1
|
Domènech-Montoliu S, López-Diago L, Aleixandre-Gorriz I, Pérez-Olaso Ó, Sala-Trull D, Rio-González AD, Pac-Sa MR, Sánchez-Urbano M, Satorres-Martinez P, Casanova-Suarez J, Notari-Rodriguez C, Ruiz-Puig R, Badenes-Marques G, Aparisi-Esteve L, Domènech-León C, Romeu-Garcia MA, Arnedo-Pena A. Vitamin D Status and Incidence of SARS-CoV-2 Reinfections in the Borriana COVID-19 Cohort: A Population-Based Prospective Cohort Study. Trop Med Infect Dis 2025; 10:98. [PMID: 40278771 PMCID: PMC12031365 DOI: 10.3390/tropicalmed10040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
A deficient vitamin D (VitD) status has been associated with SARS-CoV-2 infections, severity, and mortality. However, this status related to SARS-CoV-2 reinfections has been studied little. Our aim was to quantify the risk of reinfections considering VitD status before reinfection. METHODS We performed a population-based prospective cohort study in Borriana (Valencia Community, Spain) during 2020-2023, measuring 25-hydroxyvitamin D [25(OH)D] levels by electrochemiluminescence. Cox proportional hazards models were employed. RESULTS Of a total of 644 SARS-CoV-2 cases with confirmed laboratory tests, 378 (58.9%) were included in our study, with an average age of 38.8 years; 241 were females (63.8%), and 127 reinfections occurred (33.6%). SARS-CoV-2 reinfection incidence rates per 1000 person-days by VitD status were 0.50 for a deficient status (<20 ng/mL), 0.50 for an insufficient status (20-29 ng/mL), and 0.37 for a sufficient status (≥30 ng/mL). Compared with a sufficient VitD status, adjusted hazard ratios were 1.79 (95% confidence interval [CI] 0.89-3.59) for a deficient status and 1.59 (95% CI 1.06-2.38) for an insufficient status with a significant inverse dose-response (p = 0.02). These results can help improve nutritional actions against SARS-CoV-2 reinfections. CONCLUSIONS These results suggest that a VitD status lower than 30 ng/mL showed a higher risk of SARS-CoV-2 reinfection. Achieving and maintaining a sufficient VitD status is recommended to prevent reinfections.
Collapse
Affiliation(s)
| | - Laura López-Diago
- Clinical Analysis Service University Hospital de la Plana, 12540 Vila-Real, Spain; (L.L.-D.); (I.A.-G.)
| | - Isabel Aleixandre-Gorriz
- Clinical Analysis Service University Hospital de la Plana, 12540 Vila-Real, Spain; (L.L.-D.); (I.A.-G.)
| | - Óscar Pérez-Olaso
- Microbiology Service University Hospital de la Plana, 12540 Vila-Real, Spain;
| | - Diego Sala-Trull
- Emergency Service University Hospital de la Plana, 12540 Vila-Real, Spain; (D.S.-T.); (M.S.-U.); (P.S.-M.); (C.N.-R.); (R.R.-P.); (G.B.-M.)
| | | | - Maria Rosario Pac-Sa
- Public Health Center, 12003 Castelló de la Plana, Spain; (M.R.P.-S.); (M.A.R.-G.)
| | - Manuel Sánchez-Urbano
- Emergency Service University Hospital de la Plana, 12540 Vila-Real, Spain; (D.S.-T.); (M.S.-U.); (P.S.-M.); (C.N.-R.); (R.R.-P.); (G.B.-M.)
| | - Paloma Satorres-Martinez
- Emergency Service University Hospital de la Plana, 12540 Vila-Real, Spain; (D.S.-T.); (M.S.-U.); (P.S.-M.); (C.N.-R.); (R.R.-P.); (G.B.-M.)
| | | | - Cristina Notari-Rodriguez
- Emergency Service University Hospital de la Plana, 12540 Vila-Real, Spain; (D.S.-T.); (M.S.-U.); (P.S.-M.); (C.N.-R.); (R.R.-P.); (G.B.-M.)
| | - Raquel Ruiz-Puig
- Emergency Service University Hospital de la Plana, 12540 Vila-Real, Spain; (D.S.-T.); (M.S.-U.); (P.S.-M.); (C.N.-R.); (R.R.-P.); (G.B.-M.)
| | - Gema Badenes-Marques
- Emergency Service University Hospital de la Plana, 12540 Vila-Real, Spain; (D.S.-T.); (M.S.-U.); (P.S.-M.); (C.N.-R.); (R.R.-P.); (G.B.-M.)
| | | | - Carmen Domènech-León
- Department Medicine, Universidad CEU Cardenal Herrera, 12006 Castelló de la Plana, Spain;
| | | | - Alberto Arnedo-Pena
- Public Health Center, 12003 Castelló de la Plana, Spain; (M.R.P.-S.); (M.A.R.-G.)
- Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Health Science, Public University Navarra, 31006 Pamplona, Spain
| |
Collapse
|
2
|
dos S. P. Andrade AC, Lacasse E, Dubuc I, Gudimard L, Gravel A, Puhm F, Campolina-Silva G, Queiroz-Junior C, Allaeys I, Prunier J, Azeggouar Wallen O, Dumais É, Belleannée C, Droit A, Flamand N, Boilard É, Flamand L. Deficiency in platelet 12-lipoxygenase exacerbates inflammation and disease severity during SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2025; 122:e2420441122. [PMID: 40100623 PMCID: PMC11962506 DOI: 10.1073/pnas.2420441122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025] Open
Abstract
Platelets, known for maintaining blood balance, also participate in antimicrobial defense. Upon severeacute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, platelets become hyperactivated, releasing molecules such as cytokines, granule contents, and bioactive lipids. The key effector biolipids produced by platelets include 12-hydroxyeicosatetraenoic acid (12-HETE) and 12-hydroxyeicosatrienoic acid (12-HETrE), produced by 12-lipoxygenase (12-LOX), and prostaglandins and thromboxane, produced by cyclooxygenase-1. While prostaglandin E2 and thromboxane B2 were previously associated with lung inflammation in severe COVID-19, the role of platelet 12-LOX in SARS-CoV-2 infection remains unclear. Using mice deficient for platelets' 12-LOX, we report that SARS-CoV-2 infection resulted in higher lung inflammation characterized by histopathological tissue analysis, increased leukocyte infiltrates, and cytokine production relative to wild-type mice. In addition, distinct platelet and lung transcriptomic changes, including alterations in NOD-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) inflammasome-related gene expression, were observed. Mass spectrometry lipidomic analysis in 12-LOX-deficient-infected mice revealed significant changes in bioactive lipid content, including reduced levels of 12-HETrE that inversely correlated with disease severity. Finally, platelet 12-LOX deficiency was associated with increased morbidity and lower survival rates relative to wild type (WT) mice. Overall, this study highlights the complex interplay between 12-LOX-related lipid metabolism and inflammatory responses during SARS-CoV-2 infection. The findings provide valuable insights into potential therapeutic targets aimed at mitigating severe outcomes, emphasizing the pivotal role of platelet enzymes in the host response to viral infections.
Collapse
Affiliation(s)
- Ana Claudia dos S. P. Andrade
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Emile Lacasse
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Isabelle Dubuc
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Leslie Gudimard
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Annie Gravel
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Florian Puhm
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Gabriel Campolina-Silva
- Division of Reproduction, mother and youth health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Celso Queiroz-Junior
- Morphology Department, Universidade Federal de Minas Gerais, Belo Horizonte31270-901, Brazil
| | - Isabelle Allaeys
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Julien Prunier
- Division of Endocrinology and Nephrology, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Oumaima Azeggouar Wallen
- Centre de recherche de l’Institut Universitaire de cardiologie et pneumologie de Québec, Division of pneumology, Faculty of medicine, Université Laval, Québec City, QCG1V 4G5, Canada
| | - Élizabeth Dumais
- Centre de recherche de l’Institut Universitaire de cardiologie et pneumologie de Québec, Division of pneumology, Faculty of medicine, Université Laval, Québec City, QCG1V 4G5, Canada
| | - Clémence Belleannée
- Division of Reproduction, mother and youth health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Arnaud Droit
- Division of Endocrinology and Nephrology, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
| | - Nicolas Flamand
- Centre de recherche de l’Institut Universitaire de cardiologie et pneumologie de Québec, Division of pneumology, Faculty of medicine, Université Laval, Québec City, QCG1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QCG1V 4G5, Canada
| | - Éric Boilard
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
- Centre de Recherche ARThrite–Arthrite, Recherche, Traitements, Université Laval, Québec, QCG1V 4G2, Canada
- Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Louis Flamand
- Division of Infectious and Immune Diseases, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QCG1V 4G2, Canada
- Centre de Recherche ARThrite–Arthrite, Recherche, Traitements, Université Laval, Québec, QCG1V 4G2, Canada
- Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Québec City, QCG1V 0A6, Canada
| |
Collapse
|
3
|
Monteiro AHA, Freitas KM, Montuori-Andrade ACM, de Lima EBS, Carvalho AFS, Cardoso C, Lara ES, Oliveira LC, Zaidan I, da Santos FRS, Resende F, Souza-Costa LP, Queiroz-Junior CM, Chaves IDM, Nóbrega NRC, Rabelo MBO, Rocha MP, Campana PRV, Pádua RM, Ferreira RS, Barreto LV, Kronenberger T, Maltarollo VG, de Godoy MO, Oliva G, Guido RVC, Teixeira MM, Costa VV, Sousa LP, Braga FC. Ouratein D, a Biflavanone From Ouratea spectabilis, Alleviates Betacoronavirus Infection by Mitigating Inflammation, Lung Damage and Viral Replication. Phytother Res 2025. [PMID: 40099709 DOI: 10.1002/ptr.8462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 03/20/2025]
Abstract
Severe coronavirus outbreaks, including SARS, MERS, and COVID-19, have underscored the urgent need for effective antiviral therapies. This study evaluated the antiviral activity of biflavanones isolated from Ouratea spectabilis-specifically ouratein (Our-) A, B, C, and D-against murine hepatitis virus (MHV-3) and human SARS-CoV-2. Cells infected with MHV-3 or SARS-CoV-2 were treated with ourateins, and viral replication was assessed using plaque assays. Mice infected with MHV-3 were treated with Our-D either orally or intraperitoneally. Key assessments included leukocyte counts, cytokine and chemokine levels, histological analysis, and survival rates. The mechanism of action was explored through in silico and in vitro studies focused on the binding and inhibition of the main protease (Mpro). Our-D significantly inhibited the replication of both viruses, with a selective index of 2.5 for MHV-3 and 14.9 for SARS-CoV-2. In vivo, Our-D reduced leukocyte infiltration in the lungs, decreased CCL2 levels, increased IL-10, and lowered plasma IL-6 and CXCL1 levels. Additionally, Our-D mitigated lung damage, partially restored betacoronavirus-induced lymphopenia, and reduced viral loads in the lungs, heart, and spleen, ultimately improving survival in mice. In silico studies revealed that Our-A and Our-C had strong binding affinity for Mpro, and both significantly inhibited Mpro activity in vitro, unlike Our-D. Our-D protected mice from coronavirus infection by modulating the inflammatory response and reducing viral loads, with minimal effect on Mpro inhibition, suggesting alternative mechanisms for its antiviral activity.
Collapse
Affiliation(s)
- Adelson Héric A Monteiro
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia M Freitas
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara M Montuori-Andrade
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erick Bryan Sousa de Lima
- Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio Felipe S Carvalho
- Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cardoso
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edvaldo S Lara
- Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Camilo Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Zaidan
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Rocha Silva da Santos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Filipe Resende
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Pedro Souza-Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ian de Meira Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Natália R C Nóbrega
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Beatriz O Rabelo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marina P Rocha
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Priscilla R V Campana
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo M Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafaela S Ferreira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza V Barreto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thales Kronenberger
- Partner-Site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinícius G Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Glaucius Oliva
- Institute of Physics, Universidade de São Paulo, São Carlos, Brazil
| | - Rafael V C Guido
- Institute of Physics, Universidade de São Paulo, São Carlos, Brazil
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Department of Clinical Analysis and Toxicology, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernão C Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Beltrami VA, Martins FRB, Martins DG, Queiroz-Junior CM, Félix FB, Resende LC, Santos FRDS, Lacerda LDSB, Costa VRDM, da Silva WN, Guimaraes PPG, Guimaraes G, Soriani FM, Teixeira MM, Costa VV, Pinho V. Selective phosphodiesterase 4 inhibitor roflumilast reduces inflammation and lung injury in models of betacoronavirus infection in mice. Inflamm Res 2025; 74:24. [PMID: 39862252 DOI: 10.1007/s00011-024-01985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses. METHODS Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg. In SARS-CoV-2-infected mice, roflumilast was given therapeutically at a dose of 10 mg/kg. Lung histopathology, chemokines (CXCL-1 and CCL2), cytokines (IL-1β, IL-6, TNF, IFN-γ, IL-10 and TGFβ), neutrophil immunohistochemical staining (Ly6G+ cells), macrophage immunofluorescence staining (F4/80+ cells), viral titration plaque assay, real-time PCR virus detection, and blood cell counts were examined. RESULTS Therapeutic treatment with roflumilast at 10 mg/kg reduced lung injury in SARS-CoV-2 or MHV-3-infected mice without compromising viral clearance. In MHV-3-infected mice, reduced lung injury was associated with decreased chemokines levels, prevention of neutrophil aggregates and reduced macrophage accumulation in the lung tissue. However, the prophylactic treatment strategy with roflumilast increased lung injury in MHV-3-infected mice. CONCLUSION Our findings indicate that therapeutic treatment with roflumilast reduced lung injury in MHV-3 and SARS-CoV-2 lung infections. Given the protection induced by roflumilast in inflammation, PDE4 targeting could be a promising therapeutic avenue worth exploring following severe viral infections of the lung.
Collapse
Affiliation(s)
- Vinícius Amorim Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Flávia Rayssa Braga Martins
- Departamento Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Débora Gonzaga Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Franciel Batista Félix
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Letícia Cassiano Resende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Felipe Rocha da Silva Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Larisse de Souza Barbosa Lacerda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Victor Rodrigues de Melo Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Walison Nunes da Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Pedro Pires Goulart Guimaraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Goulart Guimaraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Frederico Marianetti Soriani
- Departamento Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
5
|
Ho JSS, Ping TL, Paudel KR, El Sherkawi T, De Rubis G, Yeung S, Hansbro PM, Oliver BGG, Chellappan DK, Sin KP, Dua K. Exploring Bioactive Phytomedicines for Advancing Pulmonary Infection Management: Insights and Future Prospects. Phytother Res 2024; 38:5840-5872. [PMID: 39385504 PMCID: PMC11634825 DOI: 10.1002/ptr.8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 10/12/2024]
Abstract
Pulmonary infections have a profound influence on global mortality rates. Medicinal plants offer a promising approach to address this challenge, providing nontoxic alternatives with higher levels of public acceptance and compliance, particularly in regions where access to conventional medications or diagnostic resources may be limited. Understanding the pathophysiology of viruses and bacteria enables researchers to identify biomarkers essential for triggering diseases. This knowledge allows the discovery of biological molecules capable of either preventing or alleviating symptoms associated with these infections. In this review, medicinal plants that have an effect on COVID-19, influenza A, bacterial and viral pneumonia, and tuberculosis are discussed. Drug delivery has been briefly discussed as well. It examines the effect of bioactive constituents of these plants and synthesizes findings from in vitro, in vivo, and clinical studies conducted over the past decade. In conclusion, many medicinal plants can be used to treat pulmonary infections, but further in-depth studies are needed as most of the current studies are only at preliminary stages. Extensive investigation and clinical studies are warranted to fully elucidate their mechanisms of action and optimize their use in clinical practice.
Collapse
Affiliation(s)
- Joyce Siaw Syuen Ho
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Teh Li Ping
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of ScienceCentenary Institute and the University of Technology SydneySydneyAustralia
| | - Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of HealthUniversity of Technology SydneyUltimoAustralia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of ScienceCentenary Institute and the University of Technology SydneySydneyAustralia
| | - Brian Gregory George Oliver
- School of Life ScienceUniversity of Technology SydneyUltimoAustralia
- Woolcock Institute of Medical ResearchMacquarie UniversitySydneyAustralia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Keng Pei Sin
- Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneySydneyAustralia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of HealthUniversity of Technology SydneyUltimoAustralia
| |
Collapse
|
6
|
Ge D, Chen Q, Xie X, Li Q, Yang Y. Unveiling the potent effect of vitamin D: harnessing Nrf2/HO-1 signaling pathways as molecular targets to alleviate urban particulate matter-induced asthma inflammation. BMC Pulm Med 2024; 24:55. [PMID: 38273268 PMCID: PMC10809564 DOI: 10.1186/s12890-024-02869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Asthma is the most common allergic disease characterized by an inflammatory response in the airways. Mechanismly, urban particulate matter (PM) is the most widely air pollutant associated with increased asthma morbidity and airway inflammation. Current research found that vitamin D is an essential vitamin with anti-inflammatory, antioxidant and other medical efficacy. Inadequate or deficient vitamin D often leads to the pathogenesis and stability of asthma. NGF exacerbates airway inflammation in asthma by promoting smooth muscle cell proliferation and inducing the Th2 immune response. Activation of the Nrf2/HO-1 signaling pathway can exert a protective effect on the inflammatory response in bronchial asthma. However, the specific mechanism of this pathway in PM-involved asthmatic airway smooth muscle cells remains unclear. METHODS Mice were sensitized and challenged with Ovalbumin (OVA) to establish an asthma model. They were then exposed to either PM, vitamin D or a combination of both, and inflammatory responses were observed. Including, acetylcholine stimulation at different concentrations measured airway hyperresponsiveness in mice. Bronchoalveolar lavage fluid (BALF) and serum were collected for TNF-α, IL-1β, IL-6, and Nerve growth factor (NGF) analysis. Additionally, lung tissues underwent histopathological examination to observe alveolar structure and inflammatory cell infiltration. Specific ELISA kits were utilized to determine the levels of the inflammatory factors TNF-α, IL-1β, IL-6, and Nerve growth factor (NGF). Nrf2/HO-1 signaling pathways were examined by western blot analysis. Meanwhile, we constructed a cell system with low HO-1 expression by lentiviral transfection of airway smooth muscle cells. The changes of Nrf2, HO-1, and NGF were observed after the treatment of OVA, PM, and Vit D were given. RESULTS The in vivo results showed that vitamin D significantly alleviated pathological changes in lung tissue of PM-exposed mice models. Mechanismly, vitamin D decreased substantial inflammatory cell infiltration in lung tissue, as well as the number of inflammatory cells in BALF. Furthermore, vitamin D reduced the heightened inflammatory factors including of TNF-α, IL-1β, IL-6, and NGF caused by PM exposure, and triggered the activity of nucleus Nrf2 and HO-1 in PM-exposed asthmatic mice. Notably, knockdown HO-1 weakens the Vitamin D- mediated inhibition to pollution toxicity in asthma. Importantly, in vitro experiments on OVA-stimulated mice airway smooth muscle cells, the results showed that OVA and PM, respectively, reduced Nrf2/HO-1 and increased NGF's expression, while vitamin D reversed the process. And in the HO-1 knockdown cell line of Lenti-si-HO-1 ASMCs, OVA and PM reduced Nrf2's expression, while HO-1 and NGF's expression were unchanged. CONCLUSIONS The above results demastrate that vitamin D downregulated the inflammatory response and the expression of NGF by regulating the Nrf2/HO-1 signaling pathways in airway smooth muscle cells, thereby showing potent anti-inflammatory activity in asthma.
Collapse
Affiliation(s)
- Dandan Ge
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Qihong Chen
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Xiaohua Xie
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiang'an South Road, Xiamen, 361102, China
| | - Yungang Yang
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China.
| |
Collapse
|