1
|
Ibrahimová M, Jamriková V, Pavelková K, Bořecká K. Nucleocapsid Antibodies as an Optimal Serological Marker of SARS-CoV-2 Infection: A Longitudinal Study at the Thomayer University Hospital. J Clin Lab Anal 2025; 39:e25149. [PMID: 39760288 PMCID: PMC11821721 DOI: 10.1002/jcla.25149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The longitudinal study was conducted over the initial 2 years of the COVID-19 pandemic, spanning from June 2020 to December 2022, in healthcare workers (HCWs) of the Thomayer University Hospital. A total of 3892 blood samples were collected and analyzed for total nucleocapsid (N) antibodies. The aim of the study was to evaluate the dynamics of N antibodies, their relationship to the PCR test, spike (S) antibodies, interferon-gamma, and prediction of reinfection with SARS-CoV-2. METHODS Blood collections were performed in three rounds, along with questionnaires addressing clinical symptoms of past infection, PCR testing, and vaccination. Antibody measurements included total N antibodies (Roche Diagnostics) and postvaccination S antibodies (Euroimmun). Cellular immunity was tested by interferon-gamma release assay (Euroimmun). RESULTS At the end of the study, 35.9% of HCWs were positive for N antibodies, and 39.5% of HCWs had either known PCR positivity or N antibodies or both. Ten percent of participants had no knowledge of a COVID-19 infection and 35% of positive individuals exhibited no symptoms. The values of positive antibodies decrease over a period of 6 months to 1 year, depending on the initial value, and their dynamics are highly variable. The study also demonstrated that the highest levels of spike antibodies and interferon-gamma occur during so-called hybrid immunity. CONCLUSION Nucleocapsid antibodies proved valuable in monitoring SARS-CoV-2 infection dynamics, and they may detect cases of SARS-CoV-2 infection missed by PCR tests. The study identified distinct patterns in antibody dynamics and protection of hybrid immunity during reinfection.
Collapse
Affiliation(s)
- Markéta Ibrahimová
- Laboratory of ImmunologyThomayer University HospitalPragueCzech Republic
| | - Vladislava Jamriková
- Department of Clinical BiochemistryThomayer University HospitalPragueCzech Republic
| | - Kateřina Pavelková
- Department of Hospital Epidemiology and Infection ControlThomayer University HospitalPragueCzech Republic
| | - Klára Bořecká
- Department of Clinical BiochemistryThomayer University HospitalPragueCzech Republic
| |
Collapse
|
2
|
Qaqish A, Abbas MM, Alkhateeb M, Al-Tamimi M, Mustafa M, Al-Shudifat AE, Tarawneh S, Dawoud R, Mryyian A, Al-Ajaleen M. Anti_spike and anti_nucleocapsid IgG responses to SARS-CoV-2 in children of Jordan. Heliyon 2024; 10:e30631. [PMID: 38765100 PMCID: PMC11101777 DOI: 10.1016/j.heliyon.2024.e30631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Background It is proven that children have significantly milder COVID-19 disease compared to adults. Various immunological characteristics influence this age-related difference in protection against COVID-19. Pediatric COVID-19 in Jordan is extremely under reported. Objectives The primary goal of this work is to identify the anti_S and anti_N antibody responses in a random group of children in Jordan and compare it to that of naturally infected-unvaccinated adults. Methods 151 unvaccinated children, 4 days to 18 years old, were screened for anti_S and anti_N antibodies. History of COVID-19 infection or exposure to infection and symptom severity were reported by parents on a special questionnaire. Results 78.9 % and 65.3 % of participants were seropositive for anti_S IgG and anti_N Abs, respectively. There was a remarkable association between age and anti_S IgG and anti_N IgG antibody titers, as children aged 12 years or older had increased anti_S IgG titers (mean = 19.3 BAU/mL) compared to younger groups (means of 10.15, 9.24, 7.91 BAU/mL for age groups 6-12, 1-6, less than 1 year, respectively). Gender did not show a statistically important role in anti_S and anti_N IgG seropositivity rates or titers. Children displayed significantly elevated anti_S titers (mean = 13.23 BAU/mL) compared to naturally infected adults (mean = 9.72 BAU/mL), in contrast, adults' anti_N titers (mean = 39.64 U/mL) were significantly higher compared to those of children (mean = 10.77 U/mL). Conclusions The current work provides evidence of distinctly robust and persistent humoral immunity displayed by high anti_S and anti_N IgG in children, even >12 months post-infection. Age was the only factor that had a significant statistical impact on anti_S and anti_N Ab levels among the pediatric group in this study. Children exhibited significantly higher anti_S titers than naturally infected adults. In contrast, adults' anti_N titers were significantly higher. Such information can assist direct pediatric SARS-CoV-2 immunization programs, with implications for creating age-targeted strategies for diagnostic and population protection measures.
Collapse
Affiliation(s)
- Arwa Qaqish
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Cellular Therapy and Applied Genomics, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Manal Mohammad Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Alkhateeb
- Department of Internal Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mohammad Al-Tamimi
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Minas Mustafa
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Abdel-Ellah Al-Shudifat
- Department of Internal and Family Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Shahd Tarawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Rand Dawoud
- Institute for Family Health, King Hussein Foundation, Amman, Jordan
| | - Amel Mryyian
- Department of Pediatrics, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mu'ath Al-Ajaleen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
3
|
Berry AA, Tjaden AH, Renteria J, Friedman-Klabanoff D, Hinkelman AN, Gibbs MA, Ahmed A, Runyon MS, Schieffelin J, Santos RP, Oberhelman R, Bott M, Correa A, Edelstein SL, Uschner D, Wierzba TF. Persistence of antibody responses to COVID-19 vaccines among participants in the COVID-19 Community Research Partnership. Vaccine X 2023; 15:100371. [PMID: 37649617 PMCID: PMC10462856 DOI: 10.1016/j.jvacx.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction High levels of immunity to SARS-CoV-2 in the community correlate with protection from COVID-19 illness. Measuring COVID-19 antibody seroprevalence and persistence may elucidate the level and length of protection afforded by vaccination and infection within a population. Methods We measured the duration of detectable anti-spike antibodies following COVID-19 vaccination in a multistate, longitudinal cohort study of almost 13,000 adults who completed daily surveys and submitted monthly dried blood spots collected at home. Results Overall, anti-spike antibodies persisted up to 284 days of follow-up with seroreversion occurring in only 2.4% of the study population. In adjusted analyses, risk of seroreversion increased with age (adults aged 55-64: adjusted hazard ratio [aHR] 2.19 [95% confidence interval (CI): 1.22, 3.92] and adults aged > 65: aHR 3.59 [95% CI: 2.07, 6.20] compared to adults aged 18-39). Adults with diabetes had a higher risk of seroreversion versus nondiabetics (aHR 1.77 [95% CI: 1.29, 2.44]). Decreased risk of seroreversion was shown for non-Hispanic Black versus non-Hispanic White (aHR 0.32 [95% CI: 0.13, 0.79]); college degree earners versus no college degree (aHR 0.61 [95% CI: 0.46, 0.81]); and those who received Moderna mRNA-1273 vaccine versus Pfizer-BioNTech BNT162b2 (aHR 0.35 [95% CI: 0.26, 0.47]). An interaction between healthcare worker occupation and sex was detected, with seroreversion increased among male, non-healthcare workers. Conclusion We established that a remote, longitudinal, multi-site study can reliably detect antibody durability following COVID-19 vaccination. The survey platform and measurement of antibody response using at-home collection at convenient intervals allowed us to explore sociodemographic factors and comorbidities and identify predictors of antibody persistence, which has been demonstrated to correlate with protection against disease. Our findings may help inform public health interventions and policies to protect those at highest risk for severe illness and assist in determining the optimal timing of booster doses.Clinical trials registry: NCT04342884.
Collapse
Affiliation(s)
- Andrea A. Berry
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ashley H. Tjaden
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Jone Renteria
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - DeAnna Friedman-Klabanoff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy N. Hinkelman
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Lillington, NC, USA
| | | | | | | | - John Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Richard Oberhelman
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew Bott
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L. Edelstein
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Diane Uschner
- The Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, MD, USA
| | - Thomas F. Wierzba
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | | |
Collapse
|
4
|
Cordero-Ortiz M, Reséndiz-Sandoval M, Dehesa-Canseco F, Solís-Hernández M, Pérez-Sánchez J, Martínez-Borges C, Mata-Haro V, Hernández J. Development of a Multispecies Double-Antigen Sandwich ELISA Using N and RBD Proteins to Detect Antibodies against SARS-CoV-2. Animals (Basel) 2023; 13:3487. [PMID: 38003105 PMCID: PMC10668785 DOI: 10.3390/ani13223487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
SARS-CoV-2 infects humans and a broad spectrum of animal species, such as pets, zoo animals, and nondomestic animals. Monitoring infection in animals is important in terms of the risk of interspecies transmission and the emergence of new viral variants. Economical, fast, efficient, and sensitive diagnostic tests are needed to analyze animal infection. Double-antigen sandwich ELISA has the advantage of being multispecies and can be used for detecting infections caused by pathogens that infect several animal hosts. This study aimed to develop a double-antigen sandwich ELISA using two SARS-CoV-2 proteins, N and RBD. We compared its performance, when using these proteins separately, with an indirect ELISA and with a surrogate virus neutralization test. Positive and negative controls from a cat population (n = 31) were evaluated to compare all of the tests. After confirming that double-antigen sandwich ELISA with both RBD and N proteins had the best performance (AUC= 88%), the cutoff was adjusted using positive and negative samples from cats, humans (n = 32) and guinea pigs (n = 3). The use of samples from tigers (n = 2) and rats (n = 51) showed good agreement with the results previously obtained using the microneutralization test. Additionally, a cohort of samples from dogs with unknown infection status was evaluated. These results show that using two SARS-CoV-2 proteins in the double-antigen sandwich ELISA increases its performance and turns it into a valuable assay with which to monitor previous infection caused by SARS-CoV-2 in different animal species.
Collapse
Affiliation(s)
- Maritza Cordero-Ortiz
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| | - Mónica Reséndiz-Sandoval
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| | - Freddy Dehesa-Canseco
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Secretaría de Agricultura y Desarrollo Rural (SADER), Ciudad de Mexico 05110, Mexico State, Mexico; (F.D.-C.); (M.S.-H.)
| | - Mario Solís-Hernández
- Comisión México-Estados Unidos para la Prevención de la Fiebre Aftosa y otras Enfermedades Exóticas de los Animales (CPA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA), Secretaría de Agricultura y Desarrollo Rural (SADER), Ciudad de Mexico 05110, Mexico State, Mexico; (F.D.-C.); (M.S.-H.)
| | - Jahir Pérez-Sánchez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd., Reynosa 88710, Tamaulipas, Mexico;
| | | | - Verónica Mata-Haro
- Laboratorio de Microbiología e Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico;
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo 83304, Sonora, Mexico; (M.C.-O.); (M.R.-S.)
| |
Collapse
|
5
|
Springer DN, Reuberger E, Borsodi C, Puchhammer-Stöckl E, Weseslindtner L. Comparison of anti-nucleocapsid antibody assays for the detection of SARS-CoV-2 Omicron vaccine breakthroughs after various intervals since the infection. J Med Virol 2023; 95:e29229. [PMID: 37966995 DOI: 10.1002/jmv.29229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
Antibody assays with the nucleocapsid (NC) protein as the target antigen can identify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections when polymerase chain reaction (PCR) analyses are unavailable. Regarding the kinetics of NC-specific antibodies, vaccine breakthroughs with Omicron subvariants may differ from infections with the ancestral wild-type virus. Therefore, we evaluated which assays have the highest sensitivity for detecting NC-specific antibodies after various intervals since breakthrough infections with an Omicron subvariant. The study included 279 samples from vaccinated subjects who experienced PCR-confirmed Omicron breakthrough infections between 21 and 266 days before sampling. The samples were comparatively assessed with the Elecsys® Anti-SARS-CoV-2 N (Roche), the Anti-SARS-CoV-2-NCP-ELISA (Euroimmun), the recomLine SARS-CoV-2 IgG (Mikrogen), and the SARS-CoV-2 ViraChip IgG assays (Viramed). In the whole cohort, the Elecsys® Anti-SARS-CoV-2 N assay displayed the highest sensitivity (93%, p < 0.0001), followed by the recomLine SARS-CoV-2 IgG assay (70%), the SARS-CoV-2 ViraChip IgG assay (41%) and the Anti-SARS-CoV-2-NCP-ELISA (35%). Although measured antibody levels and time-dependent sensitivities differed, the extent of the antibody decrease was similar among all assays. As demonstrated by this study, manufacturer-dependent differences in the sensitivities of NC-specific antibody assays should be considered when serology is applied to link previous SARS-CoV-2 infections with potential post-COVID sequelae.
Collapse
|
6
|
Tapela K, Opurum PC, Nuokpem FY, Tetteh B, Siaw GK, Humbert MV, Tawiah-Eshun S, Barakisu AI, Asiedu K, Arhin SK, Manu AA, Appiedu-Addo SNA, Obbeng L, Quansah D, Languon S, Anyigba C, Dosoo D, Edu NKO, Oduro-Mensah D, Ampofo W, Tagoe E, Quaye O, Donkor IO, Akorli J, Aniweh Y, Christodoulides M, Mutungi J, Bediako Y, Rayner JC, Awandare GA, McCormick CJ, Quashie PK. Development of an Affordable ELISA Targeting the SARS-CoV-2 Nucleocapsid and Its Application to Samples from the Ongoing COVID-19 Epidemic in Ghana. Mol Diagn Ther 2023; 27:583-592. [PMID: 37462793 PMCID: PMC10435612 DOI: 10.1007/s40291-023-00655-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION The true nature of the population spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations is often not fully known as most cases, particularly in Africa, are asymptomatic. Finding the true magnitude of SARS-CoV-2 spread is crucial to provide actionable data about the epidemiological progress of the disease for researchers and policymakers. This study developed and optimized an antibody enzyme-linked immunosorbent assay (ELISA) using recombinant nucleocapsid antigen expressed in-house using a simple bacterial expression system. METHODS Nucleocapsid protein from SARS-CoV-2 was expressed and purified from Escherichia coli. Plasma samples used for the assay development were obtained from Ghanaian SARS-CoV-2 seropositive individuals during the pandemic, while seronegative controls were plasma samples collected from blood donors before the coronavirus disease 2019 (COVID-19) pandemic. Another set of seronegative controls was collected during the COVID-19 pandemic. Antibody detection and levels within the samples were validated using commercial kits and Luminex. Analyses were performed using GraphPad Prism, and the sensitivity, specificity and background cut-off were calculated. RESULTS AND DISCUSSION This low-cost ELISA (£0.96/test) assay has a high prediction of 98.9%, and sensitivity and specificity of 97% and 99%, respectively. The assay was subsequently used to screen plasma from SARS-CoV-2 RT-PCR-positive Ghanaians. The assay showed no significant difference in nucleocapsid antibody levels between symptomatic and asymptomatic, with an increase of the levels over time. This is in line with our previous publication. CONCLUSION This study developed a low-cost and transferable assay that enables highly sensitive and specific detection of human anti-SARS-CoV-2 IgG antibodies. This assay can be modified to include additional antigens and used for continuous monitoring of sero-exposure to SARS-CoV-2 in West Africa.
Collapse
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Precious C Opurum
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Franklin Y Nuokpem
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Becky Tetteh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Godfred K Siaw
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Maria V Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Sylvia Tawiah-Eshun
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Anna Ibrahim Barakisu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kwame Asiedu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Kojo Arhin
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Aaron A Manu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Sekyibea N A Appiedu-Addo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Louisa Obbeng
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Claudia Anyigba
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nelson K O Edu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Oduro-Mensah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - William Ampofo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Emmanuel Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Irene Owusu Donkor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Jewelna Akorli
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Myron Christodoulides
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Joe Mutungi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Yemaachi Biotech Inc., 222 Swaniker St, Accra, Ghana
| | - Julian C Rayner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Christopher J McCormick
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
| |
Collapse
|
7
|
Amellal H, Assaid N, Charoute H, Akarid K, Maaroufi A, Ezzikouri S, Sarih M. Kinetics of specific anti-SARS-CoV-2 IgM, IgA, and IgG responses during the first 12 months after SARS-CoV-2 infection: A prospective longitudinal study. PLoS One 2023; 18:e0288557. [PMID: 37437051 DOI: 10.1371/journal.pone.0288557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Coronavirus 2019 (COVID-19) is a global health threat. The kinetics of antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) need to be assessed, as the long-term duration of these immunoglobulins remains largely controversial. The aim of this study was to assess the longitudinal dynamics of anti-SARS-CoV-2 antibodies against the nucleocapsid (N) protein and the receptor-binding domain (RBD) of the spike protein up to one year in a cohort of 190 COVID-19 patients. Between March and September 2021, we enrolled patients from two regional hospitals in Casablanca, Morocco. Blood samples were collected and analyzed for antibody levels. We used the commercial Euroimmun ELISA for the determination of anti-N IgM, the Abbott Architect™ SARS-CoV-2 IgG test for the detection of anti-RBD IgG, and an in-house kit for the assay of anti-N IgG and anti-N IgA. IgM and IgA antibodies were assessed 2-5, 9-12, 17-20 and 32-37 days after symptom onset. IgG antibodies were also assessed 60, 90, 120 and 360 days after symptom onset. One-third of patients developed IgM (32%), while two-thirds developed IgA (61%). One month of symptom onset, most patients developed IgG, with 97% and 93% positivity for anti-RBD IgG and anti-N IgG, respectively. The anti-RBD IgG positivity rate remained high up to one year of follow-up. However, the anti-N IgG positivity rate decreased over time, with only 41% of patients testing positive after one year's follow-up. IgG levels were significantly higher in older people (over 50 years) than in other study participants. We also found that patients who had received two doses of ChAdOx1 nCoV-19 vaccine prior to infection had a lower IgM response than unvaccinated patients. This difference was statistically significant two weeks after the onset of symptoms. We present the first study in Africa to measure the kinetics of antibody response (IgA, IgM and IgG) to SARS-CoV-2 over one year. Most participants remained seropositive for anti-RBD IgG after one year but showed a significant decline in antibody titers.
Collapse
Affiliation(s)
- Houda Amellal
- Department of Parasitology and Vector-Borne Diseases, Institut Pasteur du Maroc, Casablanca, Morocco
- Aïn Chock Faculty of Sciences, Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Hassan II University of Casablanca, Casablanca, Morocco
| | - Najlaa Assaid
- Department of Parasitology and Vector-Borne Diseases, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Institut Pasteur du Maroc, Research Unit of Epidemiology, Biostatistics and Bioinformatics, Casablanca, Morocco
| | - Khadija Akarid
- Aïn Chock Faculty of Sciences, Health and Environment Laboratory, Biochemistry, Biotechnology and Immunophysiopathology Research Team, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abderrahmane Maaroufi
- Department of Parasitology and Vector-Borne Diseases, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Virology Unit, Casablanca, Morocco
| | - M'hammed Sarih
- Department of Parasitology and Vector-Borne Diseases, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
8
|
Edmiston JB, Cohn EG, Teruya SL, Sabogal N, Massillon D, Muralidhar V, Rodriguez C, Helmke S, Fine D, Winburn M, Chiuzan C, Hod EA, Raiszadeh F, Kurian D, Maurer MS, Ruberg FL. Clinical and social determinants of health features of SARS-CoV-2 infection among Black and Caribbean Hispanic patients with heart failure: The SCAN-MP Study. PLoS One 2023; 18:e0283730. [PMID: 36996149 PMCID: PMC10062570 DOI: 10.1371/journal.pone.0283730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Patients with heart failure (HF) often have multiple chronic conditions and are at increased risk for severe disease and mortality when infected by SARS-CoV-2, the virus that causes COVID-19. Furthermore, disparities in outcomes with COVID-19 have been associated with both racial/ethnic identity but also social determinants of health. Among older, urban-dwelling, minority patients with HF, we sought to characterize medical and non-medical factors associated with SARS-CoV-2 infection. Patients with HF living in Boston and New York City over 60 years of age participating in the Screening for Cardiac Amyloidosis with Nuclear Imaging (SCAN-MP) study between 12/1/2019 and 10/15/2021 (n = 180) were tested for nucleocapsid antibodies to SARS-CoV-2 and queried for symptomatic infection with PCR verification. Baseline testing included the Kansas City Cardiomyopathy Questionnaire (KCCQ), assessment of health literacy, biochemical, functional capacity, echocardiography, and a novel survey tool that determined living conditions, perceived risk of infection, and attitudes towards COVID-19 mitigation. The association of infection with prevalent socio-economic conditions was assessed by the area deprivation index (ADI). There were 50 overall cases of SARS-CoV-2 infection (28%) including 40 demonstrating antibodies to SARS-CoV-2 (indicative of prior infection) and 10 positive PCR tests. There was no overlap between these groups. The first documented case from New York City indicated infection prior to January 17, 2020. Among active smokers, none tested positive for prior SARS-CoV-2 infection (0 (0%) vs. 20 (15%), p = 0.004) vs. non-smokers. Cases were more likely to be taking ACE-inhibitors/ARBs compared to non-cases (78% vs 62%, p = 0.04). Over a mean follow-up of 9.6 months, there were 6 total deaths (3.3%) all unrelated to COVID-19. Death and hospitalizations (n = 84) were not associated with incident (PCR tested) or prior (antibody) SARS-CoV-2 infection. There was no difference in age, co-morbidities, living conditions, attitudes toward mitigation, health literacy, or ADI between those with and without infection. SARS-CoV-2 infection was common among older, minority patients with HF living in New York City and Boston, with evidence of infection documented in early January 2020. Health literacy and ADI were not associated with infection, and there was no increased mortality or hospitalizations among those infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Jonathan B. Edmiston
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Elizabeth G. Cohn
- Hunter College, City University of New York, New York, New York, United States of America
| | - Sergio L. Teruya
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Natalia Sabogal
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Daniel Massillon
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Varsha Muralidhar
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Carlos Rodriguez
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Stephen Helmke
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Denise Fine
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Morgan Winburn
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Codruta Chiuzan
- Feinstein Institute for Medical Research, Northwell Health, New York, New York, United States of America
| | - Eldad A. Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, New York, United States of America
| | - Farbod Raiszadeh
- Division of Cardiology, Harlem Hospital Center, New York City Health and Hospital Corporation, New York, New York, United States of America
| | - Damien Kurian
- Division of Cardiology, Harlem Hospital Center, New York City Health and Hospital Corporation, New York, New York, United States of America
| | - Mathew S. Maurer
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Frederick L. Ruberg
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
9
|
Serwanga J, Ankunda V, Sembera J, Kato L, Oluka GK, Baine C, Odoch G, Kayiwa J, Auma BO, Jjuuko M, Nsereko C, Cotten M, Onyachi N, Muwanga M, Lutalo T, Fox J, Musenero M, Kaleebu P. Rapid, early, and potent Spike-directed IgG, IgM, and IgA distinguish asymptomatic from mildly symptomatic COVID-19 in Uganda, with IgG persisting for 28 months. Front Immunol 2023; 14:1152522. [PMID: 37006272 PMCID: PMC10060567 DOI: 10.3389/fimmu.2023.1152522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2023] [Indexed: 04/04/2023] Open
Abstract
Introduction Understanding how spike (S)-, nucleoprotein (N)-, and RBD-directed antibody responses evolved in mild and asymptomatic COVID-19 in Africa and their interactions with SARS-CoV-2 might inform development of targeted treatments and vaccines. Methods Here, we used a validated indirect in-house ELISA to characterise development and persistence of S- and N-directed IgG, IgM, and IgA antibody responses for 2430 SARS-CoV-2 rt-PCR-diagnosed Ugandan specimens from 320 mild and asymptomatic COVID-19 cases, 50 uninfected contacts, and 54 uninfected non-contacts collected weekly for one month, then monthly for 28 months. Results During acute infection, asymptomatic patients mounted a faster and more robust spike-directed IgG, IgM, and IgA response than those with mild symptoms (Wilcoxon rank test, p-values 0.046, 0.053, and 0.057); this was more pronounced in males than females. Spike IgG antibodies peaked between 25 and 37 days (86.46; IQR 29.47-242.56 BAU/ml), were significantly higher and more durable than N- and RBD IgG antibodies and lasted for 28 months. Anti-spike seroconversion rates consistently exceeded RBD and nucleoprotein rates. Spike- and RBD-directed IgG antibodies were positively correlated until 14 months (Spearman's rank correlation test, p-values 0.0001 to 0.05), although RBD diminished faster. Significant anti-spike immunity persisted without RBD. 64% and 59% of PCR-negative, non-infected non-contacts and suspects, exhibited baseline SARS-CoV-2 N-IgM serological cross-reactivity, suggesting undetected exposure or abortive infection. N-IgG levels waned after 787 days, while N-IgM levels remained undetectable throughout. Discussion Lower N-IgG seroconversion rates and the absence of N-IgM indicate that these markers substantially underestimate the prior exposure rates. Our findings provide insights into the development of S-directed antibody responses in mild and asymptomatic infections, with varying degrees of symptoms eliciting distinct immune responses, suggesting distinct pathogenic pathways. These longer-lasting data inform vaccine design, boosting strategies, and surveillance efforts in this and comparable settings.
Collapse
Affiliation(s)
- Jennifer Serwanga
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Violet Ankunda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Jackson Sembera
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Laban Kato
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Gerald Kevin Oluka
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Claire Baine
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Geoffrey Odoch
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - John Kayiwa
- Department of Virology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Betty Oliver Auma
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Mark Jjuuko
- Department of Internal Medicine, Masaka Regional Referral Hospital, Masaka, Uganda
| | - Christopher Nsereko
- Department of Internal Medicine, Entebbe Regional Referral Hospital, Entebbe, Uganda
| | - Matthew Cotten
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nathan Onyachi
- Department of Internal Medicine, Masaka Regional Referral Hospital, Masaka, Uganda
| | - Moses Muwanga
- Department of Internal Medicine, Entebbe Regional Referral Hospital, Entebbe, Uganda
| | - Tom Lutalo
- Department of Epidemiology and Data Management, Uganda Virus Research Institute, Entebbe, Uganda
| | - Julie Fox
- Guy’s and St Thomas’ National Health Services Foundation Trust, King’s College London, London, United Kingdom
| | - Monica Musenero
- Science, Technology, and Innovation Secretariat, Office of the President, Government of Uganda, Kampala, Uganda
| | - Pontiano Kaleebu
- Pathogen Genomics, Phenotype, and Immunity Program, Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Department of Immunology, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
10
|
Cross-Reactivity of SARS-CoV-2 Nucleocapsid-Binding Antibodies and Its Implication for COVID-19 Serology Tests. Viruses 2022; 14:v14092041. [PMID: 36146847 PMCID: PMC9502088 DOI: 10.3390/v14092041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of the new coronavirus SARS-CoV-2 in late 2019 led to the global pandemic COVID-19, causing a profound socioeconomic crisis. Adequate diagnostic tools need to be developed to control the ongoing spread of infection. Virus-specific humoral immunity in COVID-19 patients and those vaccinated with specific vaccines has been characterized in numerous studies, mainly using Spike protein-based serology tests. However, Spike protein and specifically its receptor-binding domain (RBD) are mutation-prone, suggesting the reduced sensitivity of the validated serology tests in detecting antibodies raised to variants of concern (VOC). The viral nucleocapsid (N) protein is more conserved compared to Spike, but little is known about cross-reactivity of the N-specific antibodies between the ancestral B.1 virus and different VOCs. Here, we generated recombinant N phosphoproteins from different SARS-CoV-2 strains and analyzed the magnitude of N-specific antibodies in COVID-19 convalescent sera using an in-house N-based ELISA test system. We found a strong positive correlation in the magnitude of anti-N (B.1) antibodies and antibodies specific to various VOCs in COVID-19-recovered patients, suggesting that the N-binding antibodies are highly cross-reactive, and the most immunogenic epitopes within this protein are not under selective pressure. Overall, our study suggests that the RBD-based serology tests should be timely updated to reflect the constantly evolving nature of the SARS-CoV-2 Spike protein, whereas the validated N-based test systems can be used for the analysis of sera from COVID-19 patients regardless of the strain that caused the infection.
Collapse
|
11
|
Szewczyk-Dąbrowska A, Budziar W, Baniecki K, Pikies A, Harhala M, Jędruchniewicz N, Kaźmierczak Z, Gembara K, Klimek T, Witkiewicz W, Nahorecki A, Barczyk K, Grata-Borkowska U, Dąbrowska K. Dynamics of anti-SARS-CoV-2 seroconversion in individual patients and at the population level. PLoS One 2022; 17:e0274095. [PMID: 36083875 PMCID: PMC9462561 DOI: 10.1371/journal.pone.0274095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
The immune response and specific antibody production in COVID-19 are among the key factors that determine both prognostics for individual patients and the global perspective for controlling the pandemics. So called “dark figure”, that is, a part of population that has been infected but not registered by the health care system, make it difficult to estimate herd immunity and to predict pandemic trajectories. Here we present a follow up study of population screening for hidden herd immunity to SARS-CoV-2 in individuals who had never been positively diagnosed against SARS-CoV-2; the first screening was in May 2021, and the follow up in December 2021. We found that specific antibodies targeting SARS-CoV-2 detected in May as the “dark figure” cannot be considered important 7 months later due to their significant drop. On the other hand, among participants who at the first screening were negative for anti-SARS-CoV-2 IgG, and who have never been diagnosed for SARS-CoV-2 infection nor vaccinated, 26% were found positive for anti-SARS-CoV-2 IgG. This can be attributed to of the “dark figure” of the recent, fourth wave of the pandemic that occurred in Poland shortly before the study in December. Participants who were vaccinated between May and December demonstrated however higher levels of antibodies, than those who undergone mild or asymptomatic (thus unregistered) infection. Only 7% of these vaccinated participants demonstrated antibodies that resulted from infection (anti-NCP). The highest levels of protection were observed in the group that had been infected with SARS-CoV-2 before May 2021 and also fully vaccinated between May and December. These observations demonstrate that the hidden fraction of herd immunity is considerable, however its potential to suppress the pandemics is limited, highlighting the key role of vaccinations.
Collapse
Affiliation(s)
- Alina Szewczyk-Dąbrowska
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Department of Family Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Wiktoria Budziar
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | | | | | - Marek Harhala
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Katarzyna Gembara
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Tomasz Klimek
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Wojciech Witkiewicz
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | | | - Kamil Barczyk
- Healthcare Centre in Bolesławiec, Bolesławiec, Poland
| | | | - Krystyna Dąbrowska
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
- * E-mail:
| |
Collapse
|
12
|
Keuning MW, Grobben M, Bijlsma MW, Anker B, Berman-de Jong EP, Cohen S, Felderhof M, de Groen AE, de Groof F, Rijpert M, van Eijk HWM, Tejjani K, van Rijswijk J, Steenhuis M, Rispens T, Plötz FB, van Gils MJ, Pajkrt D. Differences in systemic and mucosal SARS-CoV-2 antibody prevalence in a prospective cohort of Dutch children. Front Immunol 2022; 13:976382. [PMID: 36159841 PMCID: PMC9500453 DOI: 10.3389/fimmu.2022.976382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background As SARS-CoV-2 will likely continue to circulate, low-impact methods become more relevant to monitor antibody-mediated immunity. Saliva sampling could provide a non-invasive method with reduced impact on children. Studies reporting on the differences between systemic and mucosal humoral immunity to SARS-CoV-2 are inconsistent in adults and scarce in children. These differences may be further unraveled by exploring associations to demographic and clinical variables. Methods To evaluate the use of saliva antibody assays, we performed a cross-sectional cohort study by collecting serum and saliva of 223 children attending medical services in the Netherlands (irrespective of SARS-CoV-2 exposure, symptoms or vaccination) from May to October 2021. With a Luminex and a Wantai assay, we measured prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD) and nucleocapsid-specific IgG and IgA in serum and saliva and explored associations with demographic variables. Findings The S-specific IgG prevalence was higher in serum 39% (95% CI 32 - 45%) than in saliva 30% (95% CI 24 - 36%) (P ≤ 0.003). Twenty-seven percent (55/205) of children were S-specific IgG positive in serum and saliva, 12% (25/205) were only positive in serum and 3% (6/205) only in saliva. Vaccinated children showed a higher concordance between serum and saliva than infected children. Odds for saliva S-specific IgG positivity were higher in girls compared to boys (aOR 2.63, P = 0.012). Moreover, immunocompromised children showed lower odds for S- and RBD-specific IgG in both serum and saliva compared to healthy children (aOR 0.23 - 0.25, P ≤ 0.050). Conclusions We showed that saliva-based antibody assays can be useful for identifying SARS-CoV-2 humoral immunity in a non-invasive manner, and that IgG prevalence may be affected by sex and immunocompromisation. Differences between infection and vaccination, between sexes and between immunocompromised and healthy children should be further investigated and considered when choosing systemic or mucosal antibody measurement.
Collapse
Affiliation(s)
- Maya W. Keuning
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Merijn W. Bijlsma
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Beau Anker
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Eveline P. Berman-de Jong
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Sophie Cohen
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | | | - Anne-Elise de Groen
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
| | - Femke de Groof
- Department of Pediatrics, Noordwest Ziekenhuisgroep, Alkmaar, Netherlands
| | - Maarten Rijpert
- Department of Pediatrics, Zaans Medical Center, Zaandam, Netherlands
| | - Hetty W. M. van Eijk
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Frans B. Plötz
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatrics, Tergooi Medical Center, Blaricum, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
13
|
Usefulness and Limitations of Anti-S IgG Assay in Detecting Previous SARS-CoV-2 Breakthrough Infection in Fully Vaccinated Healthcare Workers. Diagnostics (Basel) 2022; 12:diagnostics12092152. [PMID: 36140553 PMCID: PMC9497628 DOI: 10.3390/diagnostics12092152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: The anti-spike (S) IgG assay is the most widely used method to assess the immunological response to COVID-19 vaccination. Several studies showed that subjects with perivaccination infection have higher anti-S IgG titers. However, a cut-off has not yet been identified so far for distinguishing infected subjects after vaccination. This study thus evaluates the performance of the anti-S IgG assay in identifying subjects with breakthrough infections (BIs) and its potential usefulness for screening healthcare workers (HCWs). Methods: Out of 6400 HCWs of the University Hospital of Verona vaccinated with two doses of BNT162b2, 4462 never infected before subjects who had completed primary vaccination were tested for IgG anti-S 6 to 9 months after the second dose. Of these, 59 (1.3%) had a BI. The discriminant power of IgG anti-S in detecting previous breakthrough infection was tested by constructing receiver operating characteristic (ROC) curves. Results: The discriminant power for BI was rather good (area under the curve (AUC), 0.78) and increased with decreasing time elapsed between antibody titer assessment and previous SARS-CoV-2 infection. Accuracy (AUC) sensitivity increased from 0.78 (95% CI 0.70−0.85) for BI in the previous six months to 0.83 (95% CI 0.67−0.99) for those in the previous two months, and from 0.68 to 0.80, respectively. The specificity (0.86) and optimal cut-off (935 BAU/mL) remained unchanged. However, BI were rather rare (1.3%), so the positive predictive value (PPV) was low. Only 40 of the 664 HCWs with antibody titer > 935 BAU/mL had previously confirmed BI, yielding a PPV of only 6.0%. When adopting as cut-off the 90th percentile (1180 BAU/mL), PPV increased to 7.9% (35/441). Conclusions: The anti-S IgG assay displayed good sensitivity and specificity in discriminating subjects with BI, especially in recent periods. However, BIs were rare among HCWs, so that the anti-S IgG assay may have low PPV in this setting, thus limiting the usefulness of this test as a screening tool for HCWs. Further studies are needed to identify more effective markers of a previous infection in vaccinated subjects.
Collapse
|
14
|
Li E, Wang S, He W, He J, Liu L, Zhang X, Yang S, Yan F, Gao Y, Liu B, Xia X. Clinical Characteristics of Immune Response in Asymptomatic Carriers and Symptomatic Patients With COVID-19. Front Microbiol 2022; 13:896965. [PMID: 35685940 PMCID: PMC9171238 DOI: 10.3389/fmicb.2022.896965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) has emerged as a major public health challenge worldwide. A comprehensive understanding of clinical characteristics and immune responses in asymptomatic carriers and symptomatic patients with COVID-19 is of great significance to the countermeasures of patients with COVID-19. Herein, we described the clinical information and laboratory findings of 43 individuals from Hunan Province, China, including 13 asymptomatic carriers and 10 symptomatic patients with COVID-19, as well as 20 healthy controls in the period from 25 January to 18 May 2020. The serum samples of these individuals were analyzed to measure the cytokine responses, receptor-binding domain (RBD), and nucleocapsid (N) protein-specific antibody titers, as well as SARS-CoV-2 neutralizing antibodies (nAbs). For cytokines, significantly higher Th1 cytokines including IL-2, IL-8, IL-12p70, IFN-γ, and TNF-α, as well as Th2 cytokines including IL-10 and IL-13 were observed in symptomatic patients compared with asymptomatic carriers. Compared with symptomatic patients, higher N-specific IgG4/IgG1 ratio and RBD-specific/N-specific IgG1 ratio were observed in asymptomatic carriers. Comparable nAbs were detected in both asymptomatic carriers and symptomatic patients with COVID-19. In the symptomatic group, nAbs in patients with underlying diseases were weaker than those of patients without underlying diseases. Our retrospective study will enrich and verify the clinical characteristics and serology diversities in asymptomatic carriers and symptomatic patients with COVID-19.
Collapse
Affiliation(s)
- Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wenwen He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Jun He
- Department of Laboratory Medicine, Nanhua Hospital, University of South China, Hengyang, China
| | - Luogeng Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Xiaotuan Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bin Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
15
|
Kaznadzey A, Tutukina M, Bessonova T, Kireeva M, Mazo I. BNT162b2, mRNA-1273, and Sputnik V Vaccines Induce Comparable Immune Responses on a Par With Severe Course of COVID-19. Front Immunol 2022; 13:797918. [PMID: 35493476 PMCID: PMC9044856 DOI: 10.3389/fimmu.2022.797918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines against the severe acute respiratory syndrome coronavirus 2, which have been in urgent need and development since the beginning of 2020, are aimed to induce a prominent immune system response capable of recognizing and fighting future infection. Here we analyzed the levels of IgG antibodies against the receptor-binding domain (RBD) of the viral spike protein after the administration of three types of popular vaccines, BNT162b2, mRNA-1273, or Sputnik V, using the same ELISA assay to compare their effects. An efficient immune response was observed in the majority of cases. The obtained ranges of signal values were wide, presumably reflecting specific features of the immune system of individuals. At the same time, these ranges were comparable among the three studied vaccines. The anti-RBD IgG levels after vaccination were also similar to those in the patients with moderate/severe course of the COVID-19, and significantly higher than in the individuals with asymptomatic or light symptomatic courses of the disease. No significant correlation was observed between the levels of anti-RBD IgG and sex or age of the vaccinated individuals. The signals measured at different time points for several individuals after full Sputnik V vaccination did not have a significant tendency to lower within many weeks. The rate of neutralization of the interaction of the RBD with the ACE2 receptor after vaccination with Sputnik V was on average slightly higher than in patients with a moderate/severe course of COVID-19. The importance of the second dose administration of the two-dose Sputnik V vaccine was confirmed: while several individuals had not developed detectable levels of the anti-RBD IgG antibodies after the first dose of Sputnik V, after the second dose the antibody signal became positive for all tested individuals and raised on average 5.4 fold. Finally, we showed that people previously infected with SARS-CoV-2 developed high levels of antibodies, efficiently neutralizing interaction of RBD with ACE2 after the first dose of Sputnik V, with almost no change after the second dose.
Collapse
Affiliation(s)
- Anna Kaznadzey
- VirIntel, LLC, Gaithersburg, MD, United States.,Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria Tutukina
- Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia.,Department of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Cell Biophysics, Russian Academy of Sciences (RAS), Federal Research Center, Puschino Scientific Center for Biological Research of the Russian Academy of Sciences (FRC PSCBR RAS), Pushchino, Russia
| | - Tatiana Bessonova
- Institute of Cell Biophysics, Russian Academy of Sciences (RAS), Federal Research Center, Puschino Scientific Center for Biological Research of the Russian Academy of Sciences (FRC PSCBR RAS), Pushchino, Russia
| | | | - Ilya Mazo
- VirIntel, LLC, Gaithersburg, MD, United States.,Argentys Informatics, LLC, Gaithersburg, MD, United States
| |
Collapse
|
16
|
Murt A, Dinc HO, Altiparmak MR, Yalin SF, Yadigar S, Parmaksiz E, Kocazeybek B, Pekpak M, Ataman MR. Waning of SARS-CoV-2 Vaccine-Induced Immune Response over 6 Months in Peritoneal Dialysis Patients and the Role of a Booster Dose in Maintaining Seropositivity. Nephron Clin Pract 2022; 146:559-563. [PMID: 35598596 PMCID: PMC9393771 DOI: 10.1159/000524658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Although lower than general population, newly developed SARS-CoV-2 vaccines generate immune responses in end-stage kidney disease patients. However, the persistence of immune responses in the long term is not known yet. This study aimed to evaluate humoral immune responses in peritoneal dialysis (PD) patients over 6 months and to analyze the effects of the booster dose. METHODS Humoral immune responses of PD patients were measured after initial SARS-CoV-2 vaccinations and after 6 months following initial vaccinations. Immune responses were compared between patients who received and did not receive booster doses. PD patients were compared with 41 hemodialysis (HD) patients and 61 healthy controls. Humoral immune responses were measured by a commercial test that detects antibodies toward the receptor-binding domain of the spike protein of SARS-CoV-2. RESULTS Twenty PD patients were evaluated over 6 months. The initial seropositivity rate was 90.9% with inactivated vaccine and 100% with mRNA vaccine. Seropositivity decreased to 44.4% after 6 months, and a booster dose helped in maintaining the 100% of seropositivity (p = 0.005). Magnitude of humoral response at the 6th month was also higher in patients who received the third dose (1,132.8 ± 769.6 AU/mL vs. 400.0 ± 294.6 AU/mL; p = 0.015). Among patients who did not receive the third dose, those who got mRNA vaccine could maintain higher seropositivity than others who got inactivated vaccine (75% vs. 40% for PD, 81.8% vs. 50% for HD). Seropositivity and antibody levels were similar for PD and HD patients after 6 months (p = 0.24 and 0.56) but lower than healthy controls (p = 0.0013). CONCLUSION SARS-CoV-2 vaccine-induced antibody levels and seropositivity of PD patients significantly fall after 6 months. A booster dose after around 3 months following initial immunization might help in maintaining seropositivity.
Collapse
Affiliation(s)
- Ahmet Murt
- Division of Nephrology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Harika Oyku Dinc
- Department of Clinical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mehmet Riza Altiparmak
- Division of Nephrology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serkan F Yalin
- Division of Nephrology, Department of Internal Medicine, Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Serap Yadigar
- Division of Nephrology, Department of Internal Medicine, Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Ergun Parmaksiz
- Division of Nephrology, Department of Internal Medicine, Dr. Lutfi Kirdar City Hospital, Istanbul, Turkey
| | - Bekir Kocazeybek
- Department of Clinical Microbiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meltem Pekpak
- Division of Nephrology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Muveddet Rezzan Ataman
- Division of Nephrology, Department of Internal Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|