1
|
Napit R, Elong Ngono A, Mihindukulasuriya KA, Pradhan A, Khadka B, Shrestha S, Droit L, Paredes A, Karki L, Khatiwada R, Tamang M, Chalise BS, Rawal M, Jha BK, Wang D, Handley SA, Shresta S, Manandhar KD. Dengue virus surveillance in Nepal yields the first on-site whole genome sequences of isolates from the 2022 outbreak. BMC Genomics 2024; 25:998. [PMID: 39449117 PMCID: PMC11515306 DOI: 10.1186/s12864-024-10879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The 4 serotypes of dengue virus (DENV1-4) can each cause potentially deadly dengue disease, and are spreading globally from tropical and subtropical areas to more temperate ones. Nepal provides a microcosm of this global phenomenon, having met each of these grim benchmarks. To better understand DENV transmission dynamics and spread into new areas, we chose to study dengue in Nepal and, in so doing, to build the onsite infrastructure needed to manage future, larger studies. METHODS AND RESULTS During the 2022 dengue season, we enrolled 384 patients presenting at a hospital in Kathmandu with dengue-like symptoms; 79% of the study participants had active or recent DENV infection (NS1 antigen and IgM). To identify circulating serotypes, we screened serum from 50 of the NS1+ participants by RT-PCR and identified DENV1, 2, and 3 - with DENV1 and 3 codominant. We also performed whole-genome sequencing of DENV, for the first time in Nepal, using our new on-site capacity. Sequencing analysis demonstrated the DENV1 and 3 genomes clustered with sequences reported from India in 2019, and the DENV2 genome clustered with a sequence reported from China in 2018. CONCLUSION These findings highlight DENV's geographic expansion from neighboring countries, identify China and India as the likely origin of the 2022 DENV cases in Nepal, and demonstrate the feasibility of building onsite capacity for more rapid genomic surveillance of circulating DENV. These ongoing efforts promise to protect populations in Nepal and beyond by informing the development and deployment of DENV drugs and vaccines in real time.
Collapse
Affiliation(s)
- Rajindra Napit
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kathie A Mihindukulasuriya
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Aunji Pradhan
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Binod Khadka
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Smita Shrestha
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lindsay Droit
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne Paredes
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lata Karki
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Rabindra Khatiwada
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Mamata Tamang
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bimal Sharma Chalise
- Department of Tropical and Infectious Disease, Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu, Nepal
| | - Manisha Rawal
- Department of Tropical and Infectious Disease, Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu, Nepal
| | | | - David Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, USA.
| | - Krishna Das Manandhar
- Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| |
Collapse
|
2
|
Mumtaz Z, Zia S, Saif R, Farhan Ul Haque M, Yousaf MZ. Evolutionary patterns and heterogeneity of dengue virus serotypes in Pakistan. J Evol Biol 2024; 37:915-925. [PMID: 38943464 DOI: 10.1093/jeb/voae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
A comprehensive and systematic examination of dengue virus (DENV) evolution is essential in Pakistan, where the virus poses a significant public health challenge due to its ability to adapt and evolve. To shed light on the intricate evolutionary patterns of all four DENV serotypes, we analyzed complete genome sequences (n = 43) and Envelope (E) gene sequences (n = 44) of all four DENV serotypes collected in Pakistan from 1994 to 2023, providing a holistic view of their genetic evolution. Our findings revealed that all four serotypes of DENV co-circulate in Pakistan with a close evolutionary relationship between DENV-1 and DENV-3. Among the genetically distinct serotypes DENV-2 and DENV-4, DENV-4 stands out as the most genetically different, while DENV-2 exhibits greater complexity due to the presence of multiple genotypes and the possibility of temporal fluctuations in genotype prevalence. Selective pressure analysis of the Envelope (E) gene revealed heterogeneity among sequences (n = 44), highlighting 46 codons in the genome experiencing selective pressure, characterized by a bias toward balancing selection, indicating genetic stability of the virus. Furthermore, our study suggested an intriguing evolutionary shift of DENV-4 toward the DENV-2 clade, potentially influenced by antibodies with cross-reactivity to multiple serotypes, providing a critical insight into the complex factors, shaping DENV evolution and contributing to the emergence of new serotypes.
Collapse
Affiliation(s)
- Zilwa Mumtaz
- KAM School of Life Sciences, Forman Christian College University, Lahore, Pakistan
| | - Saeeda Zia
- Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Rashid Saif
- Department of Biotechnology, Qarshi University, Lahore, Pakistan
| | | | | |
Collapse
|
3
|
Napit R, Ngono AE, Mihindukulasuriya KA, Pradhan A, Khadka B, Shrestha S, Droit L, Paredes A, Karki L, Khatiwada R, Tamang M, Chalise BS, Rawal M, Jha B, Wang D, Handley SA, Shresta S, Manandhar KD. Dengue Virus Surveillance in Nepal Yields the First On-Site Whole Genome Sequences of Isolates from the 2022 Outbreak. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597008. [PMID: 38895410 PMCID: PMC11185532 DOI: 10.1101/2024.06.02.597008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background The 4 serotypes of dengue virus (DENV1-4) can each cause potentially deadly dengue disease, and are spreading globally from tropical and subtropical areas to more temperate ones. Nepal provides a microcosm of this global phenomenon, having met each of these grim benchmarks. To better understand DENV transmission dynamics and spread into new areas, we chose to study dengue in Nepal and, in so doing, to build the onsite infrastructure needed to manage future, larger studies. Methods and Results During the 2022 dengue season, we enrolled 384 patients presenting at a hospital in Kathmandu with dengue-like symptoms; 79% of the study participants had active or recent DENV infection (NS1 antigen and IgM). To identify circulating serotypes, we screened serum from 50 of the NS1 + participants by RT-PCR and identified DENV1, 2, and 3 - with DENV1 and 3 codominant. We also performed whole-genome sequencing of DENV, for the first time in Nepal, using our new on-site capacity. Sequencing analysis demonstrated the DENV1 and 3 genomes clustered with sequences reported from India in 2019, and the DENV2 genome clustered with a sequence reported from China in 2018. Conclusion These findings highlight DENV's geographic expansion from neighboring countries, identify China and India as the likely origin of the 2022 DENV cases in Nepal, and demonstrate the feasibility of building onsite capacity for more rapid genomic surveillance of circulating DENV. These ongoing efforts promise to protect populations in Nepal and beyond by informing the development and deployment of DENV drugs and vaccines in real time.
Collapse
|
4
|
Sarker R, Roknuzzaman ASM, Emon FA, Dewan SMR, Hossain MJ, Islam MR. A perspective on the worst ever dengue outbreak 2023 in Bangladesh: What makes this old enemy so deadly, and how can we combat it? Health Sci Rep 2024; 7:e2077. [PMID: 38725559 PMCID: PMC11079431 DOI: 10.1002/hsr2.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/22/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background and Aims Bangladesh has been going through outbreaks of dengue fever cases every year since 2000. Yet this year's (2023) episode of dengue fever has crossed every line concerning fatality. Symptoms of the fever range from high fever, headaches, and muscle aches to deadly dengue hemorrhagic fever (DHF). The present review aims to assess the current pathogenicity and associated risk factors of recent dengue outbreaks in Bangladesh. Methods To perform this review work, we extracted relevant information from published articles available in PubMed, Scopus, and Google Scholar. We used dengue virus, dengue fever, and dengue outbreaks as keywords while searching for information. Results This Aedes mosquito-transmitted viral fever is more common in Bangladesh because of the tropical nature and immense burden of populations, resulting in convenient conditions for the reproduction of the vector. The rapid genetic transformation of this RNA virus and the resistance of its vector against insecticides have intensified the situation. The number of hospitalized patients has increased, and the case fatality rate has risen to 0.47%. Inadequate mosquito control measures, plenty of vector breeding sites, and a lack of public awareness have worsened the situation. Routine spraying of effective insecticides in high-risk zones, regular inspection of potential mosquito breeding sites, and public awareness campaigns are the keys to limiting the spread of this virus. Also, the availability of detection kits, improved hospital settings, and trained health professionals are mandatory to keep disease fatalities under control. Conclusion Dengue fever is a preventable disease. The successful development of a competent vaccine is now a prime need for preventing any future upsurge of the disease. Also, we recommend public awareness, vector control activities, and global collaboration to prevent spread.
Collapse
Affiliation(s)
- Rapty Sarker
- Department of PharmacyUniversity of Asia PacificDhakaBangladesh
| | | | | | | | | | | |
Collapse
|
5
|
Li B, Wang D, Xie X, Chen X, Liang G, Xing D, Zhao T, Wu J, Zhou X, Li C. Mosquito E-20-Monooxygenase Gene Knockout Increases Dengue Virus Replication in Aedes aegypti Cells. Viruses 2024; 16:525. [PMID: 38675868 PMCID: PMC11054288 DOI: 10.3390/v16040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
E-20-monooxygenase (E20MO) is an enzymatic product of the shade (shd) locus (cytochrome p450, E20MO). Initially discovered in Drosophila, E20MO facilitates the conversion of ecdysone (E) into 20-hydroxyecdysone (20E) and is crucial for oogenesis. Prior research has implicated 20E in growth, development, and insecticide resistance. However, little attention has been given to the association between the E20MO gene and DENV2 infection. The transcriptome of Ae. aegypti cells (Aag2 cells) infected with DENV2 revealed the presence of the E20MO gene. The subsequent quantification of E20MO gene expression levels in Aag2 cells post-DENV infection was carried out. A CRISPR/Cas9 system was utilized to create an E20MO gene knockout cell line (KO), which was then subjected to DENV infection. Analyses of DENV2 copies in KO and wild-type (WT) cells were conducted at different days post-infection (dpi). Plasmids containing E20MO were constructed and transfected into KO cells, with pre- and post-transfection viral copy comparisons. Gene expression levels of E20MO increased after DENV infection. Subsequently, a successful generation of an E20MO gene knockout cell line and the verification of code-shifting mutations at both DNA and RNA levels were achieved. Furthermore, significantly elevated DENV2 RNA copies were observed in the mid-infection phase for the KO cell line. Viral RNA copies were lower in cells transfected with plasmids containing E20MO, compared to KO cells. Through knockout and plasmid complementation experiments in Aag2 cells, the role of E20MO in controlling DENV2 replication was demonstrated. These findings contribute to our understanding of the intricate biological interactions between mosquitoes and arboviruses.
Collapse
Affiliation(s)
- Bo Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Di Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoxue Xie
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoli Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guorui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xinyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
6
|
Das B, Samal S, Hamdi H, Pal A, Biswas A, Behera J, Singh G, Behera CK, Sahoo DP, Pati S. Role of endoplasmic reticulum stress-related unfolded protein response and its implications in dengue virus infection for biomarker development. Life Sci 2023; 329:121982. [PMID: 37517582 DOI: 10.1016/j.lfs.2023.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Dengue virus (DENV) causes debilitating disease in humans, which varies at different rates in host cells, such as monocytes, macrophages, dendritic cells, Langerhans cells, and other cell types. Such heterogeneity in DENV infection in cells could be attributed to a range of factors, including host cell immune response, anti-viral cellular proteins, and virus mediated cellular autophagy. This review delineates an important feature of every cell, the unfolded protein response (UPR) that is attributed to the accumulation of several viral and unfolded/misfolded proteins, such as in DENV infection. UPR is a normal process to counteract endoplasmic reticulum (ER) stress that leads to cell autophagy; though the phenomenon is markedly upregulated during DENV infection. This could be attributed to the uncontrolled activation of the key UPR signaling pathways: inositol-requiring transmembrane kinase/endoribonuclease 1 (IRE1), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), and activating transcription factor-6 (ATF6), which promote cell autophagy under normal and diseased conditions through the downstream regulation of apoptosis promoting factors such as X-box binding protein (XBP1), GADD34, and ATF-6. Because DENV can modulate these signaling cascades, by promoting dysregulated cell autophagy, the ER stress mediated UPR pathways and the inherent agents could play an important role in delineating the severity of dengue infection with a potential for developing DENV targeted therapeutics.
Collapse
Affiliation(s)
- Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India.
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Hamida Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Aditi Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Arpita Biswas
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Jyotika Behera
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Gyanraj Singh
- Department of Anatomy, Kalinga Institute of Medical Sciences, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Chinmay Kumar Behera
- Department of Pediatrics, Kalinga Institute of Medical Sciences, KIIT-DU, Bhubaneswar, Odisha 751024, India
| | - Debee Prasad Sahoo
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024, India
| | - Sanghamitra Pati
- Regional Medical Research Centre-ICMR, Nalco Square, Bhubaneswar, Odisha 751023, India
| |
Collapse
|