1
|
El Moussaoui M, Bontems S, Meex C, Hayette MP, Lejeune M, Hong SL, Dellicour S, Moutschen M, Cambisano N, Renotte N, Bours V, Darcis G, Artesi M, Durkin K. Intrahost evolution leading to distinct lineages in the upper and lower respiratory tracts during SARS-CoV-2 prolonged infection. Virus Evol 2024; 10:veae073. [PMID: 39399151 PMCID: PMC11470753 DOI: 10.1093/ve/veae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Accumulating evidence points to persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunocompromised individuals as a source of novel lineages. While intrahost evolution of the virus in chronically infected patients has previously been reported, existing knowledge is primarily based on samples from the nasopharynx. In this study, we investigate the intrahost evolution and genetic diversity that accumulated during a prolonged SARS-CoV-2 infection with the Omicron BF.7 sublineage, which is estimated to have persisted for >1 year in an immunosuppressed patient. Based on the sequencing of eight samples collected at six time points, we identified 87 intrahost single-nucleotide variants, 2 indels, and a 362-bp deletion. Our analysis revealed distinct viral genotypes in the nasopharyngeal (NP), endotracheal aspirate, and bronchoalveolar lavage samples. This suggests that NP samples may not offer a comprehensive representation of the overall intrahost viral diversity. Our findings not only demonstrate that the Omicron BF.7 sublineage can further diverge from its already exceptionally mutated state but also highlight that patients chronically infected with SARS-CoV-2 can develop genetically specific viral populations across distinct anatomic compartments. This provides novel insights into the intricate nature of viral diversity and evolution dynamics in persistent infections.
Collapse
Affiliation(s)
- Majdouline El Moussaoui
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Sebastien Bontems
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Cecile Meex
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie-Pierre Hayette
- Department of Microbiology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Marie Lejeune
- Department of Hematology, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Laboratory for Clinical and Epidemiological Virology, Rega Institute, KU Leuven, 49 Herestraat, Leuven 3000, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 50 Avenue Franklin Roosevelt, Bruxelles 1050, Belgium
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nadine Cambisano
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Nathalie Renotte
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Vincent Bours
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Gilles Darcis
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Maria Artesi
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| | - Keith Durkin
- Department of Human Genetics, University Hospital of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
- Laboratory of Human Genetics, GIGA Institute, University of Liège, 1 Avenue de l'Hôpital, Liège 4000, Belgium
| |
Collapse
|
2
|
Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, Kwon JH, Frosch AE, Mohamed A, Gilbert J, Bendall EE, Bahr A, Halasa N, Talbot HK, Grijalva CG, Baughman A, Womack KN, Johnson C, Swan SA, Koumans E, McMorrow ML, Harcourt JL, Atherton LJ, Burroughs A, Thornburg NJ, Self WH, Lauring AS. SARS-CoV-2 shedding and evolution in immunocompromised hosts during the Omicron period: a multicenter prospective analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294416. [PMID: 37662226 PMCID: PMC10473782 DOI: 10.1101/2023.08.22.23294416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Prolonged SARS-CoV-2 infections in immunocompromised hosts may predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection and associated intrahost viral evolution remain unclear. Methods Adults aged ≥18 years were enrolled at 5 hospitals and followed from 4/11/2022 - 2/1/2023. Eligible patients were SARS-CoV-2-positive in the previous 14 days and had a moderate or severely immunocompromising condition or treatment. Nasal specimens were tested by rRT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. Results We enrolled 150 patients with: B cell malignancy or anti-B cell therapy (n=18), solid organ or hematopoietic stem cell transplant (SOT/HSCT) (n=59), AIDS (n=5), non-B cell malignancy (n=23), and autoimmune/autoinflammatory conditions (n=45). Thirty-eight (25%) were rRT-PCR-positive and 12 (8%) were culture-positive ≥21 days after initial SARS-CoV-2 detection or illness onset. Patients with B cell dysfunction had longer duration of rRT-PCR-positivity compared to those with autoimmune/autoinflammatory conditions (aHR 0.32, 95% CI 0.15-0.64). Consensus (>50% frequency) spike mutations were identified in 5 individuals who were rRT-PCR-positive >56 days; 61% were in the receptor-binding domain (RBD). Mutations shared by multiple individuals were rare (<5%) in global circulation. Conclusions In this cohort, prolonged replication-competent Omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting >56 days accumulated spike mutations, which were distinct from those seen globally.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Diya Surie
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Jennie H Kwon
- Department of Medicine, Washington University, St. Louis, Missouri
| | - Anne E Frosch
- Department of Medicine, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Amira Mohamed
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Julie Gilbert
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Emily E Bendall
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Auden Bahr
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - H Keipp Talbot
- Departments of Medicine and Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adrienne Baughman
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelsey N Womack
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cassandra Johnson
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sydney A Swan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emilia Koumans
- Division of STD Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Meredith L McMorrow
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Jennifer L Harcourt
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Lydia J Atherton
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Ashley Burroughs
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Natalie J Thornburg
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Wesley H Self
- Vanderbilt Institute for Clinical and Translational Research and Department of Emergency Medicine and, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adam S Lauring
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Alfonso-Dunn R, Lin J, Lei J, Liu J, Roche M, De Oliveira A, Raisingani A, Kumar A, Kirschner V, Feuer G, Malin M, Sadiq SA. Humoral and cellular responses to repeated COVID-19 exposure in multiple sclerosis patients receiving B-cell depleting therapies: a single-center, one-year, prospective study. Front Immunol 2023; 14:1194671. [PMID: 37449202 PMCID: PMC10338057 DOI: 10.3389/fimmu.2023.1194671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Multiple sclerosis patients treated with anti-CD20 therapy (aCD20-MS) are considered especially vulnerable to complications from SARS-CoV-2 infection due to severe B-cell depletion with limited viral antigen-specific immunoglobulin production. Therefore, multiple vaccine doses as part of the primary vaccination series and booster updates have been recommended for this group of immunocompromised individuals. Even though much less studied than antibody-mediated humoral responses, T-cell responses play an important role against CoV-2 infection and are induced efficiently in vaccinated aCD20-MS patients. For individuals with such decoupled adaptive immunity, an understanding of the contribution of T-cell mediated immunity is essential to better assess protection against CoV-2 infection. Here, we present results from a prospective, single-center study for the assessment of humoral and cellular immune responses induced in aCD20-MS patients (203 donors/350 samples) compared to a healthy control group (43/146) after initial exposure to CoV-2 spike antigen and subsequent re-challenges. Low rates of seroconversion and RBD-hACE2 blocking activity were observed in aCD20-MS patients, even after multiple exposures (responders after 1st exposure = 17.5%; 2nd exposure = 29.3%). Regarding cellular immunity, an increase in the number of spike-specific monofunctional IFNγ+-, IL-2+-, and polyfunctional IFNγ+/IL-2+-secreting T-cells after 2nd exposure was found most noticeably in healthy controls. Nevertheless, a persistently higher T-cell response was detected in aCD20-MS patients compared to control individuals before and after re-exposure (mean fold increase in spike-specific IFNγ+-, IL-2+-, and IFNγ+/IL-2+-T cells before re-exposure = 3.9X, 3.6X, 3.5X/P< 0.001; after = 3.2X, 1.4X, 2.2X/P = 0.002, P = 0.05, P = 0.004). Moreover, cellular responses against sublineage BA.2 of the currently circulating omicron variant were maintained, to a similar degree, in both groups (15-30% T-cell response drop compared to ancestral). Overall, these results highlight the potential for a severely impaired humoral response in aCD20-MS patients even after multiple exposures, while still generating a strong T-cell response. Evaluating both humoral and cellular responses in vaccinated or infected MS patients on B-cell depletion therapy is essential to better assess individual correlations of immune protection and has implications for the design of future vaccines and healthcare strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, United States
| |
Collapse
|
4
|
Riddell AC, Cutino-Moguel T. The origins of new SARS-COV-2 variants in immunocompromised individuals. Curr Opin HIV AIDS 2023; 18:148-156. [PMID: 36977190 DOI: 10.1097/coh.0000000000000794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
PURPOSE OF REVIEW To explore the origins of new severe acute respiratory coronavirus 2 (SARS-CoV-2) variants in immunocompromised individuals and whether the emergence of novel mutations in these individuals is responsible for the development of variants of concern (VOC). RECENT FINDINGS Next generation sequencing of samples from chronically infected immunocompromised patients has enabled identification of VOC- defining mutations in individuals prior to the emergence of these variants worldwide. Whether these individuals are the source of variant generation is uncertain. Vaccine effectiveness in immunocompromised individuals and with respect to VOCs is also discussed. SUMMARY Current evidence on chronic SARS-CoV-2 infection in immunocompromised populations is reviewed including the relevance of this to the generation of novel variants. Continued viral replication in the absence of an effective immune response at an individual level or high levels of viral infection at the population level are likely to have contributed to the appearance of the main VOC.
Collapse
Affiliation(s)
- Anna C Riddell
- Department of Virology, Division of Infection, Barts Health NHS Trust, London, UK
| | | |
Collapse
|
5
|
SARS-CoV-2 Genome Variations in Viral Shedding of an Immunocompromised Patient with Non-Hodgkin's Lymphoma. Viruses 2023; 15:v15020377. [PMID: 36851588 PMCID: PMC9962578 DOI: 10.3390/v15020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) is the most transmissible ß-coronavirus in history, affecting all population groups. Immunocompromised patients, particularly cancer patients, have been highlighted as a reservoir to promote accumulation of viral mutations throughout persistent infection. CASE PRESENTATION We aimed to describe the clinical course and SARS-CoV-2 mutation profile for 102 days in an immunocompromised patient with non-Hodgkin's lymphoma and COVID-19. We used RT-qPCR to quantify SARS-CoV-2 viral load over time and whole-virus genome sequencing to identify viral lineage and mutation profile. The patient presented with a persistent infection through 102 days while being treated with cytotoxic chemotherapy for non-Hodgkin's lymphoma and received targeted therapy for COVID-19 with remdesivir and hyperimmune plasma. All sequenced samples belonged to the BA.1.1 lineage. We detected nine amino acid substitutions in five viral genes (Nucleocapsid, ORF1a, ORF1b, ORF13a, and ORF9b), grouped in two clusters: the first cluster with amino acid substitutions only detected on days 39 and 87 of sample collection, and the second cluster with amino acid substitutions only detected on day 95 of sample collection. The Spike gene remained unchanged in all samples. Viral load was dynamic but consistent with the disease flares. CONCLUSIONS This report shows that the multiple mutations that occur in an immunocompromised patient with persistent COVID-19 could provide information regarding viral evolution and emergence of new SARS-CoV-2 variants.
Collapse
|
6
|
Kimbrel J, Moon J, Avila-Herrera A, Martí JM, Thissen J, Mulakken N, Sandholtz SH, Ferrell T, Daum C, Hall S, Segelke B, Arrildt KT, Messenger S, Wadford DA, Jaing C, Allen JE, Borucki MK. Multiple Mutations Associated with Emergent Variants Can Be Detected as Low-Frequency Mutations in Early SARS-CoV-2 Pandemic Clinical Samples. Viruses 2022; 14:2775. [PMID: 36560780 PMCID: PMC9788161 DOI: 10.3390/v14122775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic analysis of intra-host viral populations provides unique insight into pre-emergent mutations that may contribute to the genotype of future variants. Clinical samples positive for SARS-CoV-2 collected in California during the first months of the pandemic were sequenced to define the dynamics of mutation emergence as the virus became established in the state. Deep sequencing of 90 nasopharyngeal samples showed that many mutations associated with the establishment of SARS-CoV-2 globally were present at varying frequencies in a majority of the samples, even those collected as the virus was first detected in the US. A subset of mutations that emerged months later in consensus sequences were detected as subconsensus members of intra-host populations. Spike mutations P681H, H655Y, and V1104L were detected prior to emergence in variant genotypes, mutations were detected at multiple positions within the furin cleavage site, and pre-emergent mutations were identified in the nucleocapsid and the envelope genes. Because many of the samples had a very high depth of coverage, a bioinformatics pipeline, "Mappgene", was established that uses both iVar and LoFreq variant calling to enable identification of very low-frequency variants. This enabled detection of a spike protein deletion present in many samples at low frequency and associated with a variant of concern.
Collapse
Affiliation(s)
- Jeffrey Kimbrel
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph Moon
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | | | - James Thissen
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Nisha Mulakken
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | - Tyshawn Ferrell
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Chris Daum
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Sara Hall
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Brent Segelke
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | - Sharon Messenger
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA 94804, USA
| | - Debra A. Wadford
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA 94804, USA
| | - Crystal Jaing
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | | | |
Collapse
|
7
|
Cuypers L, Dellicour S, Hong SL, Potter BI, Verhasselt B, Vereecke N, Lambrechts L, Durkin K, Bours V, Klamer S, Bayon-Vicente G, Vael C, Ariën KK, De Mendonca R, Soetens O, Michel C, Bearzatto B, Naesens R, Gras J, Vankeerberghen A, Matheeussen V, Martens G, Obbels D, Lemmens A, Van den Poel B, Van Even E, De Rauw K, Waumans L, Reynders M, Degosserie J, Maes P, André E, Baele G. Two Years of Genomic Surveillance in Belgium during the SARS-CoV-2 Pandemic to Attain Country-Wide Coverage and Monitor the Introduction and Spread of Emerging Variants. Viruses 2022; 14:2301. [PMID: 36298856 PMCID: PMC9612291 DOI: 10.3390/v14102301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available.
Collapse
Affiliation(s)
- Lize Cuypers
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, 1000 Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Samuel L. Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Barney I. Potter
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Bruno Verhasselt
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
| | - Nick Vereecke
- PathoSense BV, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, 9000 Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Keith Durkin
- Laboratory of Human Genetics, GIGA Research Institute, 4000 Liège, Belgium
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Research Institute, 4000 Liège, Belgium
- Department of Human Genetics, University Hospital of Liège, 4000 Liège, Belgium
| | - Sofieke Klamer
- Scientific Directorate of Epidemiology and Public Health, Sciensano, 1050 Brussels, Belgium
| | - Guillaume Bayon-Vicente
- Department of Proteomic and Microbiology, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| | - Carl Vael
- Clinical Laboratory, AZ Klina, 2930 Brasschaat, Belgium
| | - Kevin K. Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Ricardo De Mendonca
- Department of Microbiology, CUB-Hôpital Erasme, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Oriane Soetens
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Charlotte Michel
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), 1000 Brussels, Belgium
| | - Bertrand Bearzatto
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1000 Brussels, Belgium
| | - Reinout Naesens
- Department of Medical Microbiology, Ziekenhuis Netwerk Antwerpen, 2020 Antwerp, Belgium
| | - Jeremie Gras
- Institute of Pathology and Genetics (IPG), 6041 Gosselies, Belgium
| | - Anne Vankeerberghen
- Laboratory of Molecular Biology, Campus Aalst-Asse-Ninove, Onze-Lieve-Vrouwziekenhuis, 9300 Aalst, Belgium
| | - Veerle Matheeussen
- Laboratory of Medical Microbiology, Department of Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Wilrijk, Belgium
| | - Geert Martens
- Department of Laboratory Medicine, AZ Delta General Hospital, 8800 Roeselare, Belgium
| | - Dagmar Obbels
- Clinical Laboratory, Imelda Hospital, 2820 Bonheiden, Belgium
| | - Ann Lemmens
- Laboratory of Clinical Biology, AZ Sint-Maarten Hospital, 2800 Mechelen, Belgium
| | - Bea Van den Poel
- Clinical Laboratory, General Hospital Jan Portaels, 1800 Vilvoorde, Belgium
| | - Ellen Van Even
- Clinical Laboratory of Microbiology, HH Hospital Lier, 2500 Lier, Belgium
| | - Klara De Rauw
- Laboratory of Clinical Biology, AZ Sint Lucas Hospital, 9000 Ghent, Belgium
| | - Luc Waumans
- Clinical Laboratory, Jessa Hospital, 3500 Hasselt, Belgium
| | - Marijke Reynders
- Department of Laboratory Medicine, Medical Microbiology, AZ Sint-Jan Bruges-Ostend AV, 8000 Bruges, Belgium
| | - Jonathan Degosserie
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, CHU UCL Namur, 5530 Yvoir, Belgium
- Next Generation Sequencing Platform, Molecular Diagnostic Center, CHU UCL Namur, 5530 Yvoir, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Emmanuel André
- National Reference Centre for Respiratory Pathogens, Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
- Federal Testing Platform COVID-19, Department of Laboratory Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Berno G, Fabeni L, Matusali G, Gruber CEM, Rueca M, Giombini E, Garbuglia AR. SARS-CoV-2 Variants Identification: Overview of Molecular Existing Methods. Pathogens 2022; 11:1058. [PMID: 36145490 PMCID: PMC9504725 DOI: 10.3390/pathogens11091058] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of COVID-19 pandemic the Real Time sharing of genome sequences of circulating virus supported the diagnostics and surveillance of SARS-CoV-2 and its transmission dynamics. SARS-CoV-2 straightaway showed its tendency to mutate and adapt to the host, culminating in the emergence of variants; so it immediately became of crucial importance to be able to detect them quickly but also to be able to monitor in depth the changes on the whole genome to early identify the new possibly emerging variants. In this scenario, this manuscript aims to provide an overview of the existing methods for the identification of SARS-CoV-2 variants (from rapid method based on identification of one or more specific mutations to Whole Genome sequencing approach-WGS), taking into account limitations, advantages and applications of them in the field of diagnosis and surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy
| |
Collapse
|