1
|
Ruedas-Torres I, Findlay-Wilson S, Kennedy E, Dowall S, Salguero FJ. Pathology and host-pathogen interactions in a golden Syrian hamster model of Nipah virus infection. Front Vet Sci 2025; 12:1518358. [PMID: 40125323 PMCID: PMC11926554 DOI: 10.3389/fvets.2025.1518358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Nipah virus (NiV) is recognized as one of the key pathogens with pandemic potential. We have recently established a NiV hamster model, which reproduces a highly similar disease to that observed in human cases, including respiratory and neurological signs and lesions. The aims of this study were to describe the microscopic lesions observed in the golden Syrian hamster model after intranasal (IN) and intraperitoneal (IP) inoculation with different doses of the Malaysian strain of NiV; to describe in depth the cell composition of the pulmonary and the brain lesions and the expression of proinflammatory cytokines in-situ using a combination of histopathological techniques including immunohistochemistry (IHC) and in-situ hybridisation (ISH) via RNAscope technique. We also developed a multiplex IHC which will allow us to study the interaction of the virus with cell populations in the lung and brain in future studies. For this, we selected 28 lung and brain formalin-fixed paraffin-embedded (FFPE) samples from previous experiments performed by our research group. Histopathology revealed severe pulmonary broncho-interstitial pneumonia, mainly in animals inoculated via the IN route, accompanied by a strong acute inflammatory response (Iba1+ cells) and high levels of NiV RNA. Upregulation of proinflammatory cytokines (IL-6 and TNF) was also observed by ISH RNAscope technique in these animals. Neurological lesions, consisting of perivascular cuffing and meningitis, were observed mainly in animals inoculated via IP route. IHC results showed astrocytosis (GFAP+) and microgliosis (Iba1+) in the brain of these animals, together with mild levels of IL6 and TNF mRNA. These results have helped us to characterize the host-pathogen interaction in the golden Syrian hamster animal model of NiV infection that is being currently used in preclinical testing of antiviral and vaccine strategies. Techniques used in this study could be applied to the development and application of golden Syrian hamster models of other infections by henipaviruses, including Hendra virus (HeV), and other high consequence priority pathogens.
Collapse
Affiliation(s)
- Inés Ruedas-Torres
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
Prakash S, Dhanushkodi NR, Singer M, Quadiri A, Zayou L, Vahed H, Coulon PG, Ibraim IC, Tafoya C, Hitchcock L, Landucci G, Forthal DN, El Babsiri A, Tifrea DF, Figueroa CJ, Nesburn AB, Kuppermann BD, Gil D, Jones TM, Ulmer JB, BenMohamed L. A Broad-Spectrum Multi-Antigen mRNA/LNP-Based Pan-Coronavirus Vaccine Induced Potent Cross-Protective Immunity Against Infection and Disease Caused by Highly Pathogenic and Heavily Spike-Mutated SARS-CoV-2 Variants of Concern in the Syrian Hamster Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580225. [PMID: 38405942 PMCID: PMC10888826 DOI: 10.1101/2024.02.14.580225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Izabela Coimbra Ibraim
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Christine Tafoya
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Lauren Hitchcock
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Gary Landucci
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Donald N. Forthal
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Assia El Babsiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA 92697
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns & Critical Care, School of Medicine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| |
Collapse
|
3
|
Kuehl PJ, Dearing J, Werts A, Cox J, Irshad H, Barrett EG, Tucker SN, Langel SN. Design and validation of an exposure system for efficient inter-animal SARS-CoV-2 airborne transmission in Syrian hamsters. Microbiol Spectr 2023; 11:e0471722. [PMID: 37882564 PMCID: PMC10714807 DOI: 10.1128/spectrum.04717-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The main route of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is airborne. However, there are few experimental systems that can assess the airborne transmission dynamics of SARS-CoV-2 in vivo. Here, we designed, built, and characterized a hamster transmission caging and exposure system that allows for efficient SARS-CoV-2 airborne transmission in Syrian hamsters without contributions from fomite or direct contact transmission. We successfully measured SARS-CoV-2 viral RNA in aerosols and demonstrated that SARS-CoV-2 is transmitted efficiently at either a 1:1 or 1:4 infected index to naïve recipient hamster ratio. This is meaningful as a 1:4 infected index to naïve hamster ratio would allow for simultaneous comparisons of various interventions in naïve animals to determine their susceptibility to infection by aerosol transmission of SARS-CoV-2. Our SARS-CoV-2 exposure system allows for testing viral airborne transmission dynamics and transmission-blocking therapeutic strategies against SARS-CoV-2 in Syrian hamsters.
Collapse
Affiliation(s)
- Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Justin Dearing
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Adam Werts
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Jason Cox
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Hammad Irshad
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Edward G. Barrett
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | | | - Stephanie N. Langel
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Findlay-Wilson S, Easterbrook L, Smith S, Pope N, Aldridge M, Humphries G, Schuhmann H, Ngabo D, Rayner E, Otter A, Coleman T, Hicks B, Halkerston R, Apostolakis K, Taylor S, Fotheringham S, Horton A, CanoCejas I, Wand M, Tree JA, Sutton M, Graham V, Hewson R, Dowall S. Refinement of an ovine-based immunoglobulin therapy against SARS-CoV-2, with comparison of whole IgG versus F(ab') 2 fragments. Sci Rep 2023; 13:13912. [PMID: 37626085 PMCID: PMC10457378 DOI: 10.1038/s41598-023-40277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The development of new therapies against SARS-CoV-2 is required to extend the toolkit of intervention strategies to combat the global pandemic. In this study, hyperimmune plasma from sheep immunised with whole spike SARS-CoV-2 recombinant protein has been used to generate candidate products. In addition to purified IgG, we have refined candidate therapies by removing non-specific IgG via affinity binding along with fragmentation to eliminate the Fc region to create F(ab')2 fragments. These preparations were evaluated for in vitro activity and demonstrated to be strongly neutralising against a range of SARS-CoV-2 strains, including Omicron B2.2. In addition, their protection against disease manifestations and viral loads were assessed using a hamster SARS-CoV-2 infection model. Results demonstrated protective effects of both IgG and F(ab')2, with the latter requiring sequential dosing to maintain in vivo activity due to rapid clearance from the circulation.
Collapse
Affiliation(s)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sandra Smith
- International Therapeutic Proteins Ltd, Longford, TAS, 7301, Australia
| | - Neville Pope
- International Therapeutic Proteins Ltd, Goleigh Farm, Selborne, GU34 3SE, Hampshire, UK
| | | | - Gareth Humphries
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Holger Schuhmann
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Didier Ngabo
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ashley Otter
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Thomas Coleman
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bethany Hicks
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Rachel Halkerston
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kostis Apostolakis
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stephen Taylor
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Amanda Horton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Irene CanoCejas
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew Wand
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Julia A Tree
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Mark Sutton
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
5
|
Primard C, Monchâtre-Leroy E, Del Campo J, Valsesia S, Nikly E, Chevandier M, Boué F, Servat A, Wasniewski M, Picard-Meyer E, Courant T, Collin N, Salguero FJ, Le Vert A, Guyon-Gellin D, Nicolas F. OVX033, a nucleocapsid-based vaccine candidate, provides broad-spectrum protection against SARS-CoV-2 variants in a hamster challenge model. Front Immunol 2023; 14:1188605. [PMID: 37409116 PMCID: PMC10319154 DOI: 10.3389/fimmu.2023.1188605] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 07/07/2023] Open
Abstract
Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM®, a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franck Boué
- ANSES, Laboratory for Rabies and Wildlife, Malzéville, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Davies ER, Ryan KA, Bewley KR, Coombes NS, Salguero FJ, Carnell OT, Biddlecombe S, Charlton M, Challis A, Cross ES, Handley A, Ngabo D, Weldon TM, Hall Y, Funnell SGP. The Omicron Sub-Variant BA.4 Displays a Remarkable Lack of Clinical Signs in a Golden Syrian Hamster Model of SARS-CoV-2 Infection. Viruses 2023; 15:1133. [PMID: 37243219 PMCID: PMC10224153 DOI: 10.3390/v15051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The ongoing emergence of SARS-CoV-2 virus variants remains a source of concern because it is accompanied by the potential for increased virulence as well as evasion of immunity. Here we show that, although having an almost identical spike gene sequence as another Omicron variant (BA.5.2.1), a BA.4 isolate lacked all the typical disease characteristics of other isolates seen in the Golden Syrian hamster model despite replicating almost as effectively. Animals infected with BA.4 had similar viral shedding profiles to those seen with BA.5.2.1 (up to day 6 post-infection), but they all failed to lose weight or present with any other significant clinical signs. We hypothesize that this lack of detectable signs of disease during infection with BA.4 was due to a small (nine nucleotide) deletion (∆686-694) in the viral genome (ORF1ab) responsible for the production of non-structural protein 1, which resulted in the loss of three amino acids (aa 141-143).
Collapse
Affiliation(s)
- Elizabeth R. Davies
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Kathryn A. Ryan
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Kevin R. Bewley
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Naomi S. Coombes
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Francisco J. Salguero
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Oliver T. Carnell
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Sarah Biddlecombe
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Michael Charlton
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Amy Challis
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Eleanor S. Cross
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Alastair Handley
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Didier Ngabo
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Thomas M. Weldon
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Yper Hall
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Simon G. P. Funnell
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- World Health Organization, Appia 20, 1211 Geneva, Switzerland
| |
Collapse
|
7
|
Ryan KA, Bewley KR, Watson RJ, Burton C, Carnell O, Cavell BE, Challis A, Coombes NS, Davies ER, Edun-Huges J, Emery K, Fell R, Fotheringham SA, Gooch KE, Gowan K, Handley A, Harris DJ, Hesp R, Hunter L, Humphreys R, Johnson R, Kennard C, Knott D, Lister S, Morley D, Ngabo D, Osman KL, Paterson J, Penn EJ, Pullan ST, Richards KS, Summers S, Thomas SR, Weldon T, Wiblin NR, Rayner EL, Vipond RT, Hallis B, Salguero FJ, Funnell SGP, Hall Y. Syrian hamster convalescence from prototype SARS-CoV-2 confers measurable protection against the attenuated disease caused by the Omicron variant. PLoS Pathog 2023; 19:e1011293. [PMID: 37014911 PMCID: PMC10104347 DOI: 10.1371/journal.ppat.1011293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/14/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
The mutation profile of the SARS-CoV-2 Omicron (lineage BA.1) variant posed a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2 ancestral isolate (Australia/VIC01/2020, VIC01) to protect against disease caused by BA.1. We established that BA.1 infection in naïve Syrian hamsters resulted in a less severe disease than a comparable dose of the ancestral virus, with fewer clinical signs including less weight loss. We present data to show that these clinical observations were almost absent in convalescent hamsters challenged with the same dose of BA.1 50 days after an initial infection with ancestral virus. These data provide evidence that convalescent immunity against ancestral SARS-CoV-2 is protective against BA.1 in the Syrian hamster model of infection. Comparison with published pre-clinical and clinical data supports consistency of the model and its predictive value for the outcome in humans. Further, the ability to detect protection against the less severe disease caused by BA.1 demonstrates continued value of the Syrian hamster model for evaluation of BA.1-specific countermeasures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amy Challis
- UK Health Security Agency, Salisbury, United Kingdom
| | | | | | | | - Kirsty Emery
- UK Health Security Agency, Salisbury, United Kingdom
| | - Rachel Fell
- UK Health Security Agency, Salisbury, United Kingdom
| | | | - Karen E Gooch
- UK Health Security Agency, Salisbury, United Kingdom
| | - Kathryn Gowan
- UK Health Security Agency, Salisbury, United Kingdom
| | | | | | - Richard Hesp
- UK Health Security Agency, Salisbury, United Kingdom
| | - Laura Hunter
- UK Health Security Agency, Salisbury, United Kingdom
| | | | | | | | - Daniel Knott
- UK Health Security Agency, Salisbury, United Kingdom
| | - Sian Lister
- UK Health Security Agency, Salisbury, United Kingdom
| | - Daniel Morley
- UK Health Security Agency, Salisbury, United Kingdom
| | - Didier Ngabo
- UK Health Security Agency, Salisbury, United Kingdom
| | - Karen L Osman
- UK Health Security Agency, Salisbury, United Kingdom
| | | | | | | | | | - Sian Summers
- UK Health Security Agency, Salisbury, United Kingdom
| | | | - Thomas Weldon
- UK Health Security Agency, Salisbury, United Kingdom
| | | | - Emma L Rayner
- UK Health Security Agency, Salisbury, United Kingdom
| | | | - Bassam Hallis
- UK Health Security Agency, Salisbury, United Kingdom
| | | | | | - Yper Hall
- UK Health Security Agency, Salisbury, United Kingdom
| |
Collapse
|
8
|
Handley A, Ryan KA, Davies ER, Bewley KR, Carnell OT, Challis A, Coombes NS, Fotheringham SA, Gooch KE, Charlton M, Harris DJ, Kennard C, Ngabo D, Weldon TM, Salguero FJ, Funnell SGP, Hall Y. SARS-CoV-2 Disease Severity in the Golden Syrian Hamster Model of Infection Is Related to the Volume of Intranasal Inoculum. Viruses 2023; 15:748. [PMID: 36992457 PMCID: PMC10051760 DOI: 10.3390/v15030748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The golden Syrian hamster (Mesocricetus auratus) is now commonly used in preclinical research for the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the assessment of vaccines, drugs and therapeutics. Here, we show that hamsters inoculated via the intranasal route with the same infectious virus dose of prototypical SARS-CoV-2 administered in a different volume present with different clinical signs, weight loss and viral shedding, with a reduced volume resulting in reduced severity of disease similar to that obtained by a 500-fold reduction in the challenge dose. The tissue burden of the virus and the severity of pulmonary pathology were also significantly affected by different challenge inoculum volumes. These findings suggest that a direct comparison between the severity of SARS-CoV-2 variants or studies assessing the efficacy of treatments determined by hamster studies cannot be made unless both the challenge dose and inoculation volume are matched when using the intranasal route. Additionally, analysis of sub-genomic and total genomic RNA PCR data demonstrated no link between sub-genomic and live viral titres and that sub-genomic analyses do not provide any information beyond that provided by more sensitive total genomic PCR.
Collapse
Affiliation(s)
- Alastair Handley
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Kathryn A. Ryan
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Elizabeth R. Davies
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Kevin R. Bewley
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Oliver T. Carnell
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Amy Challis
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Naomi S. Coombes
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Susan A. Fotheringham
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Karen E. Gooch
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Michael Charlton
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Debbie J. Harris
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Chelsea Kennard
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Didier Ngabo
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Thomas M. Weldon
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Francisco J. Salguero
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| | - Simon G. P. Funnell
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
- World Health Organization, Appia 20, 1211 Geneva, Switzerland
| | - Yper Hall
- UKHSA Porton, Vaccine Development and Evaluation Centre, UK Health Security Agency, Manor Farm Road, Salisbury SP4 0JG, UK
| |
Collapse
|
9
|
Knott D, Fell R, Potter JA, Yuille S, Salguero FJ, Graham VA, Hewson R, Howat D, Dowall SD. Use of a Preclinical Natural Transmission Model to Study Antiviral Effects of a Carbohydrate-Binding Module Therapy against SARS-CoV-2 in Hamsters. Viruses 2023; 15:725. [PMID: 36992434 PMCID: PMC10058511 DOI: 10.3390/v15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) and its expansion to a worldwide pandemic resulted in efforts to assess and develop interventions to reduce the disease burden. Despite the introduction of vaccine programmes against SARS-CoV-2, global incidence levels in early 2022 remained high, demonstrating a need for the development of physiologically relevant models, which are essential for the identification of alternative antiviral strategies. The hamster model of SARS-CoV-2 infection has been widely adopted due to similarities with humans in terms of host cell entry mechanism (via ACE2), and aspects of symptomology and virus shedding. We have previously described a natural transmission hamster model that better represents the natural course of infection. In the present study, we have conducted further testing of the model using the first-in-class antiviral Neumifil, which has previously shown promise against SARS-CoV-2 after a direct intranasal challenge. Neumifil is an intranasally delivered carbohydrate-binding module (CBM) which reduces the binding of viruses to their cellular receptor. By targeting the host cell, Neumifil has the potential to provide broad protection against multiple pathogens and variants. This study demonstrates that using a combination of a prophylactic and therapeutic delivery of Neumifil significantly reduces the severity of clinical signs in animals infected via a natural route of transmission and indicates a reduction of viral loads in the upper respiratory tract. Further refinements of the model are required in order to ensure the adequate transmission of the virus. However, our results provide additional data to the evidence base of Neumifil efficacy against respiratory virus infection and demonstrate that the transmission model is a potentially valuable tool for testing antiviral compounds against SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Knott
- UK Health Security Agency (UKHSA), Salisbury SP4 0JG, UK; (D.K.); (R.F.); (F.J.S.); (V.A.G.); (R.H.)
| | - Rachel Fell
- UK Health Security Agency (UKHSA), Salisbury SP4 0JG, UK; (D.K.); (R.F.); (F.J.S.); (V.A.G.); (R.H.)
| | - Jane A. Potter
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife KY16 9DR, UK; (J.A.P.); (S.Y.); (D.H.)
| | - Samantha Yuille
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife KY16 9DR, UK; (J.A.P.); (S.Y.); (D.H.)
| | - Franscisco J. Salguero
- UK Health Security Agency (UKHSA), Salisbury SP4 0JG, UK; (D.K.); (R.F.); (F.J.S.); (V.A.G.); (R.H.)
| | - Victoria A. Graham
- UK Health Security Agency (UKHSA), Salisbury SP4 0JG, UK; (D.K.); (R.F.); (F.J.S.); (V.A.G.); (R.H.)
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Salisbury SP4 0JG, UK; (D.K.); (R.F.); (F.J.S.); (V.A.G.); (R.H.)
| | - David Howat
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife KY16 9DR, UK; (J.A.P.); (S.Y.); (D.H.)
| | - Stuart D. Dowall
- UK Health Security Agency (UKHSA), Salisbury SP4 0JG, UK; (D.K.); (R.F.); (F.J.S.); (V.A.G.); (R.H.)
| |
Collapse
|
10
|
EFSA Panel on Animal Health and Welfare (AHAW), Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Velarde A, Viltrop A, Winckler C, Adlhoch C, Aznar I, Baldinelli F, Boklund A, Broglia A, Gerhards N, Mur L, Nannapaneni P, Ståhl K. SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J 2023; 21:e07822. [PMID: 36860662 PMCID: PMC9968901 DOI: 10.2903/j.efsa.2023.7822] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.
Collapse
|
11
|
Blaurock C, Breithaupt A, Weber S, Wylezich C, Keller M, Mohl BP, Görlich D, Groschup MH, Sadeghi B, Höper D, Mettenleiter TC, Balkema-Buschmann A. Compellingly high SARS-CoV-2 susceptibility of Golden Syrian hamsters suggests multiple zoonotic infections of pet hamsters during the COVID-19 pandemic. Sci Rep 2022; 12:15069. [PMID: 36064749 PMCID: PMC9442591 DOI: 10.1038/s41598-022-19222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Golden Syrian hamsters (Mesocricetus auratus) are used as a research model for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Millions of Golden Syrian hamsters are also kept as pets in close contact to humans. To determine the minimum infective dose (MID) for assessing the zoonotic transmission risk, and to define the optimal infection dose for experimental studies, we orotracheally inoculated hamsters with SARS-CoV-2 doses from 1 * 105 to 1 * 10-4 tissue culture infectious dose 50 (TCID50). Body weight and virus shedding were monitored daily. 1 * 10-3 TCID50 was defined as the MID, and this was still sufficient to induce virus shedding at levels up to 102.75 TCID50/ml, equaling the estimated MID for humans. Virological and histological data revealed 1 * 102 TCID50 as the optimal dose for experimental infections. This compelling high susceptibility leading to productive infections in Golden Syrian hamsters must be considered as a potential source of SARS-CoV-2 infection for humans that come into close contact with pet hamsters.
Collapse
Affiliation(s)
- Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler- Institut, Greifswald-Insel Riems, Germany
| | - Saskia Weber
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Wing PAC, Prange-Barczynska M, Cross A, Crotta S, Orbegozo Rubio C, Cheng X, Harris JM, Zhuang X, Johnson RL, Ryan KA, Hall Y, Carroll MW, Issa F, Balfe P, Wack A, Bishop T, Salguero FJ, McKeating JA. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog 2022; 18:e1010807. [PMID: 36067210 PMCID: PMC9481176 DOI: 10.1371/journal.ppat.1010807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the host pathways that define susceptibility to Severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in the Syrian hamster model. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Amy Cross
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Xiaotong Cheng
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Johnson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Kathryn A. Ryan
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Miles W. Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Francisco J. Salguero
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Piedra-Mora C, Robinson SR, Tostanoski LH, Dayao DAE, Chandrashekar A, Bauer K, Wrijil L, Ducat S, Hayes T, Yu J, Bondzie EA, McMahan K, Sellers D, Giffin V, Hope D, Nampanya F, Mercado NB, Kar S, Andersen H, Tzipori S, Barouch DH, Martinot AJ. Reduced SARS-CoV-2 disease outcomes in Syrian hamsters receiving immune sera: Quantitative image analysis in pathologic assessments. Vet Pathol 2022; 59:648-660. [PMID: 35521761 PMCID: PMC12021000 DOI: 10.1177/03009858221095794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a need to standardize pathologic endpoints in animal models of SARS-CoV-2 infection to help benchmark study quality, improve cross-institutional comparison of data, and assess therapeutic efficacy so that potential drugs and vaccines for SARS-CoV-2 can rapidly advance. The Syrian hamster model is a tractable small animal model for COVID-19 that models clinical disease in humans. Using the hamster model, the authors used traditional pathologic assessment with quantitative image analysis to assess disease outcomes in hamsters administered polyclonal immune sera from previously challenged rhesus macaques. The authors then used quantitative image analysis to assess pathologic endpoints across studies performed at different institutions using different tissue processing protocols. The authors detail pathological features of SARS-CoV-2 infection longitudinally and use immunohistochemistry to quantify myeloid cells and T lymphocyte infiltrates during SARS-CoV-2 infection. High-dose immune sera protected hamsters from weight loss and diminished viral replication in tissues and reduced lung lesions. Cumulative pathology scoring correlated with weight loss and was robust in distinguishing IgG efficacy. In formalin-infused lungs, quantitative measurement of percent area affected also correlated with weight loss but was less robust in non-formalin-infused lungs. Longitudinal immunohistochemical assessment of interstitial macrophage infiltrates showed that peak infiltration corresponded to weight loss, yet quantitative assessment of macrophage, neutrophil, and CD3+ T lymphocyte numbers did not distinguish IgG treatment effects. Here, the authors show that quantitative image analysis was a useful adjunct tool for assessing SARS-CoV-2 treatment outcomes in the hamster model.
Collapse
Affiliation(s)
- Cesar Piedra-Mora
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
- Beth Israel Medical Center, Boston, MA
| | - Sally R. Robinson
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | - Denise A. E. Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | | | - Linda Wrijil
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Sarah Ducat
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - Tammy Hayes
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | | | | | | | | | | | | | | | | | | | - Saul Tzipori
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | | | - Amanda J. Martinot
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| |
Collapse
|
14
|
Findlay-Wilson S, Easterbrook L, Smith S, Pope N, Humphries G, Schuhmann H, Ngabo D, Rayner E, Otter AD, Coleman T, Hicks B, Graham VA, Halkerston R, Apostolakis K, Taylor S, Fotheringham S, Horton A, Tree JA, Wand M, Hewson R, Dowall SD. Development of a cost-effective ovine antibody-based therapy against SARS-CoV-2 infection and contribution of antibodies specific to the spike subunit proteins. Antiviral Res 2022; 203:105332. [PMID: 35533779 PMCID: PMC9075985 DOI: 10.1016/j.antiviral.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
Antibodies against SARS-CoV-2 are important to generate protective immunity, with convalescent plasma one of the first therapies approved. An alternative source of polyclonal antibodies suitable for upscaling would be more amendable to regulatory approval and widespread use. In this study, sheep were immunised with SARS-CoV-2 whole spike protein or one of the subunit proteins: S1 and S2. Once substantial antibody titres were generated, plasma was collected and samples pooled for each antigen. Non-specific antibodies were removed via affinity-purification to yield candidate products for testing in a hamster model of SARS-CoV-2 infection. Affinity-purified polyclonal antibodies to whole spike, S1 and S2 proteins were evaluated for in vitro for neutralising activity against SARS-CoV-2 Wuhan-like virus (Australia/VIC01/2020) and a recent variant of concern, B.1.1.529 BA.1 (Omicron), antibody-binding, complement fixation and phagocytosis assays were also performed. All antibody preparations demonstrated an effect against SARS-CoV-2 disease in the hamster model of challenge, with those raised against the S2 subunit providing the most promise. A rapid, cost-effective therapy for COVID-19 was developed which provides a source of highly active immunoglobulin specific to SARS-CoV-2 with multi-functional activity.
Collapse
Affiliation(s)
- Stephen Findlay-Wilson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Linda Easterbrook
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Sandra Smith
- International Therapeutic Proteins Ltd (Australia), Longford, Tasmania, 7301, Australia
| | - Neville Pope
- International Therapeutic Proteins Ltd (UK), Goleigh Farm, Selborne, Hampshire, GU34 3SE, UK
| | - Gareth Humphries
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Holger Schuhmann
- Native Antigen Company, Langford Locks, Kidlington, Oxford, OX5 1LH, UK
| | - Didier Ngabo
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Emma Rayner
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Ashley David Otter
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Tom Coleman
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Bethany Hicks
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Victoria Anne Graham
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Rachel Halkerston
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Kostis Apostolakis
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stephen Taylor
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Susan Fotheringham
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Amanda Horton
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Julia Anne Tree
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Matthew Wand
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Roger Hewson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK
| | - Stuart David Dowall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, Wiltshire, SP4 0JG, UK.
| |
Collapse
|
15
|
Fell R, Potter JA, Yuille S, Salguero FJ, Watson R, Ngabo D, Gooch K, Hewson R, Howat D, Dowall S. Activity of a Carbohydrate-Binding Module Therapy, Neumifil, against SARS-CoV-2 Disease in a Hamster Model of Infection. Viruses 2022; 14:v14050976. [PMID: 35632718 PMCID: PMC9147764 DOI: 10.3390/v14050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid global spread of severe acute respiratory coronavirus 2 (SARS-CoV-2) has resulted in an urgent effort to find efficacious therapeutics. Broad-spectrum therapies which could be used for other respiratory pathogens confer advantages, as do those based on targeting host cells that are not prone to the development of resistance by the pathogen. We tested an intranasally delivered carbohydrate-binding module (CBM) therapy, termed Neumifil, which is based on a CBM that has previously been shown to offer protection against the influenza virus through the binding of sialic acid receptors. Using the recognised hamster model of SARS-CoV-2 infection, we demonstrate that Neumifil significantly reduces clinical disease severity and pathological changes in the nasal cavity. Furthermore, we demonstrate Neumifil binding to the human angiotensin-converting enzyme 2 (ACE2) receptor and spike protein of SARS-CoV-2. This is the first report describing the testing of this type of broad-spectrum antiviral therapy in vivo and provides evidence for the advancement of Neumifil in further preclinical and clinical studies.
Collapse
Affiliation(s)
- Rachel Fell
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (R.F.); (F.J.S.); (R.W.); (D.N.); (K.G.); (R.H.)
| | - Jane A. Potter
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife KY16 9DR, UK; (J.A.P.); (S.Y.); (D.H.)
| | - Samantha Yuille
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife KY16 9DR, UK; (J.A.P.); (S.Y.); (D.H.)
| | - Franscisco J. Salguero
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (R.F.); (F.J.S.); (R.W.); (D.N.); (K.G.); (R.H.)
| | - Robert Watson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (R.F.); (F.J.S.); (R.W.); (D.N.); (K.G.); (R.H.)
| | - Didier Ngabo
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (R.F.); (F.J.S.); (R.W.); (D.N.); (K.G.); (R.H.)
| | - Karen Gooch
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (R.F.); (F.J.S.); (R.W.); (D.N.); (K.G.); (R.H.)
| | - Roger Hewson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (R.F.); (F.J.S.); (R.W.); (D.N.); (K.G.); (R.H.)
| | - David Howat
- Pneumagen Ltd., Kinburn Castle, Doubledykes Road, St Andrews, Fife KY16 9DR, UK; (J.A.P.); (S.Y.); (D.H.)
| | - Stuart Dowall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (R.F.); (F.J.S.); (R.W.); (D.N.); (K.G.); (R.H.)
- Correspondence:
| |
Collapse
|
16
|
Paton S, Clark S, Spencer A, Garratt I, Dinesh I, Thompson KA, Bennett A, Pottage T. Characterisation of Particle Size and Viability of SARS-CoV-2 Aerosols from a Range of Nebuliser Types Using a Novel Sampling Technique. Viruses 2022; 14:v14030639. [PMID: 35337046 PMCID: PMC8950415 DOI: 10.3390/v14030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Little is understood about the impact of nebulisation on the viability of SARS-CoV-2. In this study, a range of nebulisers with differing methods of aerosol generation were evaluated to determine SARS-CoV-2 viability following aerosolization. The aerosol particle size distribution was assessed using an aerosol particle sizer (APS) and SARS-CoV-2 viability was determined after collection into liquid media using All-Glass Impingers (AGI). Viable particles of SARS-CoV-2 were further characterised using the Collison 6-jet nebuliser in conjunction with novel sample techniques in an Andersen size-fractioning sampler to predict lung deposition profiles. Results demonstrate that all the tested nebulisers can generate stable, polydisperse aerosols (Geometric standard deviation (GSD) circa 1.8) in the respirable range (1.2 to 2.2 µm). Viable fractions (VF, units PFU/particle, the virus viability as a function of total particles produced) were circa 5 × 10-3. VF and spray factors were not significantly affected by relative humidity, within this system where aerosols were in the spray tube an extremely short time. The novel Andersen sample collection methods successfully captured viable virus particles across all sizes; with most particle sizes below 3.3 µm. Particle sizes, in MMAD (Mass Median Aerodynamic Diameters), were calculated from linear regression of log10-log10 transformed cumulative PFU data, and calculated MMADs accorded well with APS measurements and did not differ across collection method types. These data will be vital in informing animal aerosol challenge models, and infection prevention and control policies.
Collapse
|
17
|
Lee JY, Wing PAC, Gala DS, Noerenberg M, Järvelin AI, Titlow J, Zhuang X, Palmalux N, Iselin L, Thompson MK, Parton RM, Prange-Barczynska M, Wainman A, Salguero FJ, Bishop T, Agranoff D, James W, Castello A, McKeating JA, Davis I. Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. eLife 2022; 11:74153. [PMID: 35049501 PMCID: PMC8776252 DOI: 10.7554/elife.74153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.
Collapse
Affiliation(s)
- Jeffrey Y Lee
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Peter AC Wing
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Dalia S Gala
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Marko Noerenberg
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Aino I Järvelin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Joshua Titlow
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Louisa Iselin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Mary Kay Thompson
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Richard M Parton
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | | | - Tammie Bishop
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Daniel Agranoff
- Department of Infectious Diseases, University Hospitals Sussex NHS Foundation TrustBrightonUnited Kingdom
| | - William James
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom,James & Lillian Martin Centre, Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | - Alfredo Castello
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Ilan Davis
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| |
Collapse
|