1
|
Zhao L, Wang D, Jiang H, Gu Q, Gao H, Zhang L, Liu W, Li S, Kang X, Guo K. Isolation and characterization of bovine coronavirus variants with mutations in the hemagglutinin-esterase gene in dairy calves in China. BMC Vet Res 2025; 21:92. [PMID: 39994675 PMCID: PMC11849235 DOI: 10.1186/s12917-025-04538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory diseases in cattle and is responsible for severe economic losses. Recently, a novel BCoV variant with 12-nucleotide deletion or insertion in the hemagglutinin-esterase (HE) receptor-binding domain (RBD) has emerged. However, the biological consequences of these deletions/insertions and the prevalence of these variants remain unknown. Here, 47 diarrheal and 47 nasal swab samples were collected from five cattle farms in various Ningxia, China regions to detect and isolate BCoV. RESULTS Eleven complete HE genes and eight complete S genes were amplified from 34 BCoV-positive samples using RT-PCR. Eight BCoV strains were successfully isolated using HRT-18 cells, and four underwent genome sequencing. Three HE genes contained a 12-nucleotide insertion in the RBD, and a single HE gene contained a novel 12-nucleotide deletion. Phylogenetic analysis of genomes revealed that these HE-deletion/insertion variants do not share a common most recent ancestor with those reported from the US. Molecular docking results showed that the insertion of four additional amino acids between F211 and L212 increased the affinity of HE protein to O-acetylated sialic acid, which may be favorable for virion-particle attachment. Growth kinetics suggest that the HE-deletion variant had a non-cytopathic effect and lower virus titer. CONCLUSIONS These findings suggest that BCoV HE deleted/inserted variants are prevalent in cattle and exhibit various biological characteristics. We should be alert to these HE-variants with insertions or deletions in the RBD, which may increase the possibility of interspecies transmission.
Collapse
Affiliation(s)
- Long Zhao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Dong Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Huihua Jiang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Qingyun Gu
- Tibet Vocational Technical College, Lhasa, Tibet, 850030, China
| | - Haihui Gao
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Liang Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Wenhui Liu
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Shengqing Li
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, No. 1 Weier Road, Xining, Qinghai, 810003, China.
| | - Xiaodong Kang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, No. 590, Huanghe East Road, Yinchuan, Ningxia, 750002, China.
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Khan MY, Shah AU, Duraisamy N, ElAlaoui RN, Cherkaoui M, Hemida MG. Leveraging Artificial Intelligence and Gene Expression Analysis to Identify Some Potential Bovine Coronavirus (BCoV) Receptors and Host Cell Enzymes Potentially Involved in the Viral Replication and Tissue Tropism. Int J Mol Sci 2025; 26:1328. [PMID: 39941096 PMCID: PMC11818245 DOI: 10.3390/ijms26031328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Bovine coronavirus (BCoV) exhibits dual tissue tropism, infecting both the respiratory and enteric tracts of cattle. Viral entry into host cells requires a coordinated interaction between viral and host proteins. However, the specific cellular receptors and co-receptors facilitating BCoV entry remain poorly understood. Similarly, the roles of host proteases such as Furin, TMPRSS2, and Cathepsin-L (CTS-L), known to assist in the replication of other coronaviruses, have not been extensively explored for BCoV. This study aims to identify novel BCoV receptors and host proteases that modulate viral replication and tissue tropism. Bovine cell lines were infected with BCoV isolates from enteric and respiratory origins, and the host cell gene expression profiles post-infection were analyzed using next-generation sequencing (NGS). Differentially expressed genes encoding potential receptors and proteases were further assessed using in-silico prediction and molecular docking analysis. These analyses focused on known coronavirus receptors, including ACE2, NRP1, DPP4, APN, AXL, and CEACAM1, to identify their potential roles in BCoV infection. Validation of these findings was performed using the qRT-PCR assays targeting individual genes. We confirmed the gene expression profiles of these receptors and enzymes in some BCoV (+/-) lung tissues. Results revealed high binding affinities of 9-O-acetylated sialic acid and NRP1 to BCoV spike (S) and hemagglutinin-esterase (HE) proteins compared to ACE2, DPP4, and CEACAM1. Additionally, Furin and TMPRSS2 were predicted to interact with the BCoV-S polybasic cleavage site (RRSRR|A), suggesting their roles in S glycoprotein activation. This is the first study to explore the interactions of BCoV with multiple host receptors and proteases. Functional studies are recommended to confirm their roles in BCoV infection and replication.
Collapse
Affiliation(s)
- Mohd Yasir Khan
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY 11548, USA;
| | - Nithyadevi Duraisamy
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Reda Nacif ElAlaoui
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Mohammed Cherkaoui
- Department of Computer Science, College of Digital Engineering and Artificial Intelligence, Long Island University, Brooklyn, NY 11201, USA; (M.Y.K.); (N.D.); (R.N.E.); (M.C.)
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY 11548, USA;
| |
Collapse
|
3
|
Shah AU, Gauger P, Hemida MG. Isolation and molecular characterization of an enteric isolate of the genotype-Ia bovine coronavirus with notable mutations in the receptor binding domain of the spike glycoprotein. Virology 2025; 603:110313. [PMID: 39681059 DOI: 10.1016/j.virol.2024.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
BCoV new isolate was plaque purified, isolated, and propagated in vitro using MDBK and HRT-18. The full-length genome sequencing of this new BCoV isolate (31 Kbs) was drafted and deported in the GenBank. The genome organization is (5'-UTR-Gene-1-32kDa-HE-S-4.9 kDa-4.8 kDa-12.7 kDa-E-M-N-UTR-3'). Phylogenetic analysis based on the sequences of (the full-length genome, S, HE, and N) showed that the BCoV-13 clustered with other North American BCoV genotype I members. The sequence analysis shows several synonymous mutations among various domains of the S glycoprotein, especially the receptor binding domain. We found nine notable nucleotide deletions immediately downstream of the RNA binding domain of the nucleocapsid gene. Further gene function studies are encouraged to study the function of these mutations on the BCoV molecular pathogenesis and immune regulation. This research enhances our understanding of BCoV genomics and contributes to improved diagnostic and control measures for BCoV infections in cattle.
Collapse
Affiliation(s)
- Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548NY, USA.
| | - Phillip Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic University, Ames, IA, 50011, USA.
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548NY, USA.
| |
Collapse
|
4
|
Kostanić V, Kunić V, Prišlin Šimac M, Lolić M, Sukalić T, Brnić D. Comparative Insights into Acute Gastroenteritis in Cattle Caused by Bovine Rotavirus A and Bovine Coronavirus. Vet Sci 2024; 11:671. [PMID: 39729011 DOI: 10.3390/vetsci11120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine Rotavirus A (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle. These viruses infect intestinal enterocytes, leading to cell damage and consequently to malabsorption and diarrhea. BoRVA primarily affects calves under 14 days old with gastrointestinal clinical signs, while BCoV affects all ages, causing gastrointestinal and respiratory distress. The economic impact of BoRVA and BCoV, along with their interspecies transmission potential, warrants attention. This concise review discusses the molecular structure, epidemiology, pathogenesis, clinical signs, diagnosis, treatment, and preventive measures of BoRVA and BCoV while providing a comparative analysis. By offering practical guidance on managing such viral infections in cattle, these comparative insights may prove valuable for veterinarians in clinical practice.
Collapse
Affiliation(s)
- Vjekoslava Kostanić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Valentina Kunić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | | | - Marica Lolić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 32100 Vinkovci, Croatia
| | - Tomislav Sukalić
- Laboratory for Diagnostics, Croatian Veterinary Institute, 48260 Križevci, Croatia
| | - Dragan Brnić
- Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Shah AU, Hemida MG. The ex vivo infection model of the peripheral bovine mononuclear cells (PBMCs) and the bovine spleen cells with the bovine coronavirus (BCoV) induced a differential expression of the host cytokine genes profiles and modulates the virus replication. Virology 2024; 600:110259. [PMID: 39490206 DOI: 10.1016/j.virol.2024.110259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
The adaptive immune response during BCoV infection of peripheral blood mononuclear cells (PBMCs), the bovine spleen cells, and their isolated T lymphocytes was not studied well. Our study confirmed successful BCoV infection in PBMCs and spleen T cells. The BCoV replication was evidenced by measuring genome copy numbers using real-time PCR and expression levels of BCoV spike and nucleocapsid proteins via western blot and immunofluorescence assays. In infected PBMCs, CD4 T-cell levels were 1.45-fold higher, and CD8 T-cell levels were 1.6-fold lower compared to sham-infected cells. Conversely, infected splenocytes showed a 0.88-fold decrease in CD4 T-cells and a 1.88-fold increase in CD8 T-cells. The cytokine gene expression analysis revealed that BCoV infection activated type I interferon and upregulated IL-6 expression in PBMCs and splenocytes. These findings demonstrate that BCoV successfully infects immune cells from PBMCs and spleen, inducing differential host cytokine gene expression that favors virus replication.
Collapse
Affiliation(s)
- Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548NY, USA
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, 11548NY, USA.
| |
Collapse
|
6
|
Shah AU, Hemida MG. The dual actions of miRNA16a in restricting Bovine Coronavirus replication through downregulation of Furin and enhancing the host immune response. Sci Rep 2024; 14:29308. [PMID: 39592722 PMCID: PMC11599744 DOI: 10.1038/s41598-024-80708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
The roles of host cell miRNAs have not been well studied in the context of BCoV replication and immune regulation. This study aimed to identify miRNA candidates that regulate essential host genes involved in BCoV replication, tissue tropism, and immune regulation. To achieve these goals, we used two isolates of BCoV (enteric and respiratory) to infect bovine endothelial cells (BECs) and Madine Darby Bovine Kidney (MDBK) cells. We determined the miRNA expression profiles of these cells after BCoV infection. The expression of miRNA16a is differentially altered during BCoV infection. Our data show that miRNA16a is a significantly downregulated miRNA in both in vitro and ex vivo models. We confirmed the miRNA16aexpression profile by qRT-PCR. Overexpression of pre-miRNA16ain the BEC and the MDBK cell lines markedly inhibited BCoV infection, as determined by the viral genome copy numbers measured by qRT‒PCR, viral protein expression (S and N) measured by Western blot, and virus infectivity using a plaque assay. Our bioinformatic prediction showed that Furin is a potential target of miRNA16a. We compared the Furin protein expression level in pre-miRNA16a-transfected/BCoV-infected cells to that in pre-miRNA-scrambled-transfected cells. Our qRT-PCR and Western blot data revealed marked inhibition of Furin expression at the mRNA and protein levels, respectively. BCoV-S protein expression was markedly inhibited at both the mRNA and protein levels. To further confirm the impact of the downregulation of the Furin enzyme on the replication of BCoV, we transfected cells with specific Furin-siRNAs parallel to the scrambled siRNA. Marked inhibition of BCoV replication was observed in the Furin-siRNA-treated group. To further validate Furin as a novel target for miRNA16a, we cloned the 3'UTR of bovine Furin carrying the seed region of miRNA16a in the dual luciferase vector. Our data showed that luciferase activity in pre-miRNA16a-transfected cells decreased by more than 50% compared to cells transfected with the construct carrying the mutated Furin seed region. Our data confirmed that miRNA16ainhibits BCoV replication by targeting the host cell line Furin and the BCoV-S glycoprotein. It also enhances the host immune response, which contributes to the inhibition of viral replication. This is the first study to confirm that Furin is a valid target of miRNA16a. Our findings highlight the clinical applications of host miRNA16a as a potential miRNA-based vaccine/antiviral therapy.
Collapse
Affiliation(s)
- Abid Ullah Shah
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 212 Roth Hall, 720 Northern Blvd., Brookville, NY, 11548, USA
| | - Maged Gomaa Hemida
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 212 Roth Hall, 720 Northern Blvd., Brookville, NY, 11548, USA.
| |
Collapse
|
7
|
Li S, Yuan X, Mao L, Cai X, Xu X, Li J, Li B. First isolation of bovine coronavirus with a three-amino-acid deletion in the N gene causing severe respiratory and digestive disease in calve. Front Microbiol 2024; 15:1466096. [PMID: 39411436 PMCID: PMC11477655 DOI: 10.3389/fmicb.2024.1466096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024] Open
Abstract
Bovine coronavirus (BCoV), a persistent threat to global cattle industry, has caused significant economic losses worldwide. In this study, a viral strain was isolated from the intestinal content of a diseased calve, and identified by cytopathic effects observation, indirect immunofluorescence assay and electron microscopy. Results showed that BCoV NXWZ2310 belonging to the GIIb genotype and has a three-amino-acid deletion in the serine-rich region of the N gene. Importantly, the BCoV NXWZ2310 strain exhibited strong pathogenicity, causing nasal discharge and watery diarrhea in calves for 8 and 10 days, respectively. Viral shedding was detected in nasal, throat and rectal swabs at levels reaching 106.228 copies/mL, 105.0 copies /mL and 106.692 copies/mL, respectively. Pathological examination showed that NXWZ2310 resulted in parenchymal lesions of the pulmonary lobe and significant intestinal lesions. Both the lungs and intestines displayed marked microscopic lesions with clear viral antigens present. BCoV NXWZ2310 strain with N-gene deletion mutations, caused severe respiratory and digestive disease in calves. Therefore, effective strategies are needed for the prevention and control of this isolate.
Collapse
Affiliation(s)
- Siyuan Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuesong Yuan
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Li Mao
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Xuhang Cai
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jizong Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- School of Food and Biological Engineering, Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
8
|
van den Hurk S, Regmi G, Naikare HK, Velayudhan BT. Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle. Pathogens 2024; 13:524. [PMID: 39057751 PMCID: PMC11279749 DOI: 10.3390/pathogens13070524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry.
Collapse
Affiliation(s)
- Shaun van den Hurk
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Girija Regmi
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 30602, USA;
| | - Hemant K. Naikare
- University of Minnesota Veterinary Diagnostic Laboratory, Saint Paul, MN 55108, USA;
| | - Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
9
|
Li Y, Palomares RA, Liu M, Xu J, Koo C, Granberry F, Locke SR, Habing G, Saif LJ, Wang L, Wang Q. Isolation and Characterization of Contemporary Bovine Coronavirus Strains. Viruses 2024; 16:965. [PMID: 38932257 PMCID: PMC11209117 DOI: 10.3390/v16060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Bovine coronavirus (BCoV) poses a threat to cattle health worldwide, contributing to both respiratory and enteric diseases. However, few contemporary strains have been isolated. In this study, 71 samples (10 nasal and 61 fecal) were collected from one farm in Ohio in 2021 and three farms in Georgia in 2023. They were screened by BCoV-specific real-time reverse transcription-PCR, and 15 BCoV-positive samples were identified. Among them, five BCoV strains from fecal samples were isolated using human rectal tumor-18 (HRT-18) cells. The genomic sequences of five strains were obtained. The phylogenetic analysis illustrated that these new strains clustered with US BCoVs that have been detected since the 1990s. Sequence analyses of the spike proteins of four pairs of BCoVs, with each pair originally collected from the respiratory and enteric sites of one animal, revealed the potential amino acid residue patterns, such as D1180 for all four enteric BCoVs and G1180 for three of four respiratory BCoVs. This project provides new BCoV isolates and sequences and underscores the genetic diversity of BcoVs, the unknown mechanisms of disease types, and the necessity of sustained surveillance and research for BCoVs.
Collapse
Affiliation(s)
- Yu Li
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
| | - Roberto A. Palomares
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Rd., Athens, GA 30602, USA; (R.A.P.); (C.K.); (F.G.)
| | - Mingde Liu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Jiayu Xu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Chohee Koo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Rd., Athens, GA 30602, USA; (R.A.P.); (C.K.); (F.G.)
| | - Francesca Granberry
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 2200 College Station Rd., Athens, GA 30602, USA; (R.A.P.); (C.K.); (F.G.)
| | - Samantha R. Locke
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Greg Habing
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (Y.L.); (M.L.); (J.X.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.R.L.); (G.H.)
| |
Collapse
|
10
|
Li S, Huang J, Cai X, Mao L, Xie L, Wang F, Zhou H, Yuan X, Sun X, Fu X, Fan B, Xu X, Li J, Li B. Prevalence and Evolutionary Characteristics of Bovine Coronavirus in China. Vet Sci 2024; 11:230. [PMID: 38921977 PMCID: PMC11209178 DOI: 10.3390/vetsci11060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/27/2024] Open
Abstract
Bovine coronavirus (BCoV), bovine rotavirus, bovine viral diarrhea virus, and bovine astrovirus are the most common intestinal pathogenic viruses causing diarrhea in cattle. We collected 1646 bovine fecal samples from January 2020 to August 2023. BCoV was the major pathogen detected, with a positive rate of 34.02% (560/1646). Of the 670 diarrheal samples and 976 asymptomatic samples, 209 and 351 were BCoV-positive, respectively. Studying the relevance of diarrhea associated with BCoV has shown that the onset of diarrheal symptoms post-infection is strongly correlated with the cattle's age and may also be related to the breed. We amplified and sequenced the hemagglutinin esterase (HE), spike protein, and whole genomes of the partially positive samples and obtained six complete HE sequences, seven complete spike sequences, and six whole genomes. Molecular characterization revealed that six strains were branched Chinese strains, Japanese strains, and partial American strains from the GⅡb subgroup. Strains HBSJZ2202 and JSYZ2209 had four amino acid insertions on HE. We also analyzed ORF1a and found disparities across various regions within GIIb, which were positioned on separate branches within the phylogenetic tree. This work provides data for further investigating the epidemiology of BCoV and for understanding and analyzing BCoV distribution and dynamics.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jin Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Lingling Xie
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China; (L.X.); (F.W.)
| | - Fu Wang
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang 550018, China; (L.X.); (F.W.)
| | - Hua Zhou
- Qianxi Animal Disease Control Center, Qianxi 551500, China;
| | - Xuesong Yuan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinru Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Xincheng Fu
- Langfang Municipal Bureau of Agriculture and Rural Affairs, Langfang 065000, China;
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.L.); (J.H.); (X.C.); (L.M.); (X.Y.); (X.S.); (B.F.)
- Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Moreno A, Canziani S, Lelli D, Castelli A, Bianchi A, Bertoletti I, Maccarinelli F, Carlomagno M, Paini M, Rossato M, Delledonne M, Giacomelli S, Cordedda A, Nicoloso S, Bellinello E, Campagnoli A, Trogu T. Molecular and Serological Detection of Bovine Coronaviruses in Marmots ( Marmota marmota) in the Alpine Region. Viruses 2024; 16:591. [PMID: 38675932 PMCID: PMC11054042 DOI: 10.3390/v16040591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, virological surveillance focused on coronaviruses in marmots in the Alpine region in 2022, captured as part of a population control reduction program in the Livigno area. Seventy-six faecal samples were randomly collected from marmots at the time of capture and release and tested for genome detection of pan-coronavirus, pan-pestivirus, canine distemper virus, and influenza A and D virus. Nine faecal samples were positive in the Pan-CoV RT-PCR, while all were negative for the other viruses. Pan-coronavirus positives were further identified using Illumina's complete genome sequencing, which showed the highest homology with Bovine Coronavirus previously detected in roe deer in the Alps. Blood samples (n.35) were collected randomly from animals at release and tested for bovine coronavirus (BCoV) antibodies using competitive ELISA and VNT. Serological analyses revealed that 8/35 sera were positive for BCoV antibodies in both serological tests. This study provides molecular and serological evidence of the presence of BCoV in an alpine marmot population due to a likely spillover event. Marmots share areas and pastures with roe deer and other wild ruminants, and environmental transmission is a concrete possibility.
Collapse
Affiliation(s)
- Ana Moreno
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Sabrina Canziani
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Davide Lelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Anna Castelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Alessandro Bianchi
- Sondrio Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via Bormio, 30, 23100 Sondrio, Italy; (A.B.); (I.B.)
| | - Irene Bertoletti
- Sondrio Diagnostic Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via Bormio, 30, 23100 Sondrio, Italy; (A.B.); (I.B.)
| | - Federica Maccarinelli
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| | - Marco Carlomagno
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.C.); (M.P.); (M.R.); (M.D.)
| | - Matteo Paini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.C.); (M.P.); (M.R.); (M.D.)
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.C.); (M.P.); (M.R.); (M.D.)
- Genartis s.r.l., Via IV Novembre 24, 37126 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (M.C.); (M.P.); (M.R.); (M.D.)
- Genartis s.r.l., Via IV Novembre 24, 37126 Verona, Italy
| | - Stefano Giacomelli
- ATS della Montagna, Via Nazario Sauro, 36/38, 23100 Sondrio, Italy; (S.G.); (A.C.)
| | - Antonella Cordedda
- ATS della Montagna, Via Nazario Sauro, 36/38, 23100 Sondrio, Italy; (S.G.); (A.C.)
| | - Sandro Nicoloso
- Dimensione Ricerca Ecologie e Ambiente Italia Società Cooperativa, Via Enrico Bindi n. 14, 51100 Pistoia, Italy; (S.N.); (E.B.)
| | - Enrica Bellinello
- Dimensione Ricerca Ecologie e Ambiente Italia Società Cooperativa, Via Enrico Bindi n. 14, 51100 Pistoia, Italy; (S.N.); (E.B.)
| | | | - Tiziana Trogu
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via A. Bianchi, 9, 25124 Brescia, Italy; (S.C.); (D.L.); (A.C.); (F.M.); (T.T.)
| |
Collapse
|
12
|
Workman AM, Harhay GP, Groves JT, Vander Ley BL. Two bovine hepacivirus genome sequences from U.S. cattle. J Vet Diagn Invest 2024; 36:274-277. [PMID: 38414254 PMCID: PMC10929628 DOI: 10.1177/10406387231225656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Bovine hepacivirus (BoHV) is closely related to the hepatitis C virus (HCV) in humans and can cause both acute and chronic liver infections in cattle. BoHV was first identified in Ghana and Germany in 2015 and since then it has been detected and characterized in other countries around the world, but no strains have been sequenced from U.S. cattle. To date, BoHV has been classified into 2 genotypes (1 and 2), with genotype 1 being further divided into 11 subtypes (A-K). However, the true genetic diversity of BoHV is likely underestimated given limited surveillance and a lack of published genome sequences. Here, we sequenced 2 nearly complete BoHV genomes from serum samples collected in 2019 from beef cattle in Missouri. Sequence comparisons and phylogenetic analysis showed that isolate MARC/2019/60 had high sequence homology with genotype 1, subtype E isolates from China. In contrast, isolate MARC/2019/50 represented a novel BoHV subtype within genotype 2. Thus, we report the first genomic characterization of BoHV isolates from U.S. cattle, and the second complete BoHV2 genome worldwide. This work increases our knowledge of the global genetic diversity of BoHV and demonstrates the co-circulation of divergent BoHV strains in U.S. cattle.
Collapse
Affiliation(s)
- Aspen M. Workman
- U.S. Meat Animal Research Center, U.S. Department of Agriculture, Agricultural Research Service, Clay Center, NE, USA
| | - Gregory P. Harhay
- U.S. Meat Animal Research Center, U.S. Department of Agriculture, Agricultural Research Service, Clay Center, NE, USA
| | | | - Brian L. Vander Ley
- University of Nebraska–Lincoln, Great Plains Veterinary Educational Center, Clay Center, NE, USA
| |
Collapse
|