hassan
- Genome Research Unit, Animal Health Institute, Agriculture Research Center, Giza 12619, Egypt.
| | - Manar M Farouk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| |
Collapse
|
4
|
Li Z, Cai J, Feng C, Wang Y, Fang S, Xue X. Two novel sites determine genetic relationships between CPV-2 and FPV: an epidemiological survey of canine and feline parvoviruses in Changchun, China (2020). Front Vet Sci 2024; 11:1444984. [PMID: 39559542 PMCID: PMC11571754 DOI: 10.3389/fvets.2024.1444984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
Canine parvovirus (CPV-2) and feline parvovirus (FPV) cause severe hemorrhagic diarrhea disease in dogs, cats, and fur-bearing and wildlife carnivores worldwide, continuing to pose significant threats. In this study, 140 rectal swabs were collected from 70 domestic dogs and 70 cats with clinical diarrhea in veterinary clinics in Changchun during 2020. A total of 64.3% (45/70) of dogs and 55.7% (39/70) of cats tested positive for CPV-2 or FPV using colloidal gold strips. Amino acid (aa) sequence alignment of the VP2 protein from 39 CPV-2 and 36 FPV samples revealed that 79.5% (31/39) were CPV-2c, 17.9% (7/39) were a new CPV-2a, and 2.6% (1/39) were mink enteritis virus (MEV). and 8.3% (3/36) FPV from the cats was infected by CPV-2, which suggested that CPV-2c was the dominant variant in dogs and FPV was the major pathogen in cats in Changchun city. Phylogenetic relationships of VP2 genes showed that 26 parvoviruses were closely related to domestic strains previously published in China; however, 8 FPVs and CPV-JL-15/China/2020 were clustered in the lineage of South Asiatic and European countries, and 7 out of 8 FPVs were close to Italy. In addition to Q247H, I248Y, F544Y, and E/V545V/K, two novel site mutations of N23D or L630P in NS1 protein, associated with viral cross-species transmissions, were first found as a reminder of genetic relationships of CPV-2 variants and FPVs in the same branch. Thus, regular and massive virus surveillance of parvovirus is necessary to cope with its ongoing infection, circulation, mutations, and evolutions to new subtypes with strong survival abilities.
Collapse
Affiliation(s)
- Zishu Li
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jiaxi Cai
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Chuchu Feng
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yu Wang
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Shuren Fang
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xianghong Xue
- Department of Viral Infectious Diseases of Special Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
5
|
Zhang H, Zhang W, Pan Y, Li H, He T, Dong Q, Song W, Zhang W, Zhang L, Kareem K, Jiang S, Sheng J. Evolutionary Dynamics and Pathogenicity Analysis of Feline Panleukopenia Virus in Xinjiang, China. Microorganisms 2024; 12:2205. [PMID: 39597594 PMCID: PMC11596581 DOI: 10.3390/microorganisms12112205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Feline panleukopenia virus (FPV), a globally pervasive and highly pathogenic pathogen, has garnered significant attention recently due to the cross-species transmission of its variants. Despite the vast body of research conducted on FPV, studies exploring its evolutionary history, dynamics, and the factors driving its evolution remain scarce. The pathogenicity of strains with the prevalent mutations (A91S and I101T) in the VP2 protein has also not been fully elucidated. This study conducted a comparative analysis of FPV VP2 sequences sourced from Xinjiang province in China, other provinces in China, and other countries. It was confirmed that the evolutionary rate of FPV approached that of RNA viruses, at approximately 1.13 × 10-4 substitutions/site/year. The study reconstructed molecular models of the VP2 protein with the A91S and I101T mutations and used viral strains carrying these mutations to perform the animal regression experiment. It was confirmed that isolates with the A91S and I101T mutations could cause typical leukopenia and acute enteritis symptoms, suggesting that the mutant strains still possess certain pathogenicity. This is the first study to report on the evolutionary dynamics of FPV in Xinjiang, China, and it emphasized the importance of continuously monitoring FPV evolutionary dynamics.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
- Animal Hospital, Shihezi University, Shihezi 832000, China
| | - Wenxiang Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
- Animal Hospital, Shihezi University, Shihezi 832000, China
| | - Yu Pan
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Honghuan Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Tao He
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Qianqian Dong
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Wenyan Song
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Wenya Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Liyan Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| | - Kashaf Kareem
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
- Department of Zoology, Government College University, Faisalabad Layyah Campus, Layyah 31200, Punjab, Pakistan
| | - Song Jiang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
- Animal Hospital, Shihezi University, Shihezi 832000, China
| | - Jinliang Sheng
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China; (H.Z.); (W.Z.); (Y.P.); (H.L.); (T.H.); (Q.D.); (W.S.); (W.Z.); (L.Z.); (K.K.)
| |
Collapse
|
6
|
Mira F, Schirò G, Giudice E, Purpari G, Origgi F, Vicari D, Di Pietro S, Antoci F, Gucciardi F, Geraci F, Talarico V, Guercio A. Viral pathogens in domestic cats in southern Italy: A retrospective analysis in Sicily, 2020-2022. Comp Immunol Microbiol Infect Dis 2024; 111:102209. [PMID: 38880052 DOI: 10.1016/j.cimid.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
A retrospective study was carried out on selected feline viral pathogens detected in domestic cat in Sicily, southern Italy. Samples from 64 cats, collected from 2020 to 2022, were analysed for the presence of feline panleukopenia virus, canine parvovirus type 2 (CPV-2), feline coronavirus (FCoV), feline calicivirus (FCV), feline herpesvirus type 1, norovirus (NoV), and rotavirus (RoV). Single (45 %) or mixed (38 %) viral infections were detected. FPV, related with other Italian FPV strains, remains the main viral cause of infection (66 %). CPV-2c Asian lineage strains (3 %) were detected for the first time in domestic cats in Europe. FCoV (29.6 %), either enteric or systemic, and systemic FCV (18.7 %) infections were detected in positive cats. Less commonly reported viruses (GIV.2/GVI.2 NoVs, RoV), potentially related to the animal/human interface, were detected at lower rates as well (5 %). The present epidemiological data suggest the need to improve disease prevention, immunization, and biosecurity strategies.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy; Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy; Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy.
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Francesco Origgi
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Simona Di Pietro
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina 98168, Italy
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Francesca Gucciardi
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Francesco Geraci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Virginia Talarico
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, Palermo 90129, Italy
| |
Collapse
|
7
|
Domingues CF, de Castro TX, do Lago BV, Garcia RDCNC. Genetic characterization of the parvovirus full-length VP2 gene in domestic cats in Brazil. Res Vet Sci 2024; 170:105186. [PMID: 38368749 DOI: 10.1016/j.rvsc.2024.105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Feline parvovirus (FPV) and canine parvovirus (CPV) are over 98% identical in their DNA sequences, and the new variants of CPV (2a/2b/2c) have gained the ability to infect and replicate in cats. The aim of this study was to determine the genetic diversity in the VP2 gene of parvovirus strains circulating in domestic cats in Brazil during a 10-year period (2008-2017). For parvovirus screening, specific PCR was performed, and 25 (34.7%) of 72 cats tested positive. The PCR-positive samples were further subjected to full-length VP2 sequencing (1755 bp), and eight sequences (36%) were characterized as FPV, seven (28%) as CPV-2a and (32%) nine (36%) as CPV-2b. One sequence (RJ1085/11) showing typical CPV amino acid (aa) at residues 80 R, 93 N, 103 A, 232 I, and 323 N could not be characterized at this time. The sequences in this study displayed aa changes previously described for FPV (A14T, A91S, I101T, N564S, and A568G) from cats and CPV-2a/2b (S297N and Y324L) from dogs. However, the Y324L mutation has not yet been reported in any CPV-2a/2b strains from cats. Phylogenetic analysis supported the division of these sequences into two well-defined clades, clade 1 for FPV and clade 2 for CPV2a/2b. Unusually, the sequence RJ1085/11 was grouped separately. Two recombination breakpoints were detected by Bootscan and 3Seq methods implemented in the RDP4. This study is the first report of CPV-2a/2b in cats in Brazil. The detection of FPV strains with mutations characteristic of CPV indicates that Brazilian FPV strains have undergone genetic changes.
Collapse
Affiliation(s)
- Cinthya Fonseca Domingues
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra S/N, São Domingos, Niterói, RJ 24020-150, Brazil
| | - Tatiana Xavier de Castro
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra S/N, São Domingos, Niterói, RJ 24020-150, Brazil
| | - Bárbara Vieira do Lago
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz and Instituto de Tecnologia em Imunobiológicos, FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 210360-040, Brazil
| | - Rita de Cássia Nasser Cubel Garcia
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra S/N, São Domingos, Niterói, RJ 24020-150, Brazil.
| |
Collapse
|
8
|
Mira F, Schirò G, Franzo G, Canuti M, Purpari G, Giudice E, Decaro N, Vicari D, Antoci F, Castronovo C, Guercio A. Molecular epidemiology of canine parvovirus type 2 in Sicily, southern Italy: A geographical island, an epidemiological continuum. Heliyon 2024; 10:e26561. [PMID: 38420403 PMCID: PMC10900816 DOI: 10.1016/j.heliyon.2024.e26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Since it emerged as a major dog pathogen, canine parvovirus type 2 (CPV-2) has featured a remarkable genetic and phenotypic heterogeneity, whose biological, epidemiological, and clinical impact is still debated. The continuous monitoring of this pathogen is thus of pivotal importance. In the present study, the molecular epidemiology of CPV-2 in Sicily, southern Italy, has been updated by analysing 215 nearly complete sequences of the capsid protein VP2, obtained from rectal swabs/faeces or tissue samples collected between 2019 and 2022 from 346 dogs with suspected infectious gastrointestinal disease. The presence of the original CPV-2 type (4%) and CPV-2a (9%), CPV-2b (18%), or CPV-2c (69%) variants was documented. Over the years, we observed a decrease in the frequency of CPV-2a/-2b and a rapid increase of CPV-2c frequency, with a progressive replacement of the European lineage of CPV-2c by the Asian lineage. The observed scenario, besides confirming epidemiological relevance of CPV-2, highlights the occurrence of antigenic variant shifts over time, with a trend toward the replacement of CPV-2a, CPV-2b, and the European lineage of CPV-2c by the emerging Asian CPV-2c lineage. The comparison with other Italian and international sequences suggests the occurrence of viral exchange with other Italian regions and different countries, although the directionality of such viral flows could not be often established with confidence. In several instances, potential CPV-2 introductions led to epidemiological dead ends. However, major, long-lasting clades were also identified, supporting successful infection establishment, local spreading, and evolution. These results, besides demonstrating the need for implementing more effective control measures to prevent viral introductions and minimize circulation, stress the relevance of routine monitoring activities as the only tool to effectively understand CPV-2 epidemiology and evolution, and develop adequate countermeasures.
Collapse
Affiliation(s)
- Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Marta Canuti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122, Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Giuseppa Purpari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, 98168, Messina, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, 70010, Valenzano, (BA), Italy
| | - Domenico Vicari
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Francesco Antoci
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Calogero Castronovo
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Via Gino Marinuzzi 3, 90129, Palermo, Italy
| |
Collapse
|
9
|
Minh H, Son NV, Duc HM, Lin CN, Tyan YC, Chuang KP. Genetic diversity and relatedness of feline parvovirus in Vietnam and its potential implications for canine-feline transmission. Arch Virol 2023; 169:11. [PMID: 38102389 DOI: 10.1007/s00705-023-05946-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Feline panleukopenia, caused by feline parvovirus (FPV), has been studied worldwide, but there have been very few studies conducted in Vietnam. In this study, 19 rectal swab samples were collected from northern Vietnam in 2018-2019 and screened for the presence of FPV using PCR. Through sequence analysis of the full-length VP2 gene, it was found that the FPV strains detected in Vietnam were closely related to those obtained from dogs in Vietnam, Asia, Europe, and America. Moreover, the FPV strains found in Vietnam may constitute a distinct group, related to viruses sampled in China. Interestingly, most of the nucleotide changes identified were T-C substitutions.
Collapse
Affiliation(s)
- Hoang Minh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Nguyen Vu Son
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Yu-Chung Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Kuo-Pin Chuang
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan.
| |
Collapse
|
10
|
Franzo G, Mira F, Schirò G, Canuti M. Not Asian Anymore: Reconstruction of the History, Evolution, and Dispersal of the "Asian" Lineage of CPV-2c. Viruses 2023; 15:1962. [PMID: 37766368 PMCID: PMC10535194 DOI: 10.3390/v15091962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Variability has been one of the hallmarks of canine parvovirus type 2 (CPV-2) since its discovery, and several lineages and antigenic variants have emerged. Among these, a group of viruses commonly called Asian CPV-2c has recently been reported with increasing frequency in different regions. Currently, its global epidemiology and evolution are essentially unknown. The present work deals with this information gap by evaluating, via sequence, phylodynamic, and phylogeographic analyses, all the complete coding sequences of strains classified as Asian CPV-2c based on a combination of amino acid markers and phylogenetic analysis. After its estimated origin around 2008, this lineage circulated undetected in Asia until approximately 2012, when an expansion in viral population size and geographical distribution occurred, involving Africa, Europe, and North America. Asia was predicted to be the main nucleus of viral dispersal, leading to multiple introduction events in other continents/countries, where infection establishment, persistence, and rapid evolution occurred. Although the dog is the main host, other non-canine species were also involved, demonstrating the host plasticity of this lineage. Finally, although most of the strains showed an amino acid motif considered characteristic of this lineage, several exceptions were observed, potentially due to convergent evolution or reversion phenomena.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Padua University, 35020 Legnaro, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (F.M.); (G.S.)
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Giorgia Schirò
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (F.M.); (G.S.)
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy
| | - Marta Canuti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
- Coordinate Research Centre EpiSoMI (Epidemiology and Molecular Surveillance of Infections), Università degli Studi di Milano, 20122 Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
11
|
Pacini MI, Forzan M, Franzo G, Tucciarone CM, Fornai M, Bertelloni F, Sgorbini M, Cantile C, Mazzei M. Feline Parvovirus Lethal Outbreak in a Group of Adult Cohabiting Domestic Cats. Pathogens 2023; 12:822. [PMID: 37375512 DOI: 10.3390/pathogens12060822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Feline panleukopenia is a highly contagious and often fatal disease in cats. The virus, known as feline panleukopenia virus (FPV), primarily affects kittens and unvaccinated cats. It is transmitted through contact with infected cats or their bodily fluids, as well as contaminated objects and environments. The diagnosis of FPV infection can be confirmed through a combination of clinical signs, blood tests, and fecal testing. Prevention through vaccination is recommended for all cats. This case report describes an outbreak of feline panleukopenia in a group of unvaccinated domestic cats that resulted in acute mortality. The lesions were evaluated using histopathology, and the specific viral strain was characterized using molecular techniques. The clinical course of the outbreak was peracute, with a hemorrhagic pattern and 100% of lethality. The observed clinical-pathological pattern was unusual; nevertheless, molecular studies did not highlight peculiar genomic features of the parvovirus isolate. The outbreak affected 3 out of 12 cats in a very short time. However, the prompt application of biosecurity measures and vaccination resulted in an effective interruption of virus spread. In conclusion, we could assume that the virus found the ideal conditions to infect and replicate at high titers, resulting in a particularly aggressive outbreak.
Collapse
Affiliation(s)
- Maria Irene Pacini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Mario Forzan
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Milena Fornai
- Ambulatorio Veterinario Piombinese, Via Torino 38, 57025 Piombino, Italy
| | - Fabrizio Bertelloni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Carlo Cantile
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| |
Collapse
|
12
|
Le SJ, Xin GY, Wu WC, Shi M. Genetic Diversity and Evolution of Viruses Infecting Felis catus: A Global Perspective. Viruses 2023; 15:1338. [PMID: 37376637 DOI: 10.3390/v15061338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cats harbor many important viral pathogens, and the knowledge of their diversity has been greatly expanded thanks to increasingly popular molecular sequencing techniques. While the diversity is mostly described in numerous regionally defined studies, there lacks a global overview of the diversity for the majority of cat viruses, and therefore our understanding of the evolution and epidemiology of these viruses was generally inadequate. In this study, we analyzed 12,377 genetic sequences from 25 cat virus species and conducted comprehensive phylodynamic analyses. It revealed, for the first time, the global diversity for all cat viruses known to date, taking into account highly virulent strains and vaccine strains. From there, we further characterized and compared the geographic expansion patterns, temporal dynamics and recombination frequencies of these viruses. While respiratory pathogens such as feline calicivirus showed some degree of geographical panmixes, the other viral species are more geographically defined. Furthermore, recombination rates were much higher in feline parvovirus, feline coronavirus, feline calicivirus and feline foamy virus than the other feline virus species. Collectively, our findings deepen the understanding of the evolutionary and epidemiological features of cat viruses, which in turn provide important insight into the prevention and control of cat pathogens.
Collapse
Affiliation(s)
- Shi-Jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
13
|
Tegegne D, Tsegaye G, Faustini G, Franzo G. First genetic detection and characterization of canine parvovirus type 2 (Carnivore protoparvovirus 1) in southwestern Ethiopia. Vet Res Commun 2023; 47:975-980. [PMID: 36322244 DOI: 10.1007/s11259-022-10027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/19/2022] [Indexed: 05/25/2023]
Abstract
The species Carnivore protoparvovirus 1 includes viruses, e.g. canine parvovirus (CPV-2) and feline panleukopenia virus (FPV), which are among the most relevant for pets, causing extremely severe clinical signs and high fatality rate in dogs and cats. Moreover, a broad range of wild hosts, including endangered ones, were proven to be susceptible. Currently, no data on CPV-2 molecular epidemiology and strain characterization are available in Ethiopia, also considering the frequent contacts between domestic and wild populations. In the present study, a molecular epidemiology survey was performed on 92 fecal samples collected from domestic (n = 84) and stray (n = 8) dogs in southwestern Ethiopia in 2021. Approximately, 10% of the samples tested positive and the complete VP2 sequences of 5 strains were obtained, classified within the CPV-2a (n = 1) and CPV-2c (n = 4) antigenic variants. In most instances, the closest genetic relatives were strains of Chinese origin, which is fully compatible with the intense relationships that have been developing between the two countries, involving human being travels and their pets as well. Considering the clinical relevance of this infection and the risk it poses to local domestic and wild carnivore populations, especially endangered ones, much stronger monitoring and surveillance activity on foreign incoming animals should be performed. More strict constraints on animal introduction, e.g. compulsory vaccination, should also be considered.
Collapse
Affiliation(s)
- Dechassa Tegegne
- School of Veterinary Medicine, Jimma University College of Agriculture and Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| | - Girma Tsegaye
- School of Veterinary Medicine, Jimma University College of Agriculture and Veterinary Medicine, P.O. Box 307, Jimma, Ethiopia
| | - Giulia Faustini
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale Dell'Università 16, 35020, Legnaro, PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale Dell'Università 16, 35020, Legnaro, PD, Italy.
| |
Collapse
|
14
|
Shikov AE, Malovichko YV, Nizhnikov AA, Antonets KS. Current Methods for Recombination Detection in Bacteria. Int J Mol Sci 2022; 23:ijms23116257. [PMID: 35682936 PMCID: PMC9181119 DOI: 10.3390/ijms23116257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing recombination signals are available, however, their pros and cons as well as the spectra of solvable tasks have not yet been systematically reviewed. Moreover, there are two major groups of software. One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT). However, despite seemingly different goals, all the methods use similar algorithmic approaches, and the processes are interconnected in terms of genomic evolution influencing each other. In this review, we propose a classification of novel instruments for both HR and HGT detection based on the genomic consequences of recombination. In this context, we summarize available methodologies paying particular attention to the type of traceable events for which a certain program has been designed.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
15
|
Establishment of SYBR green I-based quantitative real-time polymerase chain reaction for the rapid detection of a novel Chaphamaparvovirus in cats. 3 Biotech 2022; 12:91. [PMID: 35308811 PMCID: PMC8918419 DOI: 10.1007/s13205-022-03150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
Feline parvovirus causes infectious diseases, and Chaphamaparvovirus is a novel type of feline parvovirus. The present study aims to establish a method that can be used in clinical rapid detection of feline Chaphamaparvovirus (FeChPV), for facilitate the timely and effective diagnosis and treatment of sick animals and shorten the diagnosis time of clinical diseases. The experimental samples in this study are from 20 cats undergoing physical examination in Hefei Xin’an Animal Hospital. An SYBR Green I-based qPCR assay was performed to detect FeChPV. A pair of specific primers was designed based on the VP1 gene to perform the assay. The detection assay showed high sensitivity with a detection limit of 1.07 × 101 copies/μL and high specificity for detection of only the target virus. The coefficients of Ct value variation were calculated to assess the reproducibility of the qPCR assay, and the inter- and intra-assay ranged from 0.21 to 0.67% and 0.10 to 0.56%, respectively. The result of clinical sample detection showed that the infection rate of FeChPV in 124 samples detected using qPCR assay was higher than that with conventional PCR. The established qPCR assay could be a low-cost, convenient, and reliable method to detect FeChPV in clinical practice.
Collapse
|