1
|
Poon AFY. Prospects for a sequence-based taxonomy of influenza A virus subtypes. Virus Evol 2024; 10:veae064. [PMID: 39247559 PMCID: PMC11378807 DOI: 10.1093/ve/veae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/03/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Hemagglutinin (HA) and neuraminidase (NA) proteins are the primary antigenic targets of influenza A virus (IAV) infections. IAV infections are generally classified into subtypes of HA and NA proteins, e.g. H3N2. Most of the known subtypes were originally defined by a lack of antibody cross-reactivity. However, genetic sequencing has played an increasingly important role in characterizing the evolving diversity of IAV. Novel subtypes have recently been described solely by their genetic sequences, and IAV infections are routinely subtyped by molecular assays, or the comparison of sequences to references. In this study, I carry out a comparative analysis of all available IAV protein sequences in the Genbank database (over 1.1 million, reduced to 272,292 unique sequences prior to phylogenetic reconstruction) to determine whether the serologically defined subtypes can be reproduced with sequence-based criteria. I show that a robust genetic taxonomy of HA and NA subtypes can be obtained using a simple clustering method, namely, by progressively partitioning the phylogeny on its longest internal branches. However, this taxonomy also requires some amendments to the current nomenclature. For example, two IAV isolates from bats previously characterized as a divergent lineage of H9N2 should be separated into their own subtype. With the exception of these small and highly divergent lineages, the phylogenies relating each of the other six genomic segments do not support partitions into major subtypes.
Collapse
Affiliation(s)
- Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, Dental Sciences Building, Rm. 4044, London, Ontario N6A 5C1, Canada
- Department of Microbiology & Immunology, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Department of Computer Science, Western University, Room 355, Middlesex College, London N6A 5B7, Canada
| |
Collapse
|
2
|
Halwe NJ, Hamberger L, Sehl-Ewert J, Mache C, Schön J, Ulrich L, Calvelage S, Tönnies M, Fuchs J, Bandawane P, Loganathan M, Abbad A, Carreño JM, Bermúdez-González MC, Simon V, Kandeil A, El-Shesheny R, Ali MA, Kayali G, Budt M, Hippenstiel S, Hocke AC, Krammer F, Wolff T, Schwemmle M, Ciminski K, Hoffmann D, Beer M. Bat-borne H9N2 influenza virus evades MxA restriction and exhibits efficient replication and transmission in ferrets. Nat Commun 2024; 15:3450. [PMID: 38664395 PMCID: PMC11045726 DOI: 10.1038/s41467-024-47455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.
Collapse
Affiliation(s)
- Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Lea Hamberger
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Christin Mache
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Mario Tönnies
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Pooja Bandawane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria C Bermúdez-González
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
| | - Ghazi Kayali
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Matthias Budt
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
3
|
Karamendin K, Kydyrmanov A, Fereidouni S. Has avian influenza virus H9 originated from a bat source? Front Vet Sci 2024; 10:1332886. [PMID: 38260204 PMCID: PMC10801046 DOI: 10.3389/fvets.2023.1332886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Influenza A viruses are important pathogens that can cause diseases with high mortality in humans, animals, and birds; and wild birds are considered the primary reservoir of all subtypes in nature. After discovering the H9 influenza A viruses in bats, questions arose about their potential to serve as an additional natural reservoir and about the priority of the viral origin: Did the virus initially circulate in bats and then transmit to birds or vice versa? Influenza A viruses of the H9 subtype are of particular interest because fatal infections of humans caused by H5, H7, and H10 influenza viruses contained RNA segments from H9 viruses. Recently, a novel subtype of influenza A virus (H19) was reported and it was closely related to the H9 bat influenza A virus by its hemagglutinin structure. The genome of novel H19 has revealed a mixed characteristic genomic signature of both avian and bat influenza viruses. The time to most recent common ancestor (TMRCA) estimates have shown that the divergence time between the bat and avian H9-similar influenza virus occurred approximately at the end of the XVIII century. This article discusses the evolution and possible origin of influenza viruses of the H9 subtype isolated from bats and birds. The obtained data, along with the known data, suggest that the primary reservoir of the H9 influenza virus is wild birds, from which the virus was transmitted to bats. We hypothesize that the novel H19 could be a descendant of an intermediate influenza virus that was in the transition stage of spillover from avian to bat hosts.
Collapse
Affiliation(s)
- Kobey Karamendin
- Laboratory of Viral Ecology, Scientific and Production Center of Microbiology and Virology, Department of Virology, Almaty, Kazakhstan
| | - Aidyn Kydyrmanov
- Laboratory of Viral Ecology, Scientific and Production Center of Microbiology and Virology, Department of Virology, Almaty, Kazakhstan
| | - Sasan Fereidouni
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Alasiri A, Soltane R, Hegazy A, Khalil AM, Mahmoud SH, Khalil AA, Martinez-Sobrido L, Mostafa A. Vaccination and Antiviral Treatment against Avian Influenza H5Nx Viruses: A Harbinger of Virus Control or Evolution. Vaccines (Basel) 2023; 11:1628. [PMID: 38005960 PMCID: PMC10675773 DOI: 10.3390/vaccines11111628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the panzootic nature of emergent highly pathogenic avian influenza H5Nx viruses in wild migratory birds and domestic poultry, only a limited number of human infections with H5Nx viruses have been identified since its emergence in 1996. Few countries with endemic avian influenza viruses (AIVs) have implemented vaccination as a control strategy, while most of the countries have adopted a culling strategy for the infected flocks. To date, China and Egypt are the two major sites where vaccination has been adopted to control avian influenza H5Nx infections, especially with the widespread circulation of clade 2.3.4.4b H5N1 viruses. This virus is currently circulating among birds and poultry, with occasional spillovers to mammals, including humans. Herein, we will discuss the history of AIVs in Egypt as one of the hotspots for infections and the improper implementation of prophylactic and therapeutic control strategies, leading to continuous flock outbreaks with remarkable virus evolution scenarios. Along with current pre-pandemic preparedness efforts, comprehensive surveillance of H5Nx viruses in wild birds, domestic poultry, and mammals, including humans, in endemic areas is critical to explore the public health risk of the newly emerging immune-evasive or drug-resistant H5Nx variants.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (A.A.); (R.S.)
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt;
| | - Ahmed Magdy Khalil
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| | - Ahmed A. Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agriculture Research Center (ARC), Cairo 11435, Egypt;
| | | | - Ahmed Mostafa
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
- Center of Scientific Excellence for Influenza Viruses, National Research Center, Giza 12622, Egypt;
| |
Collapse
|
5
|
Geldenhuys M, Ross N, Dietrich M, de Vries JL, Mortlock M, Epstein JH, Weyer J, Pawęska JT, Markotter W. Viral maintenance and excretion dynamics of coronaviruses within an Egyptian rousette fruit bat maternal colony: considerations for spillover. Sci Rep 2023; 13:15829. [PMID: 37739999 PMCID: PMC10517123 DOI: 10.1038/s41598-023-42938-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023] Open
Abstract
Novel coronavirus species of public health and veterinary importance have emerged in the first two decades of the twenty-first century, with bats identified as natural hosts for progenitors of many coronaviruses. Targeted wildlife surveillance is needed to identify the factors involved in viral perpetuation within natural host populations, and drivers of interspecies transmission. We monitored a natural colony of Egyptian rousette bats at monthly intervals across two years to identify circulating coronaviruses, and to investigate shedding dynamics and viral maintenance within the colony. Three distinct lineages were detected, with different seasonal temporal excretion dynamics. For two lineages, the highest periods of coronavirus shedding were at the start of the year, when large numbers of bats were found in the colony. Highest peaks for a third lineage were observed towards the middle of the year. Among individual bat-level factors (age, sex, reproductive status, and forearm mass index), only reproductive status showed significant effects on excretion probability, with reproductive adults having lower rates of detection, though factors were highly interdependent. Analysis of recaptured bats suggests that viral clearance may occur within one month. These findings may be implemented in the development of risk reduction strategies for potential zoonotic coronavirus transmission.
Collapse
Affiliation(s)
- Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| | | | - Muriel Dietrich
- UMR Processus Infectieux en Milieu Insulaire Tropical, Sainte-Clotilde, Reunion Island, France
| | - John L de Vries
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jonathan H Epstein
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- EcoHealth Alliance, New York, USA
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Janusz T Pawęska
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|