1
|
Pang Y, Li H, Chen X, Cao Y, Jiang H, Huang J, Liu Y. A phase I, single-center, randomized, open-label, three-period crossover study to evaluate the drug-drug interaction between ZSP1273 and oseltamivir in healthy Chinese subjects. Antimicrob Agents Chemother 2025; 69:e0172924. [PMID: 39992105 PMCID: PMC11963566 DOI: 10.1128/aac.01729-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
ZSP1273 is a novel small-molecule anti-influenza drug that targets the RNA polymerase PB2 subunit, while oseltamivir is the first-line medication that inhibits neuraminidase. ZSP1273 showed high efficacy against human influenza viruses both in vitro and in vivo, including oseltamivir-resistant strains in vitro. In future clinical applications, the combination of these two antiviral drugs with different mechanisms can reduce the potential for antiviral resistance that may arise from monotherapy. To evaluate the drug-drug interaction between ZSP1273 and oseltamivir by the pharmacokinetics and safety of co-administration in healthy subjects, a phase I, single-center, randomized, open-label, three-period crossover study was conducted. Thirty-six subjects enrolled were randomized in a 1:1:1 ratio into three crossover treatment sequences with oral administration detailed as follows: treatment A: ZSP1273 tablets 600 mg once daily (QD) for 5 days; treatment B: oseltamivir capsules 75 mg twice daily (BID) for 5 days; treatment C: ZSP1273 tablets 600 mg once daily (QD) + oseltamivir capsules 75 mg twice daily (BID) for 5 days. Plasma samples were collected from all subjects at scheduled time points after drug administration to measure the plasma concentrations of ZSP1273, oseltamivir, and its active metabolite oseltamivir carboxylate, for pharmacokinetic analysis. Compared with monotherapy, the geometric mean ratios (90% confidence intervals) of Cmax,ss, AUC0-t,ss, AUC0-τ,ss, and AUC0-∞,ss for ZSP1273 after co-administration were all within the ineffective boundary range of 80% to 125%, supporting that no drug-drug interaction occurs with ZSP1273. After co-administration, the AUC0-t,ss, AUC0-τ,ss, and AUC0-∞,ss of oseltamivir were all within 80% to 125%, while Cmax,ss decreased by 39.9%. The pharmacokinetic parameters above of oseltamivir carboxylate remained within 80%-125%, except only the lower bound of the 90% CI for Cmax,ss slightly below 80% (77.0%). Considering the rapid metabolism of oseltamivir into the active metabolite oseltamivir carboxylate and the minor impact of co-administration on the pharmacokinetic parameters of oseltamivir carboxylate, it is believed that no clinically significant drug-drug interaction was observed with the combination of these two drugs. During the trial, the safety and tolerability of both combination therapy and monotherapy were good, with no increased safety risks observed from the combination therapy.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT05108051.
Collapse
Affiliation(s)
- Yanqing Pang
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Haijun Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xuemei Chen
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Yingying Cao
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Hui Jiang
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yiming Liu
- Department of Phase I Clinical Research Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Chen D, Su W, Choy KT, Chu YS, Lin CH, Yen HL. High throughput profiling identified PA-L106R amino acid substitution in A(H1N1)pdm09 influenza virus that confers reduced susceptibility to baloxavir in vitro. Antiviral Res 2024; 229:105961. [PMID: 39002800 DOI: 10.1016/j.antiviral.2024.105961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A (H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A (H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38 T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.
Collapse
Affiliation(s)
- Dongdong Chen
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Su
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka-Tim Choy
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yan Sing Chu
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Ho Lin
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hui-Ling Yen
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
3
|
Yang Z, Li Z, Zhan Y, Lin Z, Fang Z, Xu X, Lin L, Li H, Lin Z, Kang C, Liang J, Liang S, Li Y, Li S, Yang X, Ye F, Zhong N. Safety and efficacy of onradivir in adults with acute uncomplicated influenza A infection: a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:535-545. [PMID: 38330975 DOI: 10.1016/s1473-3099(23)00743-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Onradivir (ZSP1273) is a novel anti-influenza A virus inhibitor. Preclinical studies show that onradivir can inhibit influenza A H1N1 and H3N2 replication and increase the survival rate of infected animals. In this study, we aimed to evaluate the safety and efficacy of three onradivir dosing regimens versus placebo in outpatients with acute uncomplicated influenza A virus infection. METHODS We did a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial at 20 clinical sites in China. Eligible participants were adults (18-65 years) with an influenza-like illness screened by rapid antigen testing at the first clinical visit, had the presence of a fever (axillary temperature ≥38·0°C), and had the presence of at least one moderate systemic and one respiratory symptom within 48 h of symptom onset. Patients were excluded if they were pregnant, allergic to onradivir, or had received any influenza antiviral medication within 7 days before enrolment. Participants were randomly assigned (1:1:1:1) into four groups by an interactive web response system: onradivir 200 mg twice per day group, onradivir 400 mg twice per day group, onradivir 600 mg once per day group, and a matching placebo group. A 5-day oral treatment course was initiated within 48 h after symptoms onset. The primary outcome was the time to alleviate influenza symptoms in the modified intention-to-treat population. Safety was a secondary outcome. We evaluated the patients' self-assessed severity of seven influenza symptoms on a 4-point ordinal scale, and the treatment-emergent adverse events in all patients. This trial is registered with ClinicalTrials.gov, number NCT04024137. FINDINGS Between Dec 7, 2019, and May 18, 2020, a total of 205 patients were screened; of whom, 172 (84%) were randomly assigned to receive onradivir (n=43 in the 200 mg twice per day group; n=43 in the 400 mg twice per day group; and n=43 in the 600 mg once per day group), or placebo (n=42). Median age was 22 years (IQR 20-26). All three onradivir groups showed decreased median time to alleviate influenza symptoms (46·92 h [IQR 24·00-81·38] in the 200 mg twice per day group, 54·87 h [23·67-110·62] in the 400 mg twice per day group, and 40·05 h [17·70-65·82] in the 600 mg once per day) compared with the placebo group (62·87 h [36·40-113·25]). The median difference between the onradivir 600 mg once per day group and the placebo group was -22·82 h (p=0·0330). The most frequently reported treatment-emergent adverse event was diarrhoea (71 [42%] of 171), ranging from 33-65% of the patients in onradivir-treated groups compared with 10% in the placebo group; no serious adverse events were observed. INTERPRETATION Onradivir showed a safety profile comparable to placebo, as well as higher efficacy than placebo in ameliorating influenza symptoms and lowering the viral load in adult patients with uncomplicated influenza infection, especially the onradivir 600 mg once per day regimen. FUNDING National Multidisciplinary Innovation Team Project of Traditional Chinese Medicine, National Natural Science Foundation of China, Guangdong Science and Technology Foundation, Guangzhou Science and Technology Planning Project, Emergency Key Program of Guangzhou Laboratory, Macao Science and Technology Development Fund, and Guangdong Raynovent Biotech.
Collapse
Affiliation(s)
- Zifeng Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Zhengtu Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Yangqing Zhan
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Zhengshi Lin
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Zhonghao Fang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Xiaowei Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Lin
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haijun Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China; Guangdong Raynovent Biotech, Guangzhou, Guangdong, China
| | - Zejun Lin
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Changyuan Kang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Jingyi Liang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Shiwei Liang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Yongming Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Shaoqiang Li
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Xinyun Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Feng Ye
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China
| | - Nanshan Zhong
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Kumar G, Sakharam KA. Tackling Influenza A virus by M2 ion channel blockers: Latest progress and limitations. Eur J Med Chem 2024; 267:116172. [PMID: 38330869 DOI: 10.1016/j.ejmech.2024.116172] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Influenza outbreaks cause pandemics in millions of people. The treatment of influenza remains a challenge due to significant genetic polymorphism in the influenza virus. Also, developing vaccines to protect against seasonal and pandemic influenza infections is constantly impeded. Thus, antibiotics are the only first line of defense against antigenically distinct strains or new subtypes of influenza viruses. Among several anti-influenza targets, the M2 protein of the influenza virus performs several activities. M2 protein is an ion channel that permits proton conductance through the virion envelope and the deacidification of the Golgi apparatus. Both these functions are critical for viral replication. Thus, targeting the M2 protein of the influenza virus is an essential target. Rimantadine and amantadine are two well-known drugs that act on the M2 protein. However, these drugs acquired resistance to influenza and thus are not recommended to treat influenza infections. This review discusses an overview of anti-influenza therapy, M2 ion channel functions, and its working principle. It also discusses the M2 structure and its role, and the change in the structure leads to mutant variants of influenza A virus. We also shed light on the recently identified compounds acting against wild-type and mutated M2 proteins of influenza virus A. These scaffolds could be an alternative to M2 inhibitors and be developed as antibiotics for treating influenza infections.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kakade Aditi Sakharam
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
5
|
Irvine EB, Reddy ST. Advancing Antibody Engineering through Synthetic Evolution and Machine Learning. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:235-243. [PMID: 38166249 DOI: 10.4049/jimmunol.2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
Abs are versatile molecules with the potential to achieve exceptional binding to target Ags, while also possessing biophysical properties suitable for therapeutic drug development. Protein display and directed evolution systems have transformed synthetic Ab discovery, engineering, and optimization, vastly expanding the number of Ab clones able to be experimentally screened for binding. Moreover, the burgeoning integration of high-throughput screening, deep sequencing, and machine learning has further augmented in vitro Ab optimization, promising to accelerate the design process and massively expand the Ab sequence space interrogated. In this Brief Review, we discuss the experimental and computational tools employed in synthetic Ab engineering and optimization. We also explore the therapeutic challenges posed by developing Abs for infectious diseases, and the prospects for leveraging machine learning-guided protein engineering to prospectively design Abs resistant to viral escape.
Collapse
Affiliation(s)
- Edward B Irvine
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
6
|
Wang S, Zhang TH, Hu M, Tang K, Sheng L, Hong M, Chen D, Chen L, Shi Y, Feng J, Qian J, Sun L, Ding K, Sun R, Du Y. Deep mutational scanning of influenza A virus neuraminidase facilitates the identification of drug resistance mutations in vivo. mSystems 2023; 8:e0067023. [PMID: 37772870 PMCID: PMC10654105 DOI: 10.1128/msystems.00670-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE NA is a crucial surface antigen and drug target of influenza A virus. A comprehensive understanding of NA's mutational effect and drug resistance profiles in vivo is essential for comprehending the evolutionary constraints and making informed choices regarding drug selection to combat resistance in clinical settings. In the current study, we established an efficient deep mutational screening system in mouse lung tissues and systematically evaluated the fitness effect and drug resistance to three neuraminidase inhibitors of NA single-nucleotide mutations. The fitness of NA mutants is generally correlated with a natural mutation in the database. The fitness of NA mutants is influenced by biophysical factors such as protein stability, complex formation, and the immune response triggered by viral infection. In addition to confirming previously reported drug-resistant mutations, novel mutations were identified. Interestingly, we identified an allosteric drug-resistance mutation that is not located within the drug-binding pocket but potentially affects drug binding by interfering with NA tetramerization. The dual assessments performed in this study provide a more accurate assessment of the evolutionary potential of drug-resistant mutations and offer guidance for the rational selection of antiviral drugs.
Collapse
Affiliation(s)
- Sihan Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian-hao Zhang
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Menglong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kejun Tang
- Department of Surgery, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Sheng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
- School of Biomedical Sciences, LKS Faculty of Medicine, The Hong Kong University, Hong Kong, China
| | - Mengying Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongdong Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Liubo Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Jun Feng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lifeng Sun
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ren Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Chen W, Shao J, Ying Z, Du Y, Yu Y. Approaches for discovery of small-molecular antivirals targeting to influenza A virus PB2 subunit. Drug Discov Today 2022; 27:1545-1553. [PMID: 35247593 DOI: 10.1016/j.drudis.2022.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
Influenza is an acute respiratory infectious disease caused by influenza virus, leading to huge morbidity and mortality in humans worldwide. Despite the availability of antivirals in the clinic, the emergence of resistant strains calls for antivirals with novel mechanisms of action. The PB2 subunit of the influenza A virus polymerase is a promising target because of its vital role in the 'cap-snatching' mechanism. In this review, we summarize the technologies and medicinal chemistry strategies for hit identification, hit-to-lead and lead-to-candidate optimization, and current challenges in PB2 inhibitor development, as well as offering insights for the fight against drug resistance.
Collapse
Affiliation(s)
- Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Zhimin Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China(1)
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
9
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|