1
|
Athira AP, Sreekanth S, Chandran A, Lahon A. Dual Role of Extracellular Vesicles as Orchestrators of Emerging and Reemerging Virus Infections. Cell Biochem Biophys 2025; 83:159-175. [PMID: 39225901 DOI: 10.1007/s12013-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Current decade witnessed the emergence and re-emergence of many viruses, which affected public health significantly. Viruses mainly utilize host cell machinery to promote its growth, and spread of these diseases. Numerous factors influence virus-host cell interactions, of which extracellular vesicles play an important role, where they transfer information both locally and distally by enclosing viral and host-derived proteins and RNAs as their cargo. Thus, they play a dual role in mediating virus infections by promoting virus dissemination and evoking immune responses in host organisms. Moreover, it acts as a double-edged sword during these infections. Advances in extracellular vesicles regulating emerging and reemerging virus infections, particularly in the context of SARS-CoV-2, Dengue, Ebola, Zika, Chikungunya, West Nile, and Japanese Encephalitis viruses are discussed in this review.
Collapse
Affiliation(s)
- A P Athira
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Smrithi Sreekanth
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Ananthu Chandran
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Anismrita Lahon
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
2
|
Suades R, Greco MF, Padró T, de Santisteban V, Domingo P, Benincasa G, Napoli C, Greco S, Madè A, Ranucci M, Devaux Y, Martelli F, Badimon L. Blood CD45 +/CD3 + lymphocyte-released extracellular vesicles and mortality in hospitalized patients with coronavirus disease 2019. Eur J Clin Invest 2025; 55:e14354. [PMID: 39548690 DOI: 10.1111/eci.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND The global pandemic of coronavirus disease 2019 (COVID-19) represented a major public health concern. Growing evidence shows that plasma of COVID-19 patients contains large numbers of circulating extracellular vesicles (cEVs) that correlate with disease severity and recovery. In this study, we sought to characterize the longitudinal cEV signature in critically ill COVID-19 patients during hospitalization and its relation to mortality risk. METHODS cEVs were quantitatively and phenotypically analysed in hospitalized non-surviving COVID-19 patients at baseline (n = 42) and before exitus (n = 40) and in 40 healthy volunteers as a reference group by high sensitivity nano flow cytometry using specific markers for parental cell sources and activation. RESULTS Levels of cEV subtypes differed between patients with severe COVID-19 and healthy subjects, specifically those from platelets and endothelial, inflammatory and viral infected cells, which associate to high mortality risk. In the longitudinal analysis from baseline to the time point immediately preceding death, no changes were found for platelet, pan-leukocyte, and lung epithelial cell-shed cEVs, while endothelial cell releases of EVs (eEVs) significantly differed. Vascular endothelial growth factor receptor 2-positive eEVs were significantly increased before death compared to admission whereas endoglin and E-selectin-containing eEVs did not change. Conversely, lymphocyte (ℓEV), monocyte, macrophage, pericyte and progenitor cell-derived cEVs displayed significant reductions before exitus. Noteworthy, levels of CD45+/CD3+-ℓEVs were significantly associated to the patient's survival time. CONCLUSIONS An evolving cEV profile able to discriminate prompt risk of death during hospitalization has been defined suggesting a role for circulating and vascular cell-derived EVs in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Rosa Suades
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Maria F Greco
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Padró
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | | | - Pere Domingo
- Infectious Diseases Unit, Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau-IR SANT PAU, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Giuditta Benincasa
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
- Department of Internal Medicine and Specialistics, Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), Naples, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Ranucci
- Department of Cardiovascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Lina Badimon
- Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), Madrid, Spain
- Cardiovascular Research Chair, UAB, Barcelona, Spain
| |
Collapse
|
3
|
Ferrantelli F, Manfredi F, Donnini M, Leone P, Pugliese K, Olivetta E, Giovannelli A, Di Virgilio A, Federico M, Chiozzini C. Extracellular vesicle-based anti-HOXB7 CD8 + T cell-specific vaccination strengthens antitumor effects induced by vaccination against Her2/neu. Cancer Gene Ther 2024; 31:1688-1695. [PMID: 39300218 PMCID: PMC11567883 DOI: 10.1038/s41417-024-00831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
We previously developed an innovative strategy to induce CD8+ T lymphocyte-immunity through in vivo engineering of extracellular vesicles (EVs). This approach relies on intramuscular injection of DNA expressing antigens of interest fused at a biologically-inactive HIV-1 Nef protein mutant (Nefmut). Nefmut is very efficiently incorporated into EVs, thus conveying large amounts of fusion proteins into EVs released by transfected cells. This platform proved successful against highly immunogenic tumor-specific antigens. Here, we tested whether antigen-specific CD8+ T cell immune responses induced by engineered EVs can counteract the growth of tumors expressing two "self" tumor-associated antigens (TAAs): HOXB7 and Her2/neu. FVB/N mice were injected with DNA vectors expressing Nefmut fused to HOXB7 or Her2/neu, singly and in combination, before subcutaneous implantation of breast carcinoma cells co-expressing HOXB7 and Her2/neu. All mice immunized with the combination vaccine remained tumor-free, whereas groups vaccinated with single Nefmut-fused antigens were only partly protected, with stronger antitumor effects in Her2/neu-immunized mice. Double-vaccinated mice also controlled tumor growth upon a later tumor cell re-challenge. Importantly, co-vaccination also contained tumors in a therapeutic immunization setting. These results showed the efficacy of EV-based vaccination against two TAAs, and represent the first demonstration that HOXB7 may be targeted in multi-antigen immunotherapy strategies.
Collapse
Affiliation(s)
- Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Manfredi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Micaela Donnini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Patrizia Leone
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Katherina Pugliese
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Olivetta
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Giovannelli
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Di Virgilio
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
4
|
Wang L, Nicols A, Turtle L, Richter A, Duncan CJA, Dunachie SJ, Klenerman P, Payne RP. T cell immune memory after covid-19 and vaccination. BMJ MEDICINE 2023; 2:e000468. [PMID: 38027416 PMCID: PMC10668147 DOI: 10.1136/bmjmed-2022-000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.
Collapse
Affiliation(s)
- Lulu Wang
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher JA Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susanna J Dunachie
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Faculty of Science, Bangkok, Thailand
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Nair S, Nova-Lamperti E, Labarca G, Kulasinghe A, Short KR, Carrión F, Salomon C. Genomic communication via circulating extracellular vesicles and long-term health consequences of COVID-19. J Transl Med 2023; 21:709. [PMID: 37817137 PMCID: PMC10563316 DOI: 10.1186/s12967-023-04552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
COVID-19 continues to affect an unprecedented number of people with the emergence of new variants posing a serious challenge to global health. There is an expansion of knowledge in understanding the pathogenesis of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the impact of the acute disease on multiple organs. In addition, growing evidence reports that the impact of COVID-19 on different organs persists long after the recovery phase of the disease, leading to long-term consequences of COVID-19. These long-term consequences involve pulmonary as well as extra-pulmonary sequelae of the disease. Noteably, recent research has shown a potential association between COVID-19 and change in the molecular cargo of extracellular vesicles (EVs). EVs are vesicles released by cells and play an important role in cell communication by transfer of bioactive molecules between cells. Emerging evidence shows a strong link between EVs and their molecular cargo, and regulation of metabolism in health and disease. This review focuses on current knowledge about EVs and their potential role in COVID-19 pathogenesis, their current and future implications as tools for biomarker and therapeutic development and their possible effects on long-term impact of COVID-19.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Gonzalo Labarca
- Molecular and Translational Immunology Laboratory, Clinical Biochemistry and Immunology Department, Pharmacy Faculty, Universidad de Concepción, Concepción, Chile
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4102, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Flavio Carrión
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Qld, 4072, Australia.
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
6
|
Manfredi F, Chiozzini C, Ferrantelli F, Leone P, Pugliese K, Spada M, Di Virgilio A, Giovannelli A, Valeri M, Cara A, Michelini Z, Andreotti M, Federico M. Antiviral effect of SARS-CoV-2 N-specific CD8 + T cells induced in lungs by engineered extracellular vesicles. NPJ Vaccines 2023; 8:83. [PMID: 37268624 DOI: 10.1038/s41541-023-00686-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Induction of effective immunity in the lungs should be a requisite for any vaccine designed to control the severe pathogenic effects generated by respiratory infectious agents. We recently provided evidence that the generation of endogenous extracellular vesicles (EVs) engineered for the incorporation of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 Nucleocapsid (N) protein induced immunity in the lungs of K18-hACE2 transgenic mice, which then can survive the lethal virus infection. However, nothing is known about the ability of the N-specific CD8+ T cell immunity in controlling viral replication in the lungs, a major pathogenic signature of severe disease in humans. To fill the gap, we investigated the immunity generated in the lungs by N-engineered EVs in terms of induction of N-specific effectors and resident memory CD8+ T lymphocytes before and after virus challenge carried out three weeks and three months after boosting. At the same time points, viral replication extents in the lungs were evaluated. Three weeks after the second immunization, virus replication was reduced in mice best responding to vaccination by more than 3-logs compared to the control group. The impaired viral replication matched with a reduced induction of Spike-specific CD8+ T lymphocytes. The antiviral effect appeared similarly strong when the viral challenge was carried out 3 months after boosting, and associated with the persistence of N-specific CD8+ T-resident memory lymphocytes. In view of the quite low mutation rate of the N protein, the present vaccine strategy has the potential to control the replication of all emerging variants.
Collapse
Affiliation(s)
- Francesco Manfredi
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Chiara Chiozzini
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Flavia Ferrantelli
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Patrizia Leone
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Katherina Pugliese
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Massimo Spada
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Antonio Di Virgilio
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Andrea Giovannelli
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Mauro Valeri
- National Center for Animal Experimentation and Welfare, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
7
|
Borghi M, Gallinaro A, Pirillo MF, Canitano A, Michelini Z, De Angelis ML, Cecchetti S, Tinari A, Falce C, Mariotti S, Capocefalo A, Chiantore MV, Iacobino A, Di Virgilio A, van Gils MJ, Sanders RW, Lo Presti A, Nisini R, Negri D, Cara A. Different configurations of SARS-CoV-2 spike protein delivered by integrase-defective lentiviral vectors induce persistent functional immune responses, characterized by distinct immunogenicity profiles. Front Immunol 2023; 14:1147953. [PMID: 37090707 PMCID: PMC10113491 DOI: 10.3389/fimmu.2023.1147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Several COVID-19 vaccine strategies utilizing new formulations for the induction of neutralizing antibodies (nAbs) and T cell immunity are still under evaluation in preclinical and clinical studies. Here we used Simian Immunodeficiency Virus (SIV)-based integrase defective lentiviral vector (IDLV) delivering different conformations of membrane-tethered Spike protein in the mouse immunogenicity model, with the aim of inducing persistent nAbs against multiple SARS-CoV-2 variants of concern (VoC). Spike modifications included prefusion-stabilizing double proline (2P) substitutions, mutations at the furin cleavage site (FCS), D614G mutation and truncation of the cytoplasmic tail (delta21) of ancestral and Beta (B.1.351) Spike, the latter mutation to markedly improve IDLV membrane-tethering. BALB/c mice were injected once with IDLV delivering the different forms of Spike or the recombinant trimeric Spike protein with 2P substitutions and FCS mutations in association with a squalene-based adjuvant. Anti-receptor binding domain (RBD) binding Abs, nAbs and T cell responses were detected up to six months from a single immunization with escalating doses of vaccines in all mice, but with different levels and kinetics. Results indicated that IDLV delivering the Spike protein with all the combined modifications, outperformed the other candidates in terms of T cell immunity and level of both binding Abs and nAbs soon after the single immunization and persistence over time, showing the best capacity to neutralize all formerly circulating VoC Alpha, Beta, Gamma and Delta. Although present, the lowest response was detected against Omicron variants (BA.1, BA.2 and BA.4/5), suggesting that the magnitude of immune evasion may be related to the higher genetic distance of Omicron as indicated by increased number of amino acid substitutions in Spike acquired during virus evolution.
Collapse
Affiliation(s)
- Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Falce
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sabrina Mariotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Capocefalo
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Di Virgilio
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Donatella Negri, ; Andrea Cara,
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Donatella Negri, ; Andrea Cara,
| |
Collapse
|
8
|
Hernández-Díazcouder A, Díaz-Godínez C, Carrero JC. Extracellular vesicles in COVID-19 prognosis, treatment, and vaccination: an update. Appl Microbiol Biotechnol 2023; 107:2131-2141. [PMID: 36917275 PMCID: PMC10012322 DOI: 10.1007/s00253-023-12468-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
The lethality of the COVID 19 pandemic became the trigger for one of the most meteoric races on record in the search for strategies of disease control. Those include development of rapid and sensitive diagnostic methods, therapies to treat severe cases, and development of anti-SARS-CoV-2 vaccines, the latter responsible for the current relative control of the disease. However, the commercially available vaccines are still far from conferring protection against acquiring the infection, so the development of more efficient vaccines that can cut the transmission of the variants of concerns that currently predominate and those that will emerge is a prevailing need. On the other hand, considering that COVID 19 is here to stay, the development of new diagnosis and treatment strategies is also desirable. In this sense, there has recently been a great interest in taking advantage of the benefits offered by extracellular vesicles (EVs), membrane structures of nanoscale size that carry information between cells participating in this manner in many physiological homeostatic and pathological processes. The interest has been focused on the fact that EVs are relatively easy to obtain and manipulate, allowing the design of natural nanocarriers that deliver molecules of interest, as well as the information about the pathogens, which can be exploited for the aforementioned purposes. Studies have shown that infection with SARS-CoV-2 induces the release of EVs from different sources, including platelets, and that their increase in blood, as well as some of their markers, could be used as a prognosis of disease severity. Likewise, EVs from different sources are being used as the ideal carriers for delivering active molecules and drugs to treat the disease, as well as vaccine antigens. In this review, we describe the progress that has been made in these three years of pandemic regarding the use of EVs for diagnosis, treatment, and vaccination against SARS-CoV-2 infection. KEY POINTS: • Covid-19 still requires more effective and specific treatments and vaccines. • The use of extracellular vesicles is emerging as an option with multiple advantages. • Association of EVs with COVID 19 and engineered EVs for its control are presented.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
- Departamento de Ciencias de La Salud, Universidad Tecnológica de México (UNITEC), Estado de México, Los Reyes, México
| | - César Díaz-Godínez
- Departamento de Ciencias de La Salud, Universidad Tecnológica de México (UNITEC), Estado de México, Los Reyes, México
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México.
| |
Collapse
|
9
|
Barnwal A, Basu B, Tripathi A, Soni N, Mishra D, Banerjee A, Kumar R, Vrati S, Bhattacharyya J. SARS-CoV-2 Spike Protein-Activated Dendritic Cell-Derived Extracellular Vesicles Induce Antiviral Immunity in Mice. ACS Biomater Sci Eng 2022; 8:5338-5348. [PMID: 36445062 PMCID: PMC9717688 DOI: 10.1021/acsbiomaterials.2c01094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The onset and spread of the SARS-CoV-2 virus have created an unprecedented universal crisis. Although vaccines have been developed against the parental SARS-CoV-2, outbreaks of the disease still occur through the appearance of different variants, suggesting a continuous need for improved and effective therapeutic strategies. Therefore, we developed a novel nanovesicle presenting Spike protein on the surface of the dendritic cell-derived extracellular vesicles (DEVs) for use as a potential vaccine platform against SARS-CoV-2. DEVs express peptide/MHC-I (pMHC-I) complexes, CCR-7, on their surface. The immunogenicity and efficacy of the Spike-activated DEVs were tested in mice and compared with free Spike protein. A 1/10 Spike equivalent dose of DEVs showed a superior potency in inducing anti-Spike IgG titers in blood of mice when compared to dendritic cells or free Spike protein treatment. Moreover, DEV-induced sera effectively reduced viral infection by 55-60% within 15 days of booster dose administration. Furthermore, a 1/10 Spike equivalent dose of DEV-treated mice was found to be equally effective in inducing CD19+CD38+ T-cells in the spleen and lymph node; CD8 cells in the bone marrow, spleen, and lymph node; and CD4+CD25+ T-cells in the spleen and lymph node after 90 days of treatment. Thus, our results support the immunogenic nature of DEVs, demonstrating that a low dose of DEVs induces antibodies to inhibit SARS-CoV-2 infection in vitro, therefore warranting further investigations.
Collapse
Affiliation(s)
- Anjali Barnwal
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, New Delhi 110029, India
| | - Brohmomoy Basu
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Aarti Tripathi
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Naina Soni
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Debasish Mishra
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Arup Banerjee
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, Faridabad 121001, Haryana, India
| | - Sudhanshu Vrati
- Laboratory of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, New Delhi 110029, India
| |
Collapse
|
10
|
Chen X, Li H, Song H, Wang J, Zhang X, Han P, Wang X. Meet changes with constancy: Defence, antagonism, recovery, and immunity roles of extracellular vesicles in confronting SARS-CoV-2. J Extracell Vesicles 2022; 11:e12288. [PMID: 36450704 PMCID: PMC9712136 DOI: 10.1002/jev2.12288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Huifei Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jie Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- School of MedicineZhongda Hospital, Southeast UniversityNanjingChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
11
|
Activation of Anti-SARS-CoV-2 Human CTLs by Extracellular Vesicles Engineered with the N Viral Protein. Vaccines (Basel) 2022; 10:vaccines10071060. [PMID: 35891224 PMCID: PMC9318727 DOI: 10.3390/vaccines10071060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023] Open
Abstract
We propose an innovative anti-SARS-CoV-2 immune strategy based on extracellular vesicles (EVs) inducing an anti-SARS-CoV-2 N CD8+ T cytotoxic lymphocyte (CTL) immune response. We previously reported that the SARS-CoV-2 N protein can be uploaded at high levels in EVs upon fusion with Nefmut, i.e., a biologically inactive HIV-1 Nef mutant incorporating into EVs at quite high levels. Here, we analyze the immunogenic properties in human cells of EVs engineered with SARS-CoV-2 N fused at the C-terminus of either Nefmut or a deletion mutant of Nefmut referred to as NefmutPL. The analysis of in vitro-produced EVs has supported the uploading of N protein when fused with truncated Nefmut. Mice injected with DNA vectors expressed each fusion protein developed robust SARS-CoV-2 N-specific CD8+ T cell immune responses. When ex vivo human dendritic cells were challenged with EVs engineered with either fusion products, the induction of a robust N-specific CTL activity, as evaluated by both CD107a and trogocytosis assays, was observed. Through these data we achieved the proof-of-principle that engineered EVs can be instrumental to elicit anti-SARS-CoV-2 CTL immune response in human cells. This achievement represents a mandatory step towards the upcoming experimentations in pre-clinical models focused on intranasal administration of N-engineered EVs.
Collapse
|
12
|
Soraci L, Lattanzio F, Soraci G, Gambuzza ME, Pulvirenti C, Cozza A, Corsonello A, Luciani F, Rezza G. COVID-19 Vaccines: Current and Future Perspectives. Vaccines (Basel) 2022; 10:608. [PMID: 35455357 PMCID: PMC9025326 DOI: 10.3390/vaccines10040608] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Currently available vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are highly effective but not able to keep the coronavirus disease 2019 (COVID-19) pandemic completely under control. Alternative R&D strategies are required to induce a long-lasting immunological response and to reduce adverse events as well as to favor rapid development and large-scale production. Several technological platforms have been used to develop COVID-19 vaccines, including inactivated viruses, recombinant proteins, DNA- and RNA-based vaccines, virus-vectored vaccines, and virus-like particles. In general, mRNA vaccines, protein-based vaccines, and vectored vaccines have shown a high level of protection against COVID-19. However, the mutation-prone nature of the spike (S) protein affects long-lasting vaccine protection and its effectiveness, and vaccinated people can become infected with new variants, also showing high virus levels. In addition, adverse effects may occur, some of them related to the interaction of the S protein with the angiotensin-converting enzyme 2 (ACE-2). Thus, there are some concerns that need to be addressed and challenges regarding logistic problems, such as strict storage at low temperatures for some vaccines. In this review, we discuss the limits of vaccines developed against COVID-19 and possible innovative approaches.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), 60121 Ancona, Italy;
| | - Giulia Soraci
- Department of Obstetrics and Gynecology, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | | | - Annalisa Cozza
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Filippo Luciani
- Infectious Diseases Unit of Annunziata Hospital, 87100 Cosenza, Italy;
| | - Giovanni Rezza
- Health Prevention Directorate, Italian Ministry of Health, 00144 Rome, Italy;
| |
Collapse
|