1
|
Zhang Y, Li L, Xin X, Chang L, Luo H, Qiao W, Xia J, Ping J, Su J. Effects of H9N2 avian influenza virus infection on metabolite content and gene expression in chick DF1 cells. Poult Sci 2024; 103:104125. [PMID: 39137496 PMCID: PMC11372591 DOI: 10.1016/j.psj.2024.104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
After viral infection, the virus relies on the host cell's complex metabolic and biosynthetic machinery for replication. However, the impact of avian influenza virus (AIV) on metabolites and gene expression in poultry cells remains unclear. To investigate this, we infected chicken embryo fibroblasts DF1 cells with H9N2 AIV at an MOI of 3. Our aim was to explore how H9N2 AIV alters DF1 cells metabolic pathways to facilitate its replication. We employed metabolomics and transcriptomics techniques to analyze changes in metabolite content and gene expression. Metabolomics analysis revealed a significant increase in glutathione-related metabolites, including reduced glutathione (GSH), oxidized glutathione (GSSG) and total glutathione (T-GSH) upon H9N2 AIV infection in DF1 cells. Elisa results confirmed elevated levels of GSH, GSSG, and T-GSH consistent with metabolomics findings, noting a pronounced increase in GSSG compared to GSH. Transcriptomics showed significant alterations in genes involved in glutathione synthesis and metabolism post-H9N2 infection. However, adding the glutathione synthesis inhibitor BSO exogenously significantly promoted H9N2 replication in DF1 cells. This was accompanied by increased mRNA levels of pro-inflammatory cytokines (IL-1β, IFN-γ) and decreased mRNA levels of anti-inflammatory cytokines (TGF-β, IL-13). BSO also reduced catalase (CAT) gene expression and inhibited its activity, leading to higher reactive oxygen species (ROS) and malondialdehyde (MDA) level in DF1 cells. qPCR results indicated decreased mRNA levels of Nrf2, NQO1, and HO-1 with BSO, ultimately increasing oxidative stress in DF1 cells. Therefore, the above results indicated that H9N2 AIV infection in DF1 cells activated the glutathione metabolic pathway to enhance the cell's self-defense mechanism against H9N2 replication. However, when GSH synthesis is inhibited within the cells, it leads to an elevated oxidative stress level, thereby promoting H9N2 replication within the cells through Nrf2/HO-1 pathway. This study provides a theoretical basis for future rational utilization of the glutathione metabolic pathway to prevent viral replication.
Collapse
Affiliation(s)
- Yijia Zhang
- Laboratory of Animal Neurobiology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Laboratory of Animal Neurobiology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Xin
- Laboratory of Animal Neurobiology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lifeng Chang
- Laboratory of Animal Neurobiology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haowei Luo
- Laboratory of Animal Neurobiology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenna Qiao
- Laboratory of Animal Neurobiology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Xia
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Key Laboratory for Prevention and Control of Herbivorous Animal Diseases of the Ministry of Agriculture and Rural Affairs & Xinjiang Animal Disease Research Key Laboratory, Urumchi, 830000, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Su
- Laboratory of Animal Neurobiology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Bidoudan Y, Mouahid M, Fassi Fihri O, Bollo E, Arbani O, Ducatez M, Banni B, Tligui N, Fellahi S. First Report of Low Pathogenic Avian Influenza Subtype H9N2 in African Houbara Bustards ( Chlamydotis undulata undulata) and Gamebirds in Morocco: Clinico-Pathological Findings, Molecular Characterization, and Associated Coinfections. Viruses 2023; 15:2374. [PMID: 38140613 PMCID: PMC10748250 DOI: 10.3390/v15122374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 12/24/2023] Open
Abstract
We report in this paper the first detection of low pathogenic avian influenza (LPAI) subtype H9N2 in houbara bustards and in gamebirds in Morocco. Starting in 2019, an increase in mortality rates related to respiratory distress was recorded in these species. Necropsy of the specimens revealed fibrinous sinusitis and tracheitis with intra-bronchial fibrin casts, which are consistent with H9N2 infection in chickens; therefore, implication of the virus in these outbreaks was strongly suspected. Consequently, between January 2020 and June 2023, birds with respiratory signs were necropsied for pathological lesions, tissue samples were examined by histopathology, and samples of trachea, lungs, and cecal tonsils were analyzed using quantitative real-time PCR for the detection of H9N2 virus. In addition, the sequencing of isolates was performed and lastly differential diagnosis with other respiratory pathogens was carried out. During the study period, 93 samples were collected from suspected H9N2 outbreaks, of which 30 tested positive for H9N2 virus: 23 Houbara bustards, 4 partridges, 2 quails, and 1 pheasant. Moreover, sequencing of the HA gene of the virus showed 97.33% nucleotide identity with strains reported previously in broilers in Morocco in 2017 and in 2022. Phylogenetic analysis grouped the Moroccan partridge isolates in the same cluster as viruses isolated in Morocco between 2016 and 2022, Algeria (2017), Burkina Faso (2017), Nigeria (2019), and Togo (2020). Additionally, 10 house sparrows from the premises of these birds were examined for the presence of H9N2 virus, revealing a 30% positivity rate. In conclusion, LPAIV H9N2 is circulating in houbara bustards and gamebirds in Morocco, and house sparrows might be a possible source of the infection. To our knowledge, this is the first report of LPAI H9N2 in the African species of houbara bustards worldwide and in gamebirds in Morocco.
Collapse
Affiliation(s)
- Yassmina Bidoudan
- Mouahid’s Veterinary Clinic, Temara 12010, Morocco; (M.M.); (B.B.)
- Anatomic Pathology Unit, Department of Veterinary Science and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| | - Mohamed Mouahid
- Mouahid’s Veterinary Clinic, Temara 12010, Morocco; (M.M.); (B.B.)
| | - Ouafaa Fassi Fihri
- Infectious Diseases Unit, Department of Veterinary Science and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| | - Enrico Bollo
- Anatomic Pathology Unit, Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy;
| | - Oumayma Arbani
- Avian Pathology Unit, Department of Veterinary Science and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| | - Mariette Ducatez
- Interactions Hôtes-Agents-Pathogènes (IHAP), Toulouse University (ENVT), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 31300 Toulouse, France;
| | - Brahim Banni
- Mouahid’s Veterinary Clinic, Temara 12010, Morocco; (M.M.); (B.B.)
- Anatomic Pathology Unit, Department of Veterinary Science and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| | - Noursaid Tligui
- Anatomic Pathology Unit, Department of Veterinary Science and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| | - Siham Fellahi
- Avian Pathology Unit, Department of Veterinary Science and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat 10000, Morocco;
| |
Collapse
|
3
|
Arbani O, Ducatez MF, Mahmoudi S, Salamat F, Khayi S, Mouahid M, Selim KM, Kichou F, Ouchhour I, El Houadfi M, Fellahi S. Low Pathogenic Avian Influenza H9N2 Viruses in Morocco: Antigenic and Molecular Evolution from 2021 to 2023. Viruses 2023; 15:2355. [PMID: 38140596 PMCID: PMC10747644 DOI: 10.3390/v15122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Avian influenza viruses pose significant threats to both the poultry industry and public health worldwide. Among them, the H9N2 subtype has gained substantial attention due to its high prevalence, especially in Asia, the Middle East, and Africa; its ability to reassort with other influenza viruses; and its potential to infect humans. This study presents a comprehensive phylogenetic and molecular analysis of H9N2 avian influenza viruses circulating in Morocco from 2021 to 2023. Through an active epidemiological survey, a total of 1140 samples (trachea and lungs) and oropharyngeal swabs pooled into 283 pools, collected from 205 farms located in 7 regions of Morocco known for having a high density of poultry farms, were analyzed. Various poultry farms were investigated (159 broiler farms, 24 layer farms, 10 breeder farms, and 12 turkey breeder farms). A total of 21 AI H9N2 strains were isolated, and in order to understand the molecular evolution of the H9N2 avian influenza virus, their genetic sequences were determined using the Sanger sequencing technique. Phylogenetic analysis was performed using a dataset comprising global H9N2 sequences to determine the genetic relatedness and evolutionary dynamics of the Moroccan strains. The results revealed the continued circulation and diversification of H9N2 avian influenza viruses in Morocco during the study period. Real-time RT-PCR showed a positivity rate of 35.6% (73/205), with cycle threshold values ranging from 19.2 to 34.9. The phylogenetic analysis indicated that all Moroccan strains belonged to a G1-like lineage and regrouped into two distinct clusters. Our newly detected isolates aggregated distinctly from the genotypes previously isolated in Morocco, North and West Africa, and the Middle East. This indicats the potential of virus evolution resulting from both national circulation and cross-border transmission. A high genetic diversity at both nucleotide and amino-acid levels was observed among all the strains isolated in this study, as compared to H9N2 strains isolated in Morocco since 2016, which suggests the co-circulation of genetically diverse H9N2 variants. Newly discovered mutations were detected in hemagglutinin positions 226, 227, and 193 (H3 numbering), which highlights the genetic evolution of the H9N2 AIVs. These findings contribute to our understanding of the evolution and epidemiology of H9N2 in the region and provide valuable insights for the development of effective prevention and control strategies against this emerging avian influenza subtype.
Collapse
Affiliation(s)
- Oumayma Arbani
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Mariette F. Ducatez
- Laboratoire Interactions Hôtes-Agents Pathogènes (IHAP), Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
| | - Salma Mahmoudi
- Laboratory of Microbiology and Molecular Biology, Department of Biology, Faculty of Sciences, Mohamed V University in Rabat, 4 Avenue Ibn Battouta, Rabat 10106, Morocco;
| | - Faiçal Salamat
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Slimane Khayi
- Biotechnology Research Unit, CRRA-Rabat, National Institute of Agricultural Research, Rabat 10101, Morocco;
| | | | - Karim M. Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Agriculture Research Center, Animal Health Research Institute, Giza 12618, Egypt;
| | - Faouzi Kichou
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Ikram Ouchhour
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Mohammed El Houadfi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| |
Collapse
|
4
|
Bóna M, Földi J, Dénes L, Harnos A, Paszerbovics B, Mándoki M. Evaluation of the Virulence of Low Pathogenic H9N2 Avian Influenza Virus Strains in Broiler Chickens. Vet Sci 2023; 10:671. [PMID: 38133222 PMCID: PMC10747561 DOI: 10.3390/vetsci10120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Our study aimed to investigate the virulence of three recent H9N2 LPAIV strains belonging to the G1 lineage, isolated from field infections in North Africa and the Middle East. Three-week-old commercial broiler chickens (in total 62) were included and randomly allocated into three infected test groups and one control group. Each test group was inoculated intranasally/intratracheally with one of the three H9N2 isolates at a dose of 108 EID50 virus. The control group received phosphate-buffered saline (PBS) via the same route of application. The pathogenicity was evaluated based on clinical signs and gross pathological and histopathological lesions, the viral antigen load was assessed through immunohistochemistry staining (IHC), and a semi-quantitative detection of the genetic material was conducted via a real-time PCR. Our findings confirmed the obvious respiratory tract tropism of the virus strains with variable renal tropism. In contrast to the highly pathogenic AIVs, the tested H9N2 strains did not show replication in the central nervous system. The virus presence and lesions, mainly in the respiratory tract, were predominant on dpi 5 and significantly reduced or disappeared by dpi 11. A clear difference was demonstrated among the three isolates: the A/chicken/Morocco/2021/2016 strain proved to be significantly more virulent than the Egyptian and Saudi Arabian ones, which showed no remarkable difference.
Collapse
Affiliation(s)
- Márta Bóna
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary
| | | | - Lilla Dénes
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István utca 2, 1078 Budapest, Hungary;
| | - Andrea Harnos
- Department of Biostatistics, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (A.H.); (B.P.)
| | - Bettina Paszerbovics
- Department of Biostatistics, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary; (A.H.); (B.P.)
| | - Míra Mándoki
- Department of Pathology, University of Veterinary Medicine, István utca 2, 1078 Budapest, Hungary;
| |
Collapse
|
5
|
Carnaccini S, Cáceres CJ, Gay LC, Ferreri LM, Skepner E, Burke DF, Brown IH, Geiger G, Obadan A, Rajao DS, Lewis NS, Perez DR. Antigenic mapping of the hemagglutinin of the H9 subtype influenza A viruses using sera from Japanese quail ( Coturnix c. japonica). J Virol 2023; 97:e0074323. [PMID: 37800947 PMCID: PMC10617583 DOI: 10.1128/jvi.00743-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Eugene Skepner
- Center for Pathogen Evolution, University of Cambridge, Cambridge, United Kingdom
| | - David F. Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ian H. Brown
- Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Adebimpe Obadan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nicola S. Lewis
- World Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Fagrach A, Arbani O, Karroute O, El-Ftouhy FZ, Kichou F, Bouslikhane M, Fellahi S. Prevalence of major infectious diseases in backyard chickens from rural markets in Morocco. Vet World 2023; 16:1897-1906. [PMID: 37859951 PMCID: PMC10583883 DOI: 10.14202/vetworld.2023.1897-1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Raising backyard chickens is a common practice in Morocco, mainly in rural or periurban areas. Constraints due to devastating avian diseases have been recognized as a major limiting factor in backyard poultry production. Consequently, these flocks could potentially be implicated as reservoirs for poultry diseases. However, there is a considerable lack of information on disease prevalence in this production system, and the risk represented by these small flocks remains under debate. This study aimed to estimate the seroprevalence and identify related risk factors of a range of bacterial and viral pathogens of outstanding importance for the economy and public health in backyard poultry in Morocco. Materials and Methods A total of 712 sera samples and 258 cloacal swabs were collected from 712 backyard chickens from 15 rural markets in the Khemisset and Skhirat-Temara provinces. None of the sampled chickens received any vaccination. Sera samples were screened for antibodies against Newcastle disease virus (NDV) and low pathogenic avian influenza H9N2 subtype (LPAI H9N2) using a hemagglutination-inhibition test, against bursal infectious disease virus (IBDV) and infectious bronchitis virus (IBV) using enzyme-linked immunosorbent assay, and against Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) using a rapid serum agglutination test. Swab samples were compiled into 86 pools and submitted for molecular detection using real-time reverse-transcription-polymerase chain reaction (RT-PCR). Results The seroprevalences in backyard chickens for NDV, LPAI H9N2, IBDV, IBV, MG, and MS were 52.1% (371/712), 63.5% (452/712), 84.7% (603/712), 82.2% (585/712), 58% (413/712), and 74.8% (533/712), respectively. Based on the RT-PCR results, 2.3% (2/86), 62.8% (54/86), 2.3% (2/86), 63.9% (55/86), 40.7% (35/86), and 29.1% (25/86) of the pools were positive for NDV, H9N2 LPAI, IBDV, IBV, MG, and MS, respectively. Multiple coinfections (H9N2-IBV-MG), (H9N2-IBV-MS), or (IBV-MG-MS) were observed in 15.1%, 8.5%, and 8.5% of the tested samples, respectively. Conclusion The results show that backyard chicken flocks and rural markets have the potential to serve as reservoirs or amplifiers for poultry pathogens and could pose a risk to the commercial poultry sector. This highlights the need for a comprehensive and adapted vaccination plan for backyard chickens, and extension of efforts to increase flock owners' awareness of avian diseases and incite the implementation of biosecurity measures at the farm level.
Collapse
Affiliation(s)
- Asma Fagrach
- Department of Pathology and Veterinary Public Health, Institut Agronomique et Vétérinaire Hassan II, BP 6202, Rabat, Morocco
| | - Oumaima Arbani
- Department of Pathology and Veterinary Public Health, Institut Agronomique et Vétérinaire Hassan II, BP 6202, Rabat, Morocco
| | - Oumaima Karroute
- Department of Pathology and Veterinary Public Health, Institut Agronomique et Vétérinaire Hassan II, BP 6202, Rabat, Morocco
| | - Fatima Zahra El-Ftouhy
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Technology Mohammedia, University Hassan II, Casablanca, Morocco
| | - Faouzi Kichou
- Department of Pathology and Veterinary Public Health, Institut Agronomique et Vétérinaire Hassan II, BP 6202, Rabat, Morocco
| | - Mohammed Bouslikhane
- Department of Pathology and Veterinary Public Health, Institut Agronomique et Vétérinaire Hassan II, BP 6202, Rabat, Morocco
| | - Siham Fellahi
- Department of Pathology and Veterinary Public Health, Institut Agronomique et Vétérinaire Hassan II, BP 6202, Rabat, Morocco
| |
Collapse
|
7
|
Agha ASK, Benlashehr I, Naffati KM, Bshina SA, Khashkhosha AA. Correlation of avian influenza-H9N2 with high mortality in broiler flocks in the southwest of Tripoli, Libya. Open Vet J 2023; 13:715-722. [PMID: 37545701 PMCID: PMC10399647 DOI: 10.5455/ovj.2023.v13.i6.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 08/08/2023] Open
Abstract
Background Low pathogenic H9N2 avian influenza (LPAI H9N2) caused by the influenza A virus which belongs to the family Orthomyxoviridae. It caused mild respiratory symptoms and a drop in egg production in poultry. Outbreaks of AI-H9N2 have occurred in poultry since the 1990s in many countries in USA, Europe, and Asia. Recently, outbreaks of H9N2 in commercial chicken were recorded in Morocco, Tunisia, Libya, and Egypt. Furthermore, numerous studies demonstrated that co-infection with AI H9N2 and other pathogens results in severe respiratory illness with high mortality in broiler chickens. Outbreaks of respiratory disease with variations in mortality rate were recorded in broiler flocks growing in the southwest of Tripoli in Libya. Aim The present study was conducted to explain the variation of mortality rate on broiler flocks growing in the southwest area of Tripoli by detection of AI H9N2 antibodies and antigens. Methods A total of 453 sera samples, 60 tracheal swabs, and 60 cloacal swabs were collected from unvaccinated broiler flocks against avian influenza. Specific avian influenza type A antibodies were detected by using the Elisa test, and specific AI-H9N2 antibodies were detected by using the HI test, whereas specific AI-H9N2 antigens were detected in tracheal and cloacal swabs by using One-Step RT-PCR (M gene) technique. Results Respiratory diseases with high variations in mortality rate were recorded in broiler flocks growing in the southwest of Tripoli in Libya; the broiler mortality rate in Twisha farms was higher than other farms (62.2% and 11%, respectively). Whereas avian influenza type A antibodies were detected at a high level in Twisha and other farms (95.2%, and 76.7%, respectively). The positive samples for AI type A were tested for AI H9N2 using the HI test. Interestingly the percentage of AI-H9N2 antibodies was quite similar in high and low mortality regions (53.4% and 46.8%, respectively). Additionally, AI-H9N2 antigens were detected only in tracheal swabs in Twisha farm 3, Al-Maamoura, and Ber Al-Tota districts. Conclusion This study confirmed the endemic of AI- H9N2 in broiler flocks in the southwest of Tripoli-Libya. Also, it clarified that AI-H9N2 was not responsible for the high mortality rate by itself in broiler flocks. Moreover, this study supported the presence of other subtypes of avian influenza in the studied area.
Collapse
Affiliation(s)
| | - Imad Benlashehr
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Libya
| | | | - Salah Abdulhadi Bshina
- Department of Medicine, Faculty of Veterinary Medicine, Azzaytuna University, Tarhuna, Libya
| | | |
Collapse
|