1
|
Keep S, Foldes K, Dowgier G, Freimanis G, Tennakoon C, Chowdhury S, Rayment A, Kirk J, Bakshi T, Stevenson-Leggett P, Chen Y, Britton P, Bickerton E. Recombinant infectious bronchitis virus containing mutations in non-structural proteins 10, 14, 15, and 16 and within the macrodomain provides complete protection against homologous challenge. J Virol 2025; 99:e0166324. [PMID: 40013770 PMCID: PMC11998542 DOI: 10.1128/jvi.01663-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025] Open
Abstract
Infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically important disease of chickens. Vaccination uses live attenuated vaccines (LAVs) that are generated via serial passage of a virulent field isolate through embryonated hens' eggs, typically 80-100 times. The molecular basis of attenuation is unknown and varies with each attenuation procedure. To investigate specifically targeted attenuation, we utilized reverse genetics to target the macrodomain 1 (Mac1) domain within non-structural protein 3 of the virulent M41 strain. Macrodomains are found in a variety of viruses, including coronaviruses, and have been associated with the modulation of the host's innate response. Two recombinant IBVs (rIBVs) were generated with specific single point mutations, either Asn42Ala (N42A) or Gly49Ser (G49S), within the Mac1 domain generating rIBVs M41K-N42A and M41K-G49S, respectively. Replication in vitro was unaffected, and the mutations were stably maintained during passaging in vitro and in ovo. While M41K-N42A exhibited an attenuated phenotype in vivo, M41K-G49S was only partially attenuated. The attenuated in vivo phenotypes observed do not appear to be linked to a reduction in viral replication and additionally M41K-N42A highlighted the N42A mutation as a method of rational attenuation. Vaccination of chickens with either rIBV M41K-N42A or a rIBV containing the Mac1 N42A mutation and our previously identified attenuating Nsp10 and 14 mutations, Pro85Leu and Val393Leu respectively, offered complete protection from homologous challenge. The presence of multiple attenuating mutations did not appear to negatively impact vaccine efficacy. IMPORTANCE Infection of chickens with the Gammacoronavirus infectious bronchitis virus (IBV) causes an acute respiratory disease, resulting in reduced weight gain and reductions in egg laying making it a global concern for poultry industries and food security. Vaccination against IBV uses live attenuated viruses (LAVs), generated by multiple passages of a virulent virus through embryonated hens' eggs. The molecular basis of attenuation is unknown and unpredictable requiring a fine balance between loss of virulence and vaccine efficacy. In this study, we targeted the macrodomain of IBV for rational attenuation demonstrating a single point mutation can result in loss of pathogenicity. An IBV vaccine candidate was subsequently generated containing three specific attenuating mutations, to reduce the risk of reversion, which completely protected chickens. The targets in this study are conserved among IBV strains and the coronavirus family offering a potential method of rational attenuation that can be universally applied for vaccine development.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | | | | | - Adam Rayment
- The Pirbright Institute, Pirbright, United Kingdom
| | - James Kirk
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | - Yana Chen
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | |
Collapse
|
2
|
Ishag HZA, Terab AMA, Osman EMA, El Tigani-Asil ETA, Albreiki MS, Bensalah OK, Shah AAM, Khalafalla AI. Clinical, pathological, and genotypic analysis of infectious bronchitis virus in broiler chickens in the Abu Dhabi Emirate, United Arab Emirates. Front Vet Sci 2025; 11:1474181. [PMID: 39931352 PMCID: PMC11808912 DOI: 10.3389/fvets.2024.1474181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Background Infectious Bronchitis (IB), caused by the infectious bronchitis virus (IBV), is a significant contagious respiratory disease in the poultry industry. The emergence of new variants represents a global challenge for the diagnosis and control of the disease. Despite vaccination efforts in poultry farms in the Abu Dhabi Emirate, United Arab Emirates (UAE), outbreaks continue to occur, raising concerns about the efficacy of vaccination protocols and the potential emergence of new viral strains. This study aims to provide information on clinical, pathological, and genotypes of IBV detected within the Abu Dhabi Emirate, during 2022-2023. Methods Epidemiological data were collected from twelve suspected IB outbreaks across seven broiler farms located in the Abu Dhabi Emirate. The cases were investigated through clinical and pathological examinations and Forty-six samples, including lung, spleen, kidney tissues, and oro-cloacal swabs, were collected for further analysis. The virus was detected by RT-qPCR assay, genotyping was determined by phylogenetic analysis of the Spike (S)-1 gene, and differentiation between field and vaccine strains was determined by comparing their sequences. Results The age of the affected flocks varies from 2 to 5 weeks. The highest morbidity, mortality and case fatality rates were 36, 33, and 95%, respectively. Necropsy examination revealed characteristic respiratory and renal pathological lesions. Phylogenetic analysis revealed a co-circulation of three lineages of IBV genotype GI-13 or 4/91 serotype (81.8%), GI-1 or Massachusetts serotype (9.1%) and GI-23 or Middle East serotype (9.1%). Approximately 90.9% of the strains classified within GI-1 and G1-13 lineages are 99 to 100% identical to 4/91 and Mass serotypes, respectively, and are considered as vaccine strains. Two strains (9.1%) classified within GI-23 lineage have a < 99% identity to the 4/91 and Mass serotypes vaccine strains and are considered as filed strains. Conclusion Co-circulation of three IBV lineages (GI-13, GI-1, and GI-23) in the Abu Dhabi broiler flocks showing IB symptoms were detected. This complex scenario of different IBV lineages circulation may account for the persistent outbreaks despite vaccination efforts. The results of the study are crucial for optimum IB vaccination and monitoring strategies or designing new vaccines based on local IBV field strains.
Collapse
Affiliation(s)
- Hassan Zackaria Ali Ishag
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Abdelnasir Mohammed Adam Terab
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Ebrahim Mohamad Abdalsalam Osman
- Animals Extension and Health Services Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - El Tigani Ahmed El Tigani-Asil
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
- Applied Research and Capability Building Division, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Mohammed Saleh Albreiki
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Oum Keltoum Bensalah
- Animals Extension and Health Services Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | - Asma Abdi Mohamed Shah
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| | - Abdelmalik Ibrahim Khalafalla
- Biosecurity Affairs Division, Development and Innovation Sector, Abu Dhabi Agriculture and Food Safety Authority, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Mahmoud ME, Ali A, Farooq M, Isham IM, Suhail SM, Herath-Mudiyanselage H, Rahimi R, Abdul-Careem MF. Cyclooxygenase-2/prostaglandin E2 pathway orchestrates the replication of infectious bronchitis virus in chicken tracheal explants. Microbiol Spectr 2024; 12:e0040724. [PMID: 39472003 PMCID: PMC11619240 DOI: 10.1128/spectrum.00407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/09/2024] [Indexed: 12/08/2024] Open
Abstract
In this study, we investigated the localized pathogenesis of infectious bronchitis virus (IBV) in chicken tracheal organ cultures (TOCs), focusing on the role of inducible cyclooxygenase (COX-2). Two divergent IBV strains, respiratory Connecticut (Conn) A5968 and nephropathogenic Delmarva (DMV)/1639, were studied at 6, 12, 24, and 48 hours post-infection (hpi). Various treatments including exogenous prostaglandin (PGE)2, a selective COX-2 antagonist (SC-236), and inhibitors of PGE2 receptors and Janus kinase (JAK) were administered. IBV genome load and antigen expression were quantified using real-time quantitative PCR and immunohistochemistry. COX-2, interferon (IFN)-α, IFN-β, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase (iNOS) expressions were measured, along with PGE2 and COX-2 concentrations. IBV genome load and protein expression peaked at 12 and 24 hpi, respectively. Conn A5968-infected TOCs exhibited continuous COX-2 expression for up to 24 hpi, extended PGE2 production up to 48 hpi, and reduced inflammatory cytokine expression. In contrast, DMV/1639-infected TOCs displayed heightened inflammatory cytokine expression, brief COX-2 expression, and PGE2 production. Treatment with IFN-γ, SC-236, PGE2 receptor inhibitors, or JAK inhibitors reduced IBV infection and lesion scores, whereas exogenous PGE2 or IFN-γ pretreatment with a JAK-2 inhibitor augmented infection. These findings shed light on the innate immune regulation of IBV infection in the trachea, highlighting the involvement of the COX-2/PGE2 pathway. IMPORTANCE Understanding the localized pathogenesis of infectious bronchitis virus (IBV) within the trachea of chickens is crucial for developing effective control strategies against this prevalent poultry pathogen. This study sheds light on the role of inducible cyclooxygenase (COX-2) and prostaglandin (PGE)2 in IBV pathogenesis using chicken tracheal organ culture (TOC) models. The findings reveal distinct patterns of COX-2 expression, PGE2 production, and immune responses associated with different IBV strains, highlighting the complexity of host-virus interactions. Furthermore, the identification of specific inhibitors targeting the COX-2/PGE2 pathway and Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway provides potential therapeutic avenues for mitigating IBV infection in poultry. Overall, this study contributes to our understanding of the innate immune regulation of IBV infection within the trachea, laying the groundwork for the development of targeted interventions to control IBV outbreaks in poultry populations.
Collapse
Affiliation(s)
- Motamed Elsayed Mahmoud
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Muhammad Farooq
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ishara M. Isham
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sufna M. Suhail
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ryan Rahimi
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
4
|
Chen Y, Feng C, Huang C, Shi Y, Omar SM, Zhang B, Cai G, Liu P, Guo X, Gao X. Preparation of polyclonal antibodies to chicken P62 protein and its application in nephropathogenic infectious bronchitis virus-infected chickens. Int J Biol Macromol 2024; 271:132515. [PMID: 38768912 DOI: 10.1016/j.ijbiomac.2024.132515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
p62, also known as SQSTM1, has been shown to be closely related to the coronavirus. However, it remains unclear on the relationship between p62 and NIBV infection. Moreover, there are no available antibodies against the chicken p62 protein. Thus, this study aimed to prepare p62 polyclonal antibody and investigate the correlation between the p62 protein and NIBV infection. Here, PET-32a-p62 prokaryotic fusion expression vector was constructed for prokaryotic protein expression, and then p62 polyclonal antibody was prepared by immunizing rabbits. Lastly, these antibodies were then utilized in Western blotting (WB), immunohistochemistry (IHC), and immunofluorescence (IF) assays. The results showed that we successfully prepared chicken p62 polyclonal antibody. Meanwhile, WB and IF demonstrated that the expression of p62 showed a trend of first increase and then decrease after NIBV infection. IHC showed that the expression of p62 in the spleen, lung, kidney, bursa of Fabricius and trachea of chickens infected with NIBV in 11 dpi was significantly higher than that of normal chickens. Taken together, this study successfully prepared a polyclonal antibody for chicken p62 protein and confirmed its application and expression in chickens, as well as the expression of p62 in tissues after NIBV infection.
Collapse
Affiliation(s)
- Yunfeng Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Salma Mbarouk Omar
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingqing Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaofeng Cai
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Abbasnia M, Mosleh N, Dadras H, Shomali T. Effect of enrofloxacin on clinical parameters and mucociliary system of broilers challenged with H9N2 avian influenza/infectious bronchitis viruses. Vet Med Sci 2024; 10:e1390. [PMID: 38419286 PMCID: PMC10902561 DOI: 10.1002/vms3.1390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Effect of antibacterials on mucociliary system and clinical outcome of chickens with mixed viral respiratory conditions is not properly addressed. OBJECTIVE We evaluated enrofloxacin effects on clinical parameters and mucociliary system of broilers challenged with H9N2/IB viruses. METHODS Broilers (105), at the age of 25 days, were randomly allocated into three groups: Group 1 (negative control), no treatment; Group 2 (positive control [PC]) challenged by intranasal and intraocular route. Group 3 (antibiotic [AB]-treated) challenged and also received enrofloxacin started after manifestation of clinical signs (day 2 post-challenge [pc]) and continued for 5 days. RESULTS Administration of AB was not associated with appreciable changes in body weight, feed conversion ratio (FCR) or the severity of clinical signs although it slightly reduced mortality rate as compared to PC group (p > 0.05). Virus shedding period and number of virus positive tracheal and caecal tonsil samples were also statistically similar between PC and AB groups. In necropsy, the most profound effect of AB was decreased pleuropneumonia severity score on day 12 pc. Histopathological lesion scores were statistically the same between PC and AB groups. However, the administration of AB increased the number of tracheal goblet cells, with no effect on ciliostasis. CONCLUSIONS We found a weak positive effect of enrofloxacin administration in H9N2/IB-infected chickens. Considering the risks of AB treatment in broiler chickens, the results of this small-scale study do not encourage the benefit of enrofloxacin use in these viral diseases.
Collapse
Affiliation(s)
- Mohammad Abbasnia
- Department of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Najmeh Mosleh
- Department of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Habibollah Dadras
- Department of Clinical SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | - Tahoora Shomali
- Department of Basic SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| |
Collapse
|
6
|
Eid AAM, Mahmoud AM, Hamouda EE, Metwally M, Ezz-Eldin RM, ElBakrey RM. The efficacy of simultaneous successive classic and variant infectious bronchitis virus vaccines versus circulating variant II Egyptian field virus. Open Vet J 2024; 14:90-107. [PMID: 38633144 PMCID: PMC11018445 DOI: 10.5455/ovj.2024.v14.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Being a ubiquitous, highly contagious virus with a continuous mutation and a large number of evolutions worldwide, the infectious bronchitis virus (IBV) continues to wreak problems among Egyptian chickens and generate economic losses. The commonly applied IBV vaccination protocols in broilers include alternatives to classic and/or variant attenuated live virus vaccines. Aim The current study targeted to assess the protective efficacy of concurrent and successive Ma5 and 4/91 vaccine strain regimens against the field variant II IBV strain (IBV-EGY-ZU/Ck-127/2021) in chickens. Methods Commercial broiler chickens were vaccinated with Ma5 and 4/91 strains simultaneously at 1 and 14 days of age. The evaluation parameters included clinical protection and humoral and early innate immunity aspects in the renal tissues of vaccinated and infected birds. Results The vaccine regimen ameliorated the clinical and histopathological lesions against variant II IBV and enhanced body gain as well as succeeded in preventing tracheal shedding and minimizing cloacal shedding of the field virus. The IL-1β mRNA gene expression was evident as early as 24 hours, with highly significant upregulation at 48 hours post vaccination and 24 hours post challenge (PC) in vaccinated birds. Remarkable upregulation was observed in oligoadenylate synthetases (OAS) expression 48 hours PC in vaccinated and unvaccinated infected birds. The vaccinated birds developed a significant antibody titer of 704.0 ± 111.98 at 28 days of age, with a consistent antibody titer increase after the challenge. Conclusion Overall, a combination of heterologous protectotype commercial vaccines achieved good protection against the Egyptian variant II IBV strain. This vaccine program could be an effective protocol against the threat posed by IBV viruses circulating in the Egyptian field.
Collapse
Affiliation(s)
- Amal A. M. Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Esraa E. Hamouda
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M.M. Ezz-Eldin
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham M. ElBakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Rautenschlein S, Schat KA. The Immunological Basis for Vaccination. Avian Dis 2024; 67:366-379. [PMID: 38300658 DOI: 10.1637/aviandiseases-d-23-99996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 02/02/2024]
Abstract
Vaccination is crucial for health protection of poultry and therefore important to maintaining high production standards. Proper vaccination requires knowledge of the key players of the well-orchestrated immune system of birds, their interdependence and delicate regulation, and, subsequently, possible modes of stimulation through vaccine antigens and adjuvants. The knowledge about the innate and acquired immune systems of birds has increased significantly during the recent years but open questions remain and have to be elucidated further. Despite similarities between avian and mammalian species in their composition of immune cells and modes of activation, important differences exist, including differences in the innate, but also humoral and cell-mediated immunity with respect to, for example, signaling transduction pathways, antigen presentation, and cell repertoires. For a successful vaccination strategy in birds it always has to be considered that genotype and age of the birds at the time point of immunization as well as their microbiota composition may have an impact and may drive the immune reactions into different directions. Recent achievements in the understanding of the concept of trained immunity will contribute to the advancement of current vaccine types helping to improve protection beyond the specificity of an antigen-driven immune response. The fast developments in new omics technologies will provide insights into protective B- and T-cell epitopes involved in cross-protection, which subsequently will lead to the improvement of vaccine efficacy in poultry.
Collapse
Affiliation(s)
- Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Clinic for Poultry, Hannover, Lower Saxony 30559, Germany,
| | - Karel A Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
8
|
Feng C, Huang C, Shi Y, Gao X, Lu Z, Tang R, Qi Q, Shen Y, Li G, Shi Y, Liu P, Guo X. Preparation of polyclonal antibodies to the chicken Beclin1 protein and its application in the detection of nephropathogenic infectious bronchitis virus. Int J Biol Macromol 2023; 253:127635. [PMID: 37884239 DOI: 10.1016/j.ijbiomac.2023.127635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/30/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Beclin1, also known as ATG6, has been shown to be closely related to coronavirus, however, the link between Beclin1 and nephropathogenic infectious bronchitis virus (NIBV) has been poorly investigated and there are no available antibodies specifically targeting the chicken Beclin1 protein. The study aimed to prepare and assay a polyclonal antibody to Beclin1, enabling a deeper understanding of the mechanism of action of Beclin1 in NIBV. In this study, we amplified the chicken Beclin1 target gene and constructed a recombinant plasmid using prokaryotic expression techniques, then obtained the recombinant target protein by induced expression. Finally, the serum is obtained by immunizing rabbits with the purified and concentrated protein. The results show that the antiserum potency of the ELISA assay was >1:204800. By western blotting and immunofluorescence, the antibodies we prepared specifically recognized the chicken Beclin1 protein, which is mainly found in the nucleus of trachea, lung, kidney, spleen and fabricant cells. NIBV infection significantly decreased the expression of Beclin1 in the trachea, but increased in others. We have successfully prepared specific rabbit anti-chicken Beclin1 polyclonal antibodies, and detected changes in tissues of diseased chickens infected with NIBV, laying the foundation for further studies on the role of Beclin1 in avian diseases.
Collapse
Affiliation(s)
- Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ruoyun Tang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qiurong Qi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yufan Shen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yun Shi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
9
|
Zhang Y, Han Z, Li H, Liu S. Development of a Recombinant Enzyme-Linked Immunosorbent Assay for the Detection of Antibodies Against Infectious Bronchitis Virus. Viral Immunol 2023; 36:649-658. [PMID: 37903239 DOI: 10.1089/vim.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Infectious bronchitis virus (IBV), a gammacoronavirus within the Coronaviridae family, is an economically important etiological disease agent in chickens. Both early diagnosis and determination of the immune status of chickens are important for controlling IBV outbreaks in chicken flocks. The N protein is the most abundantly expressed virus-derived protein during IBV infection and can induce a strong immune response by producing antibodies during early infection or immunization. In this study, we found that the amino acid sequences of the N protein between CK/CH/LJL/04I and the other 22 IBVs were conserved, especially in the 1-160 amino acid region. Based on the sequence similarities, the three recombinant proteins, rN160 (amino acid positions 1-160), rN266 (144-409), and rN409 (1-409), were expressed using the Escherichia coli system and subsequently purified. The results demonstrated that the antigenicity and reactivity of rN160 were better than those of rN266 and rN409. As a result, an indirect enzyme-linked immunosorbent assay (ELISA) (rN160 ELISA) was developed to detect the IBV antibody based on the rN160 protein. Using 1,500 clinical field serum samples, the relative sensitivity, specificity, and accuracy of the rN160 ELISA were 98.97%, 92.34%, and 97.93%, respectively, compared to those of a commercial ELISA kit (IDEXX), indicating a strong positive correlation between the two methods. Taken together, these results reveal that the rN160 ELISA is a rapid, simple, and sensitive method for detecting group-specific IBV antibodies for epidemiological investigation and antibody-level monitoring.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People's Republic of China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People's Republic of China
| | - Huixin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People's Republic of China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, the People's Republic of China
| |
Collapse
|
10
|
Ikuta N, Kipper D, Freitas DSSD, Fonseca ASK, Lunge VR. Evolution and Epidemic Spread of the Avian Infectious Bronchitis Virus (IBV) GI-23 in Brazil. Viruses 2023; 15:1229. [PMID: 37376528 DOI: 10.3390/v15061229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Infectious bronchitis virus (IBV) is a pathogen affecting poultry flocks worldwide. GI-23 is an IBV lineage with a rapid spread into different continents of the world, and it was reported for the first time in South American/Brazilian broiler farms last year. This study aimed to investigate the recent introduction and epidemic spread of IBV GI-23 in Brazil. Ninety-four broiler flocks infected with this lineage were evaluated from October 2021 to January 2023. IBV GI-23 was detected using real-time RT-qPCR, and the S1 gene hypervariable regions 1 and 2 (HVR1/2) were sequenced. S1 complete and HVR1/2 nucleotide sequence datasets were used to carry out phylogenetic and phylodynamic analyses. Brazilian IBV GI-23 strains clustered into two specific subclades (SA.1 and SA.2), both in tree branches with IBV GI-23 from Eastern European poultry-producing countries, suggesting two independent and recent introductions (around 2018). Viral phylodynamic analysis showed that the IBV GI-23 population increased from 2020 to 2021, remaining constant for one year and declining in 2022. S1 amino acid sequences from Brazilian IBV GI-23 presented specific and characteristic substitutions in the HVR1/2 for subclades IBV GI-23 SA.1 and SA.2. This study brings new insights into the introduction and recent epidemiology of IBV GI-23 in Brazil.
Collapse
Affiliation(s)
- Nilo Ikuta
- Simbios Biotecnologia, Cachoeirinha 94940-030, RS, Brazil
| | - Diéssy Kipper
- Simbios Biotecnologia, Cachoeirinha 94940-030, RS, Brazil
| | | | | | - Vagner Ricardo Lunge
- Simbios Biotecnologia, Cachoeirinha 94940-030, RS, Brazil
- Laboratory of Molecular Diagnostic, Lutheran University of Brazil (ULBRA), Canoas 92425-900, RS, Brazil
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul 95070-560, RS, Brazil
| |
Collapse
|
11
|
Kula A, Makuch E, Lisowska M, Reniewicz P, Lipiński T, Siednienko J. Pellino3 ligase negatively regulates influenza B dependent RIG-I signalling through downregulation of TRAF3-mediated induction of the transcription factor IRF3 and IFNβ production. Immunology 2023. [PMID: 36861386 DOI: 10.1111/imm.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/19/2023] [Indexed: 03/03/2023] Open
Abstract
Viral infection activates the innate immune system, which recognizes viral components by a variety of pattern recognition receptors and initiates signalling cascades leading to the production of pro-inflammatory cytokines. To date, signalling cascades triggered after virus recognition are not fully characterized and are investigated by many research groups. The critical role of the E3 ubiquitin ligase Pellino3 in antibacterial and antiviral response is now widely accepted, but the precise mechanism remains elusive. In this study, we sought to explore Pellino3 role in the retinoic acid-inducible gene I (RIG-I)-dependent signalling pathway. In this work, the molecular mechanisms of the innate immune response, regulated by Pellino3, were investigated in lung epithelial cells during influenza B virus infection. We used wild-type and Pellino3-deficient A549 cells as model cell lines to examine the role of Pellino3 ligase in the type I interferon (IFN) signalling pathway. Our results indicate that Pellino3 is involved in direct ubiquitination and degradation of the TRAF3, suppressing interferon regulatory factor 3 (IRF3) activation and interferon beta (IFNβ) production.
Collapse
Affiliation(s)
- Anna Kula
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland.,Laboratory of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Edyta Makuch
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Marta Lisowska
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Patryk Reniewicz
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Tomasz Lipiński
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Jakub Siednienko
- Bioengineering Research Group, Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| |
Collapse
|
12
|
Xiang X, Lv J, Dong M, Li N, Li Y, Wang A, Shen Y, Li S, Xu J, Cui M, Han X, Xia J, Huang Y. Radix Isatidis polysaccharide (RIP) resists the infection of QX-type infectious bronchitis virus via the MDA5/TLR3/IRF7 signaling pathway. Poult Sci 2023; 102:102534. [PMID: 36796247 PMCID: PMC9958488 DOI: 10.1016/j.psj.2023.102534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Although vaccines play a major role in the prevention of infectious bronchitis (IB), Anti-IB drugs still have great potential in poultry production. Radix Isatidis polysaccharide (RIP) is a crude extract of Banlangen with antioxidant, antibacterial, antiviral, and multiple immunomodulatory functions. The aim of this study was to explore the innate immune mechanisms responsible for RIP-mediated alleviation of infectious bronchitis virus (IBV)-induced kidney lesions in chickens. Specific-pathogen-free (SPF) chicken and chicken embryo kidney (CEK) cells cultures were pretreated with RIP and then infected with the QX-type IBV strain, Sczy3. Morbidity, mortality, and tissue mean lesion scores were calculated for IBV-infected chickens, and the viral loads, inflammatory factor gene mRNA expression levels, and innate immune pathway gene mRNA expression levels in infected chickens and CEK cell cultures were determined. The results show that RIP could alleviate IBV-induced kidney damage, decrease CEK cells susceptibility to IBV infection, and reduce viral loads. Additionally, RIP reduced the mRNA expression levels of the inflammatory factors IL-6, IL-8, and IL-1β by decreasing the mRNA expression level of NF-κB. Conversely, the expression levels of MDA5, TLR3, STING, Myd88, IRF7, and IFN-β were increased, indicating that RIP conferred resistance to QX-type IBV infection via the MDA5, TLR3, IRF7 signaling pathway. These results provide a reference for both further research into the antiviral mechanisms of RIP and the development of preventative and therapeutic drugs for IB.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road 211, Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
13
|
Li W, Wang H, Zheng SJ. Roles of RNA Sensors in Host Innate Response to Influenza Virus and Coronavirus Infections. Int J Mol Sci 2022; 23:8285. [PMID: 35955436 PMCID: PMC9368391 DOI: 10.3390/ijms23158285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza virus and coronavirus are two important respiratory viruses, which often cause serious respiratory diseases in humans and animals after infection. In recent years, highly pathogenic avian influenza virus (HPAIV) and SARS-CoV-2 have become major pathogens causing respiratory diseases in humans. Thus, an in-depth understanding of the relationship between viral infection and host innate immunity is particularly important to the stipulation of effective control strategies. As the first line of defense against pathogens infection, innate immunity not only acts as a natural physiological barrier, but also eliminates pathogens through the production of interferon (IFN), the formation of inflammasomes, and the production of pro-inflammatory cytokines. In this process, the recognition of viral pathogen-associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) is the initiation and the most important part of the innate immune response. In this review, we summarize the roles of RNA sensors in the host innate immune response to influenza virus and coronavirus infections in different species, with a particular focus on innate immune recognition of viral nucleic acids in host cells, which will help to develop an effective strategy for the control of respiratory infectious diseases.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongnuan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J. Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (W.L.); (H.W.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Infectious Bronchitis Virus Nsp14 Degrades JAK1 to Inhibit the JAK-STAT Signaling Pathway in HD11 Cells. Viruses 2022; 14:v14051045. [PMID: 35632786 PMCID: PMC9146749 DOI: 10.3390/v14051045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Coronaviruses (CoVs) are RNA viruses that can infect a wide range of animals, including humans, and cause severe respiratory and gastrointestinal disease. The Gammacoronavirus avian infectious bronchitis virus (IBV) causes acute and contagious diseases in chickens, leading to severe economic losses. Nonstructural protein 14 (Nsp14) is a nonstructural protein encoded by the CoV genome. This protein has a regulatory role in viral virulence and replication. However, the function and mechanism of IBV Nsp14 in regulating the host’s innate immune response remain unclear. Here we report that IBV Nsp14 was a JAK-STAT signaling pathway antagonist in chicken macrophage (HD11) cells. In these cells, Nsp14 protein overexpression blocked IBV suppression induced by exogenous chIFN-γ treatment. Meanwhile, Nsp14 remarkably reduced interferon-gamma-activated sequence (GAS) promoter activation and chIFN-γ-induced interferon-stimulated gene expression. Nsp14 impaired the nuclear translocation of chSTAT1. Furthermore, Nsp14 interacted with Janus kinase 1 (JAK1) to degrade JAK1 via the autophagy pathway, thereby preventing the activation of the JAK-STAT signaling pathway and facilitating viral replication. These results indicated a novel mechanism by which IBV inhibits the host antiviral response and provide new insights into the selection of antiviral targets against CoV.
Collapse
|
15
|
Peng S, Wang Y, Zhang Y, Song X, Zou Y, Li L, Zhao X, Yin Z. Current Knowledge on Infectious Bronchitis Virus Non-structural Proteins: The Bearer for Achieving Immune Evasion Function. Front Vet Sci 2022; 9:820625. [PMID: 35464391 PMCID: PMC9024134 DOI: 10.3389/fvets.2022.820625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Infectious bronchitis virus (IBV) is the first coronavirus discovered in the world, which is also the prototype of gamma-coronaviruses. Nowadays, IBV is widespread all over the world and has become one of the causative agent causing severe economic losses in poultry industry. Generally, it is believed that the viral replication and immune evasion functions of IBV were modulated by non-structural and accessory proteins, which were also considered as the causes for its pathogenicity. In this study, we summarized the current knowledge about the immune evasion functions of IBV non-structural and accessory proteins. Some non-structural proteins such as nsp2, nsp3, and nsp15 have been shown to antagonize the host innate immune response. Also, nsp7 and nsp16 can block the antigen presentation to inhibit the adapted immune response. In addition, nsp13, nsp14, and nsp16 are participating in the formation of viral mRNA cap to limit the recognition by innate immune system. In conclusion, it is of vital importance to understand the immune evasion functions of IBV non-structural and accessory proteins, which could help us to further explore the pathogenesis of IBV and provide new horizons for the prevention and treatment of IBV in the future.
Collapse
|
16
|
Peng S, Fang C, He H, Song X, Zhao X, Zou Y, Li L, Jia R, Yin Z. Myricetin exerts its antiviral activity against infectious bronchitis virus by inhibiting the deubiquitinating activity of papain-like protease. Poult Sci 2021; 101:101626. [PMID: 34995876 PMCID: PMC8741506 DOI: 10.1016/j.psj.2021.101626] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a causative agent that causes severe economic losses in the poultry industry worldwide. Papain-like protease (PLpro) is a nonstructural protein encoded by IBV. It has deubiquitinating enzyme activity, which can remove the ubiqutin modification from the protein in nuclear factor kappa-B (NF-κB) and interferon regulatory factor 7 (IRF7) signaling pathway, so as to negatively regulate the host's innate immune response to promote viral replication. In this study, PLpro was selected as the target to screen antiviral agents against IBV. Through protein prokaryotic expression technology, we successfully expressed the active IBV PLpro. Among the 16 natural products, myricetin showed the strongest inhibitory effect on IBV PLpro. Next, we tested the antiviral activity of myricetin against IBV and verified whether it can exert antiviral activity by inhibiting the deubiquitinating activity of PLpro. The results showed that myricetin can significantly inhibit IBV replication in primary chicken embryo kidney (CEK) cells and it can significantly upregulate the transcription levels in the NF-κB and IRF7 signaling pathways. Moreover, we verified that myricetin can increase the ubiquitin modification level on tumor necrosis factor receptor-associated factor 3 and 6 (TRAF3 and TRAF6) reduced by IBV PLpro. In conclusion, these results indicated that myricetin exerts antiviral activity against IBV by inhibiting the deubiquitinating activity of PLpro, which can provide new perspective for the prevention and treatment of IBV.
Collapse
Affiliation(s)
- Shuwei Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Chunlin Fang
- Chengdu Agricultural College, Chengdu 611130, People's Republic of China; Chengdu QianKun Veterinary Pharmaceutical Co., Ltd, Chengdu 611130, People's Republic of China
| | - Heng He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, People's Republic of China.
| |
Collapse
|
17
|
Bhuiyan MSA, Amin Z, Rodrigues KF, Saallah S, Shaarani SM, Sarker S, Siddiquee S. Infectious Bronchitis Virus (Gammacoronavirus) in Poultry Farming: Vaccination, Immune Response and Measures for Mitigation. Vet Sci 2021; 8:273. [PMID: 34822646 PMCID: PMC8623603 DOI: 10.3390/vetsci8110273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Infectious bronchitis virus (IBV) poses significant financial and biosecurity challenges to the commercial poultry farming industry. IBV is the causative agent of multi-systemic infection in the respiratory, reproductive and renal systems, which is similar to the symptoms of various viral and bacterial diseases reported in chickens. The avian immune system manifests the ability to respond to subsequent exposure with an antigen by stimulating mucosal, humoral and cell-mediated immunity. However, the immune response against IBV presents a dilemma due to the similarities between the different serotypes that infect poultry. Currently, the live attenuated and killed vaccines are applied for the control of IBV infection; however, the continual emergence of IB variants with rapidly evolving genetic variants increases the risk of outbreaks in intensive poultry farms. This review aims to focus on IBV challenge-infection, route and delivery of vaccines and vaccine-induced immune responses to IBV. Various commercial vaccines currently have been developed against IBV protection for accurate evaluation depending on the local situation. This review also highlights and updates the limitations in controlling IBV infection in poultry with issues pertaining to antiviral therapy and good biosecurity practices, which may aid in establishing good biorisk management protocols for its control and which will, in turn, result in a reduction in economic losses attributed to IBV infection.
Collapse
Affiliation(s)
- Md. Safiul Alam Bhuiyan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| | - Sharifudin Md. Shaarani
- Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia;
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Malaysia; (M.S.A.B.); (Z.A.); (K.F.R.); (S.S.)
| |
Collapse
|