1
|
Castro-Muñoz JL, Maestri D, Yoon L, Karisetty BC, Tempera I, Lieberman P. Histone Variant H2A.Z Cooperates with EBNA1 to Maintain Epstein-Barr Virus Latent Epigenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635203. [PMID: 39975074 PMCID: PMC11838259 DOI: 10.1101/2025.01.28.635203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Chromatin structure plays a central role in the regulation of Epstein-Barr Virus (EBV) latency. The histone variant H2A.Z.1 has been implicated in chromatin structures associated with initiation of transcription and DNA replication. Here, we investigate the functional role of H2AZ.1 in the regulation of EBV chromatin, gene expression and copy number during latent infection. We found that H2A.Z.1 is highly enriched with EBNA1 binding sites at oriP and Qp, and to a lesser extent with transcriptionally active CTCF binding sites on the EBV genomes in both Mutu I Burkitt lymphoma (BL) and SNU719 EBV-associated gastric carcinoma (EBVaGC) cell lines. RNA-interference depletion of H2A.Z.1 resulted in the reactivation of viral lytic genes (ZTA and EAD) and increases viral DNA copy numbers in both MutuI and SNU719 cells. H2A.Z depletion also led to a decrease in EBNA1 binding to oriP and Qp, on the viral episome as well as on oriP plasmids independently of other viral genes and genomes. H2A.Z.1 depletion also reduced peaks of H3K27ac and H4K20me3 at regulatory elements in the EBV genome. In the cellular genome, H2A.Z.1 colocalized with only a subset of EBNA1 binding sites and H2A.Z.1 depletion altered transcription of genes associated with myc targets and mTORC1 signaling. Taken together, these findings indicate that H2A.Z.1 cooperates with EBNA1 to regulate chromatin structures important for epigenetic programming of the latent episome.
Collapse
Affiliation(s)
| | | | - Leena Yoon
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
2
|
Singh RK, Vangala R, Torne AS, Bose D, Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front Microbiol 2025; 15:1484455. [PMID: 39839102 PMCID: PMC11747046 DOI: 10.3389/fmicb.2024.1484455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways. The resultant reprogramming can lead to activation of oncogenes, silencing of tumor suppressor genes, and evasion of the immune response, which ultimately contributes to the oncogenic potential of these viruses. Furthermore, in this review, we explore current therapeutic strategies targeting these epigenetic alterations and discuss future directions for research and treatment. Through this comprehensive examination of the epigenetic and epitranscriptomic reprogramming mechanisms employed by oncogenic gamma herpesviruses, we aim to provide valuable insights into potential avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Banerjee A, Dass D, Mukherjee S, Kaul M, Harshithkumar R, Bagchi P, Mukherjee A. The 'Oma's of the Gammas-Cancerogenesis by γ-Herpesviruses. Viruses 2024; 16:1928. [PMID: 39772235 PMCID: PMC11680331 DOI: 10.3390/v16121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis. These viral proteins can modulate several cellular pathways, including the NF-κB and JAK/STAT pathways, which play essential roles in cell survival and inflammation. Epigenetic modifications further contribute to EBV- and KSHV-mediated cancerogenesis. Both EBV and KSHV manipulate host cell DNA methylation, histone modification, and chromatin remodeling, the interplay of which contribute to the elevation of oncogene expression and the silencing of the tumor suppressor genes. Immune factors also play a pivotal role in the development of cancer. The γ-herpesviruses have evolved intricate immune evasion strategies, including the manipulation of the major histocompatibility complex (MHC) and the release of cytokines, allowing infected cells to evade immune detection and destruction. In addition, a compromised immune system, such as in HIV/AIDS patients, significantly increases the risk of cancers associated with EBV and KSHV. This review aims to provide a comprehensive overview of the genetic, epigenetic, and immune mechanisms by which γ-herpesviruses drive cancerogenesis, highlighting key molecular pathways and potential therapeutic targets.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Debashree Dass
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Soumik Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Mollina Kaul
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - R. Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Parikshit Bagchi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
- AcSIR—Academy of Scientific & Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
4
|
Groves IJ, O’Connor CM. Loopy virus or controlled contortionist? 3D regulation of HCMV gene expression by CTCF-driven chromatin interactions. J Virol 2024; 98:e0114824. [PMID: 39212383 PMCID: PMC11495066 DOI: 10.1128/jvi.01148-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Three-dimensional chromatin control of eukaryotic transcription is pivotal for regulating gene expression. This additional layer of epigenetic regulation is also utilized by DNA viruses, including herpesviruses. Dynamic, spatial genomic organization often involves looping of chromatin anchored by host-encoded CCCTC-binding factor (CTCF) and other factors, which control crosstalk between promoters and enhancers. Herein, we review the contribution of CTCF-mediated looping in regulating transcription during herpesvirus infection, with a specific focus on the betaherpesvirus, human cytomegalovirus (HCMV).
Collapse
Affiliation(s)
- Ian J. Groves
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine M. O’Connor
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Singh P, Zhu L, Shipley MA, Ye ZA, Neumann DM. The HSV-1 encoded CCCTC-binding factor, CTRL2, impacts the nature of viral chromatin during HSV-1 lytic infection. PLoS Pathog 2024; 20:e1012621. [PMID: 39374265 PMCID: PMC11486355 DOI: 10.1371/journal.ppat.1012621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/17/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
HSV-1 genomes are rapidly heterochromatinized following entry by host cells to limit viral gene expression. Efficient HSV-1 genome replication requires mechanisms that de-repress chromatin associated with the viral genome. CCCTC-binding factors, or CTCF insulators play both silencing and activating roles in cellular transcriptional regulation. Importantly, the HSV-1 genome encodes several CTCF insulators that flank IE genes, implying that individual HSV-1 encoded CTCF insulators regulate IE transcription during all stages of the HSV-1 life cycle. We previously reported that the HSV-1 encoded CTCF insulator located downstream of the LAT (CTRL2) controlled IE gene silencing during latency. To further characterize the role of this insulator during the lytic infection we leveraged a ΔCTRL2 recombinant virus to show that there was a genome replication defect that stemmed from decreased IE gene expression in fibroblasts and epithelial cells at early times following initiation of infection. Further experiments indicated that the defect in gene expression resulted from chromatin inaccessibility in the absence of the insulator. To elucidate how chromatin accessibility was altered in the absence of the CTRL2 insulator, we showed that enrichment of Alpha-thalassemia/mental retardation, X-linked chromatin remodeler (ATRX), and the histone variant H3.3, both of which are known for their roles in maintaining repressive histone markers on the HSV-1 viral genome were increased on IE regions of HSV-1. Finally, both H3K27me3 and H3K9me3 repressive histone marks remained enriched by 4 hours post infection in the absence of the CTRL2 insulator, confirming that the CTRL2 insulator is required for de-repression of IE genes of viral genomes. To our knowledge these are the first data that show that a specific CTCF insulator in the HSV-1 genome (CTRL2) regulates chromatin accessibility during the lytic infection.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Liqian Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
- College of Life sciences, Hebei University, Baoding, China
| | - Mason A. Shipley
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Ziyun A. Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| | - Donna M. Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin- Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
6
|
Murray-Nerger LA, Maestri D, Liu X, Li Z, Auld NR, Tempera I, Teng M, Gewurz BE. The DNA loop release factor WAPL suppresses Epstein-Barr virus latent membrane protein expression to maintain the highly restricted latency I program. PLoS Pathog 2024; 20:e1012525. [PMID: 39241017 PMCID: PMC11410233 DOI: 10.1371/journal.ppat.1012525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 08/23/2024] [Indexed: 09/08/2024] Open
Abstract
Epstein-Barr virus (EBV) uses latency programs to colonize the memory B-cell reservoir, and each program is associated with human malignancies. However, knowledge remains incomplete of epigenetic mechanisms that maintain the highly restricted latency I program, present in memory and Burkitt lymphoma cells, in which EBNA1 is the only EBV-encoded protein expressed. Given increasing appreciation that higher order chromatin architecture is an important determinant of viral and host gene expression, we investigated roles of Wings Apart-Like Protein Homolog (WAPL), a host factor that unloads cohesin to control DNA loop size and that was discovered as an EBNA2-associated protein. WAPL knockout (KO) in Burkitt cells de-repressed LMP1 and LMP2A expression, but not other EBV oncogenes, to yield a viral program reminiscent of EBV latency II, which is rarely observed in B-cells. WAPL KO also increased LMP1/2A levels in latency III lymphoblastoid cells. WAPL KO altered EBV genome architecture, triggering formation of DNA loops between the LMP promoter region and the EBV origins of lytic replication (oriLyt). Hi-C analysis further demonstrated that WAPL KO reprogrammed EBV genomic DNA looping. LMP1 and LMP2A de-repression correlated with decreased histone repressive marks at their promoters. We propose that EBV coopts WAPL to negatively regulate latent membrane protein expression to maintain Burkitt latency I.
Collapse
Affiliation(s)
- Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Davide Maestri
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Xiang Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Zhixuan Li
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Nina R. Auld
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
7
|
Groves IJ, Matthews SM, O’Connor CM. Host-encoded CTCF regulates human cytomegalovirus latency via chromatin looping. Proc Natl Acad Sci U S A 2024; 121:e2315860121. [PMID: 38408244 PMCID: PMC10927566 DOI: 10.1073/pnas.2315860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a prevalent pathogen that establishes life-long latent infection in hematopoietic cells. While this infection is usually asymptomatic, immune dysregulation leads to viral reactivation, which can cause significant morbidity and mortality. However, the mechanisms underpinning reactivation remain incompletely understood. The HCMV major immediate early promoter (MIEP)/enhancer is a key factor in this process, as its transactivation from a repressed to active state helps drive viral gene transcription necessary for reactivation from latency. Numerous host transcription factors bind the MIE locus and recruit repressive chromatin modifiers, thus impeding virus reactivation. One such factor is CCCTC-binding protein (CTCF), a highly conserved host zinc finger protein that mediates chromatin conformation and nuclear architecture. However, the mechanisms by which CTCF contributes to HCMV latency were previously unexplored. Here, we confirm that CTCF binds two convergent sites within the MIE locus during latency in primary CD14+ monocytes, and following cellular differentiation, CTCF association is lost as the virus reactivates. While mutation of the MIE enhancer CTCF binding site does not impact viral lytic growth in fibroblasts, this mutant virus fails to maintain latency in myeloid cells. Furthermore, we show the two convergent CTCF binding sites allow looping to occur across the MIEP, supporting transcriptional repression during latency. Indeed, looping between the two sites diminishes during virus reactivation, concurrent with activation of MIE transcription. Taken together, our data reveal that three-dimensional chromatin looping aids in the regulation of HCMV latency and provides insight into promoter/enhancer regulation that may prove broadly applicable across biological systems.
Collapse
Affiliation(s)
- Ian J. Groves
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| | - Stephen M. Matthews
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| | - Christine M. O’Connor
- Infection Biology Program, Sheikha Fatima bint Mubarak Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH44195
- Case Comprehensive Cancer Center, Cleveland, OH44106
| |
Collapse
|
8
|
Torne AS, Robertson ES. Epigenetic Mechanisms in Latent Epstein-Barr Virus Infection and Associated Cancers. Cancers (Basel) 2024; 16:991. [PMID: 38473352 PMCID: PMC10931536 DOI: 10.3390/cancers16050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
The Epstein-Barr Virus (EBV) is a double-stranded DNA-based human tumor virus that was first isolated in 1964 from lymphoma biopsies. Since its initial discovery, EBV has been identified as a major contributor to numerous cancers and chronic autoimmune disorders. The virus is particularly efficient at infecting B-cells but can also infect epithelial cells, utilizing an array of epigenetic strategies to establish long-term latent infection. The association with histone modifications, alteration of DNA methylation patterns in host and viral genomes, and microRNA targeting of host cell factors are core epigenetic strategies that drive interactions between host and virus, which are necessary for viral persistence and progression of EBV-associated diseases. Therefore, understanding epigenetic regulation and its role in post-entry viral dynamics is an elusive area of EBV research. Here, we present current outlooks of EBV epigenetic regulation as it pertains to viral interactions with its host during latent infection and its propensity to induce tumorigenesis. We review the important epigenetic regulators of EBV latency and explore how the strategies involved during latent infection drive differential epigenetic profiles and host-virus interactions in EBV-associated cancers.
Collapse
Affiliation(s)
| | - Erle S. Robertson
- Tumor Virology Program, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
9
|
Maestri D, Napoletani G, Kossenkov A, Preston-Alp S, Caruso LB, Tempera I. The three-dimensional structure of the EBV genome plays a crucial role in regulating viral gene expression in EBVaGC. Nucleic Acids Res 2023; 51:12092-12110. [PMID: 37889078 PMCID: PMC10711448 DOI: 10.1093/nar/gkad936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Epstein-Barr virus (EBV) establishes lifelong asymptomatic infection by replication of its chromatinized episomes with the host genome. EBV exhibits different latency-associated transcriptional repertoires, each with distinct three-dimensional structures. CTCF, Cohesin and PARP1 are involved in maintaining viral latency and establishing episome architecture. Epstein-Barr virus-associated gastric cancer (EBVaGC) represents 1.3-30.9% of all gastric cancers globally. EBV-positive gastric cancers exhibit an intermediate viral transcription profile known as 'Latency II', expressing specific viral genes and noncoding RNAs. In this study, we investigated the impact of PARP1 inhibition on CTCF/Cohesin binding in Type II latency. We observed destabilization of the binding of both factors, leading to a disrupted three-dimensional architecture of the episomes and an altered viral gene expression. Despite sharing the same CTCF binding profile, Type I, II and III latencies exhibit different 3D structures that correlate with variations in viral gene expression. Additionally, our analysis of H3K27ac-enriched interactions revealed differences between Type II latency episomes and a link to cellular transformation through docking of the EBV genome at specific sites of the Human genome, thus promoting oncogene expression. Overall, this work provides insights into the role of PARP1 in maintaining active latency and novel mechanisms of EBV-induced cellular transformation.
Collapse
Affiliation(s)
- Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|