1
|
Ding S, Li Y, Sun Q, Zhu Z, Yu F, Weng S, He J, Dong C. Dual protection against grouper Rana-Iridovirus (GIV-R) and nervous necrosis virus (NNV) by novel GIV-R -Δ51-NNV -CP chimeric vaccine candidates. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110358. [PMID: 40254083 DOI: 10.1016/j.fsi.2025.110358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
Grouper Rana-iridovirus (GIV-R) and nervous necrosis virus (NNV) are two distinct yet very important causative agents in several fish species. However, as of now, no effective treatment has been developed to simultaneously prevent these two pathogens. In this study, we developed GIV-R-NNV chimeric vaccine candidates by using GIV-R to chimerically express the full length and P domain of the coat protein of NNV, and designated as GIV-R-Δ51-NNV-CP-FL, GIV-R-Δ51-NNV-CP-P, respectively. Firstly, the orf51 deletion recombinant GIV-R (GIV-R-Δ51) was constructed and characterized. The results showed that GIV-R-Δ51 was a partially attenuated mutant. Based on the recombinant site of orf51, GIV-R-Δ51-NNV-CP-FL and GIV-R-Δ51-NNV-CP-P were constructed and robust data demonstrated that both chimeric mutants were well constructed and also showed partially attenuated. Finally, the water-in-oil (W/O) formulation of the inactivated GIV-R-Δ51-NNV-CP-FL and GIV-R-Δ51-NNV-CP-P vaccines were prepared and immune-protection effects were tested. As results, both chimeric vaccines conferred approximately 60 % (N = 40) and 90 % (N = 50) relative protections against GIV-R in grouper and Asian sea bass, respectively. The significant elevations of anti-NNV specific antibodies were determined, and the in vitro neutralizing effects were also measured. All these results showed that the both chimeric vaccines work effectively to prevent GIV-R and NNV. Taken together, two chimeric vaccine candidates against GIV-R and NNV were firstly constructed and characterized, which showed potent efficacies in preventing two dangerous viral diseases in cultured fish.
Collapse
Affiliation(s)
- Shan Ding
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, 519000, China
| | - Qianqian Sun
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiming Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Fangzhao Yu
- Zhuhai Modern Agriculture Development Center, Zhuhai, 519000, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol/School of Life Sciences of Sun Yat-sen University, Guangzhou, 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Chokmangmeepisarn P, Azmai MNA, Domingos JA, van Aerle R, Bass D, Prukbenjakul P, Senapin S, Rodkhum C. Genome Characterization and Phylogenetic Analysis of Scale Drop Disease Virus Isolated from Asian Seabass ( Lates calcarifer). Animals (Basel) 2024; 14:2097. [PMID: 39061559 PMCID: PMC11274154 DOI: 10.3390/ani14142097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Scale drop disease virus (SDDV), a double-stranded DNA virus in the family Iridoviridae, has been reported widely in southeast Asian countries as a causative agent of scale drop syndrome (SDS) in Asian seabass. SDS has resulted in high mortality and significant economic losses to the aquaculture industry. This study demonstrated the use of metagenomic methods to investigate bacterial and viral communities present in infected fish tissues and recover a complete genome of the causative agent named SDDV TH7_2019. Characterization of the TH7_2019 genome revealed a genome size of 131 kb with 134 putative ORFs encoding viral proteins potentially associated with host apoptosis manipulation. A comparative genome analysis showed a high degree of amino acid identity across SDDV strains, with variations in number of repeat sequences and mutations within core genes. Phylogenetic analyses indicate a close relationship among SDDV genomes. This research enhances our understanding of the genetic diversity and evolutionary relationship of SDDV, contributing valuable insights for further development of effective control strategies of SDDV.
Collapse
Affiliation(s)
- Putita Chokmangmeepisarn
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia;
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Jose A. Domingos
- Tropical Futures Institute, James Cook University, Singapore 387370, Singapore;
| | - Ronny van Aerle
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Weymouth, Dorset DT4 8UB, UK; (R.v.A.); (D.B.)
- Centre for Sustainable Aquaculture Futures, University of Exeter, Stocker Road, Exeter EX4 4QY, UK
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Pochara Prukbenjakul
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saengchan Senapin
- Tropical Futures Institute, James Cook University, Singapore 387370, Singapore;
- Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Pathum Thani 12120, Thailand
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Liao J, Kang S, Zhang L, Zhang D, Xu Z, Qin Q, Wei J. Isolation and identification of a megalocytivirus strain (SKIV-TJ) from cultured spotted knifejaw (Oplegnathus punctatus) in China and its pathogenicity analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109034. [PMID: 37640124 DOI: 10.1016/j.fsi.2023.109034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The spotted knifejaw (Oplegnathus punctatus) has recently emerged as a highly economically significant farmed fish in China. However, due to increasing environmental pollution and breeding density, a range of infectious diseases, including the iridovirus pathogen, have begun to spread widely. In this study, we isolated and identified a strain of Megalocytivirus, SKIV-TJ, from cultured spotted knifejaw in Tianjin, China. We observed significant cytopathic effects (CPE) in SKIV-TJ-infected spotted knifejaw brain (SKB) cells, and electron microscopy showed numerous virus particles in the cytoplasm of SKB cells 6 days post-infection. The annotated complete genome of SKIV-TJ (GenBank accession number ON075463) contained 112,489 bp and 132 open reading frames. Based on the multigene association evolutionary tree using 26 iridovirus core genes, SKIV-TJ was found to be most closely related to Rock bream iridovirus (RBIV). Cumulative mortality of spotted knifejaw infected with SKIV-TJ reached 100% by day 9. A transcriptomic analysis were conducted and a total of 5517 differentially expressed genes were identified, including 2757 upregulated genes and 2760 downregulated genes. The upregulated genes were associated with viral infection and immune signaling pathways. Our findings provide a valuable genetic resource and a deeper understanding of the immune response to SKIV infection in spotted knifejaw.
Collapse
Affiliation(s)
- Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dongzhuo Zhang
- Guangdong Winsun Biological Pharmaceutical Co., Ltd., Guangzhou, 511356, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266000, China.
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
4
|
Fu W, Li Y, Fu Y, Zhang W, Luo P, Sun Q, Yu F, Weng S, Li W, He J, Dong C. The Inactivated ISKNV-I Vaccine Confers Highly Effective Cross-Protection against Epidemic RSIV-I and RSIV-II from Cultured Spotted Sea Bass Lateolabrax maculatus. Microbiol Spectr 2023; 11:e0449522. [PMID: 37222626 PMCID: PMC10269448 DOI: 10.1128/spectrum.04495-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
The genus Megalocytivirus of the family Iridoviridae is composed of two distinct species, namely, infectious spleen and kidney necrosis virus (ISKNV) and scale drop disease virus (SDDV), and both are important causative agents in a variety of bony fish worldwide. Of them, the ISKNV species is subdivided into three genotypes, namely, red seabream iridovirus (RSIV), ISKNV, and turbot reddish body iridovirus (TRBIV), and a further six subgenotypes, RSIV-I, RSIV-II, ISKNV-I, ISKNV-II, TRBIV-I, and TRBIV-II. Commercial vaccines derived from RSIV-I , RSIV-II and ISKNV-I have been available to several fish species. However, studies regarding the cross-protection effect among different genotype or subgenotype isolates have not been fully elucidated. In this study, RSIV-I and RSIV-II were demonstrated as the causative agents in cultured spotted seabass, Lateolabrax maculatus, through serial robust evidence, including cell culture-based viral isolation, whole-genome determination and phylogeny analysis, artificial challenge, histopathology, immunohistochemistry, and immunofluorescence as well as transmission electron microscope observation. Thereafter, a formalin-killed cell (FKC) vaccine generated from an ISKNV-I isolate was prepared to evaluate the protective effects against two spotted seabass original RSIV-I and RSIV-II. The result showed that the ISKNV-I-based FKC vaccine conferred almost complete cross-protection against RSIV-I and RSIV-II as well as ISKNV-I itself. No serotype difference was observed among RSIV-I, RSIV-II, and ISKNV-I. Additionally, the mandarin fish Siniperca chuatsi is proposed as an ideal infection and vaccination fish species for the study of various megalocytiviral isolates. IMPORTANCE Red seabream iridovirus (RSIV) infects a wide mariculture bony fish and has resulted in significant annual economic loss worldwide. Previous studies showed that the phenotypic diversity of infectious RSIV isolates would lead to different virulence characteristics, viral antigenicity, and vaccine efficacy as well as host range. Importantly, it is still doubted whether a universal vaccine could confer the same highly protective effect against various genotypic isolates. Our study here presented enough experimental evidence that a water in oil (w/o) formation of inactivated ISKNV-I vaccine could confer almost complete protection against RSIV-I and RSIV-II as well as ISKNV-I itself. Our study provides valuable data for better understanding the differential infection and immunity among different genotypes of ISKNV and RSIV isolates in the genus Megalocytivirus.
Collapse
Affiliation(s)
- Weixuan Fu
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Yuting Fu
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wenfeng Zhang
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Panpan Luo
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
| | - Qianqian Sun
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fangzhao Yu
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wangdong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai, China
| | - Jianguo He
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chuanfu Dong
- State Key Laboratory of Biocontrol (Guangzhou, SYSU)/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai, SMST-GDL), School of Life Sciences of Sun Yat-sen University, Guangzhou, China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Qin P, Munang’andu HM, Xu C, Xie J. Megalocytivirus and Other Members of the Family Iridoviridae in Finfish: A Review of the Etiology, Epidemiology, Diagnosis, Prevention and Control. Viruses 2023; 15:1359. [PMID: 37376659 PMCID: PMC10305399 DOI: 10.3390/v15061359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Aquaculture has expanded to become the fastest growing food-producing sector in the world. However, its expansion has come under threat due to an increase in diseases caused by pathogens such as iridoviruses commonly found in aquatic environments used for fish farming. Of the seven members belonging to the family Iridoviridae, the three genera causing diseases in fish comprise ranaviruses, lymphocystiviruses and megalocytiviruses. These three genera are serious impediments to the expansion of global aquaculture because of their tropism for a wide range of farmed-fish species in which they cause high mortality. As economic losses caused by these iridoviruses in aquaculture continue to rise, the urgent need for effective control strategies increases. As a consequence, these viruses have attracted a lot of research interest in recent years. The functional role of some of the genes that form the structure of iridoviruses has not been elucidated. There is a lack of information on the predisposing factors leading to iridovirus infections in fish, an absence of information on the risk factors leading to disease outbreaks, and a lack of data on the chemical and physical properties of iridoviruses needed for the implementation of biosecurity control measures. Thus, the synopsis put forth herein provides an update of knowledge gathered from studies carried out so far aimed at addressing the aforesaid informational gaps. In summary, this review provides an update on the etiology of different iridoviruses infecting finfish and epidemiological factors leading to the occurrence of disease outbreaks. In addition, the review provides an update on the cell lines developed for virus isolation and culture, the diagnostic tools used for virus detection and characterization, the current advances in vaccine development and the use of biosecurity in the control of iridoviruses in aquaculture. Overall, we envision that the information put forth in this review will contribute to developing effective control strategies against iridovirus infections in aquaculture.
Collapse
Affiliation(s)
- Pan Qin
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | | | - Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Jianjun Xie
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China
| |
Collapse
|
6
|
Kuz CA, Ozsahin E, Nalcacioglu R, Demirbag Z. Transcriptional Analysis of the Gene Encoding the Putative Myristoylated Membrane Protein (ORF458R) of Invertebrate Iridescent Virus 6 (IIV6). Mol Biol 2023. [DOI: 10.1134/s0026893323030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Zhang W, Deng H, Fu Y, Fu W, Weng S, He J, Dong C. Production and characterization of monoclonal antibodies against mandarinfish ranavirus and first identification of pyloric caecum as the major target tissue. JOURNAL OF FISH DISEASES 2023; 46:189-199. [PMID: 36441809 DOI: 10.1111/jfd.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Mandarinfish ranavirus (MRV), also known as a variant of largemouth bass virus (LMBV), is an emerging pathogen in mandarinfish aquaculture. In this study, monoclonal antibodies (mAbs) against MRV were produced and characterized, and 7 mAbs were obtained through Western blotting screening and all 7 mAbs specifically recognized MRV/LMBV but not several piscine iridoviruses as ISKNV, GIV and TFV. By LC MS/MS analysis, the recognized viral proteins by seven mAbs were identified as MRV-pORF47L, MRV-pORF55R, MRV-pORF57L, MRV-pORF77L and MRV-pORF78L, respectively, and all five viral proteins are late expression structural proteins by Western blotting. Based on mAb 1C4, immuno-histochemistry and immuno-histo-fluorescence were performed to re-assess the tissue tropism of MRV. The result showed that abundant reactive signals were observed in infected spleen, kidney as well as intestine and pyloric caecum. Real-time quantitative PCR also demonstrated that spleen as well as pyloric caecum and intestines are the major target tissue upon MRV infection. In infected intestines and pyloric caecum, numerous enlarged, multinucleated cells with intracytoplasmic inclusions were identified as the target cells of MRV, suggesting that MRV serves as a digestive tract pathogen to mandarinfish, which may explain why acute infection of MRV can cause the typical clinicopathology featured by severe ascites.
Collapse
Affiliation(s)
- Wenfeng Zhang
- State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (SMST-GDL), Zhuhai, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hengwei Deng
- State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (SMST-GDL), Zhuhai, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yuting Fu
- State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (SMST-GDL), Zhuhai, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, P.R. China
| | - Weixuan Fu
- State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (SMST-GDL), Zhuhai, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shaoping Weng
- State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (SMST-GDL), Zhuhai, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jianguo He
- State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (SMST-GDL), Zhuhai, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, P.R. China
| | - Chuanfu Dong
- State Key Laboratory for Bio-control, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
- Southern Marine Science and Engineering Guangdong Laboratory (SMST-GDL), Zhuhai, P.R. China
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
8
|
Canuti M, Large G, Verhoeven JTP, Dufour SC. A Novel Iridovirus Discovered in Deep-Sea Carnivorous Sponges. Viruses 2022; 14:v14081595. [PMID: 35893660 PMCID: PMC9330688 DOI: 10.3390/v14081595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Carnivorous sponges (family Cladorhizidae) use small invertebrates as their main source of nutrients. We discovered a novel iridovirus (carnivorous sponge-associated iridovirus, CaSpA-IV) in Chondrocladia grandis and Cladorhiza oxeata specimens collected in the Arctic and Atlantic oceans at depths of 537–852 m. The sequenced viral genome (~190,000 bp) comprised 185 predicted ORFs, including those encoding 26 iridoviral core proteins, and phylogenetic analyses showed that CaSpA-IV is a close relative to members of the genus Decapodiridovirus and highly identical to a partially sequenced virus pathogenic to decapod shrimps. CaSpA-IV was found in various anatomical regions of six C. grandis (sphere, stem, root) from the Gulf of Maine and Baffin Bay and of two C. oxeata (sphere, secondary axis) from Baffin Bay. Partial MCP sequencing revealed a divergent virus (CaSpA-IV-2) in one C. oxeata. The analysis of a 10 nt long tandem repeat showed a number of repeats consistent across sub-sections of the same sponges but different between animals, suggesting the presence of different strains. As the genetic material of crustaceans, particularly from the zooplanktonic copepod order Calanoida, was identified in the investigated samples, further studies are required to elucidate whether CaSpA-IV infects the carnivorous sponges, their crustacean prey, or both.
Collapse
|
9
|
Wang G, Xu W, Cheng H, Xie J, Bai A, Xu W, Liang Q. Complete genome sequence and phylogenetic analysis of red seabream iridovirus isolated from a cage-cultured small yellow croaker (Larimichthys polyactis) in China. Arch Virol 2022; 167:2085-2088. [PMID: 35752987 DOI: 10.1007/s00705-022-05508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Iridoviruses are emerging pathogens that are widespread in diverse environments and hosts. Numerous members of the family Iridoviridae are known to cause severe disease in freshwater and marine organisms. Here, we report the complete genome sequence and phylogenetic analysis of iridovirus strain LPIV-ZS-2021, isolated from a small yellow croaker (Larimichthys polyactis) in China. The genome sequence comprises 110,560 bp with a G+C content of 53.42%, has 104 putative open reading frames (ORFs), and shares the highest sequence similarity with red seabream iridovirus (RSIV) isolated in Japan (98.61%). Phylogenetic analysis revealed that it belongs to RSIV clade 1. This is the first fully sequenced RSIV genome from a small yellow croaker. The host range expansion of members of the genus Megalocytivirus warrants further attention to determine its potential economic and ecological impact.
Collapse
Affiliation(s)
- Gengshen Wang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316021, China.,Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, 316100, China
| | - Wei Xu
- Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, 316100, China
| | - Haoxue Cheng
- Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, 316100, China
| | - Jianjun Xie
- Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, 316100, China
| | - Aixu Bai
- Huaian Customs District, Huaian, 223001, China
| | - Wenjun Xu
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316021, China.,Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, 316100, China
| | - Qizhang Liang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Jesse ST, Ciurkiewicz M, Siesenop U, Spitzbarth I, Osterhaus ADME, Baumgärtner W, Ludlow M. Molecular characterization of a bovine adenovirus type 7 (Bovine Atadenovirus F) strain isolated from a systemically infected calf in Germany. Virol J 2022; 19:89. [PMID: 35610654 PMCID: PMC9131638 DOI: 10.1186/s12985-022-01817-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022] Open
Abstract
Bovine adenovirus 7 (BAdV-7) is an unclassified member of the genus Atadenovirus with a worldwide distribution and has been reported to induce clinical disease of varying severity in infected cattle, ranging from asymptomatic infections to severe enteric or respiratory disease. In this study, we used next-generation sequencing to obtain the first complete genome sequence of a European strain of BadV-7, from pooled spleen and liver tissue obtained from a deceased newborn Limousin calf. Histopathological analysis and electron microscopy showing systemic lesions in multiple organs with intranuclear amphophilic inclusions observed in endothelial cells in multiple peripheral tissues. Virus isolation was readily achieved from tissue homogenate using bovine esophagus cells (KOP-R), a strategy which should facilitate future in vitro or in vivo BAdV-7 studies. Phylogenetic analysis of available genome sequences of BAdV-7 showed that the newly identified strain groups most closely with a recent BAdV-7 strain, SD18-74, from the USA, confirming that this newly identified strain is a member of the Atadenovirus genus. The fiber gene was found to be highly conserved within BAdV-7 strains but was highly divergent in comparison to Ovine adenovirus 7 (OAdV-7) (39.56% aa sequence identity). Furthermore, we report a variable region of multiple tandem repeats between the coding regions of E4.1 and RH5 genes. In summary, the presented pathological and molecular characterization of this case suggests that further research into the worldwide molecular epidemiology and disease burden of BAdV-7 is warranted.
Collapse
Affiliation(s)
- Sonja T Jesse
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, D-30559, Hannover, Germany
| | | | - Ute Siesenop
- Department of Microbiology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - Ingo Spitzbarth
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany
| | - A D M E Osterhaus
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, D-30559, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hanover, Hannover, Germany
| | - Martin Ludlow
- Research Center Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, D-30559, Hannover, Germany.
| |
Collapse
|
11
|
Wang G, Luan Y, Wei J, Li Y, Shi H, Cheng H, Bai A, Xie J, Xu W, Qin P. Genetic and Pathogenic Characterization of a New Iridovirus Isolated from Cage-Cultured Large Yellow Croaker (Larimichthys crocea) in China. Viruses 2022; 14:v14020208. [PMID: 35215802 PMCID: PMC8879442 DOI: 10.3390/v14020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
Iridoviruses are an important pathogen of ectothermic vertebrates and are considered a significant threat to aquacultural fish production. Recently, one of the most economically important marine species in China, the large yellow croaker (Larimichthys crocea), has been increasingly reported to be the victim of iridovirus disease. In this study, we isolated and identified a novel iridovirus, LYCIV-ZS-2020, from cage-cultured large yellow croaker farms in Zhoushan island, China. Genome sequencing and subsequent phylogenetic analyses showed that LYCIV-ZS-2020 belongs to the genus Megalocytivirus and is closely related to the Pompano iridoviruses isolated in the Dominican Republic. LYCIV-ZS-2020 enriched from selected tissues of naturally infected large yellow croaker was used in an artificial infection trial and the results proved its pathogenicity in large yellow croaker. This is the first systematic research on the genetic and pathogenic characterization of iridovirus in large yellow croakers, which expanded our knowledge of the iridovirus.
Collapse
Affiliation(s)
- Gengshen Wang
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China; (G.W.); (H.S.); (H.C.); (J.X.); (W.X.)
- Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Yingjia Luan
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (J.W.); (Y.L.)
| | - Jinping Wei
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (J.W.); (Y.L.)
| | - Yunfeng Li
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (J.W.); (Y.L.)
| | - Hui Shi
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China; (G.W.); (H.S.); (H.C.); (J.X.); (W.X.)
- Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Haoxue Cheng
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China; (G.W.); (H.S.); (H.C.); (J.X.); (W.X.)
- Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Aixu Bai
- Huaian Customs District, Huaian 223001, China;
| | - Jianjun Xie
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China; (G.W.); (H.S.); (H.C.); (J.X.); (W.X.)
- Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Wenjun Xu
- Key Laboratory of Mariculture and Enhancement of Zhejiang Province, Marine Fisheries Research Institute of Zhejiang, Zhoushan 316100, China; (G.W.); (H.S.); (H.C.); (J.X.); (W.X.)
- Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316100, China
| | - Pan Qin
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (J.W.); (Y.L.)
- Correspondence:
| |
Collapse
|
12
|
Complete Genome Sequences and Pathogenicity Analysis of Two Red Sea Bream Iridoviruses Isolated from Cultured Fish in Korea. FISHES 2021. [DOI: 10.3390/fishes6040082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In Korea, red sea bream iridovirus (RSIV), especially subtype II, has been the main causative agent of red sea bream iridoviral disease since the 1990s. Herein, we report two Korean RSIV isolates with different subtypes based on the major capsid protein and adenosine triphosphatase genes: 17SbTy (RSIV mixed subtype I/II) from Japanese seabass (Lateolabrax japonicus) and 17RbGs (RSIV subtype II) from rock bream (Oplegnathus fasciatus). The complete genome sequences of 17SbTy and 17RbGs were 112,360 and 112,235 bp long, respectively (115 and 114 open reading frames [ORFs], respectively). Based on nucleotide sequence homology with sequences of representative RSIVs, 69 of 115 ORFs of 17SbTy were most closely related to subtype II (98.48–100% identity), and 46 were closely related to subtype I (98.77–100% identity). In comparison with RSIVs, 17SbTy and 17RbGs carried two insertion/deletion mutations (ORFs 014R and 102R on the basis of 17SbTy) in regions encoding functional proteins (a DNA-binding protein and a myristoylated membrane protein). Notably, survival rates differed significantly between 17SbTy-infected and 17RbGs-infected rock breams, indicating that the genomic characteristics and/or adaptations to their respective original hosts might influence pathogenicity. Thus, this study provides complete genome sequences and insights into the pathogenicity of two newly identified RSIV isolates classified as a mixed subtype I/II and subtype II.
Collapse
|
13
|
Fu Y, Li Y, Fu W, Su H, Zhang L, Huang C, Weng S, Yu F, He J, Dong C. Scale Drop Disease Virus Associated Yellowfin Seabream ( Acanthopagrus latus) Ascites Diseases, Zhuhai, Guangdong, Southern China: The First Description. Viruses 2021; 13:v13081617. [PMID: 34452481 PMCID: PMC8402775 DOI: 10.3390/v13081617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 01/28/2023] Open
Abstract
Scale drop disease virus (SDDV), an emerging piscine iridovirus prevalent in farmed Asian seabass Lates calcarifer in Southeast Asia, was firstly scientifically descripted in Singapore in 2015. Here, an SDDV isolate ZH-06/20 was isolated by inoculating filtered ascites from diseased juvenile yellowfin seabream into MFF-1 cell. Advanced cytopathic effects were observed 6 days post-inoculation. A transmission electron microscopy examination confirmed that numerous virion particles, about 140 nm in diameter, were observed in infected MFF-1 cell. ZH-06/20 was further purified and both whole genome and virion proteome were determined. The results showed that ZH-06/20 was composed of 131,122 bp with 135 putative viral proteins and 113 of them were further detected by virion proteome. Western blot analysis showed that no (or weak) cross-reaction was observed among several major viral proteins between ZH-06/20 and ISKNV-like megalocytivirus. An artificial challenge showed that ZH-06/20 could cause 100% death to juvenile yellowfin seabream. A typical sign was characterized by severe ascites, but not scale drop, which was considerably different from SDD syndrome in Asian seabass. Collectively, SDDV was confirmed, for the first time, as the causative agent of ascites diseases in farmed yellowfin seabream. Our study offers useful information to better understanding SDDV-associated diseases in farmed fish.
Collapse
Affiliation(s)
- Yuting Fu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Y.F.); (L.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yong Li
- Zhuhai Modern Agriculture Development Center, Zhuhai 519000, China; (Y.L.); (H.S.); (C.H.); (F.Y.)
| | - Weixuan Fu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huibing Su
- Zhuhai Modern Agriculture Development Center, Zhuhai 519000, China; (Y.L.); (H.S.); (C.H.); (F.Y.)
| | - Long Zhang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Y.F.); (L.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Congling Huang
- Zhuhai Modern Agriculture Development Center, Zhuhai 519000, China; (Y.L.); (H.S.); (C.H.); (F.Y.)
| | - Shaoping Weng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fangzhao Yu
- Zhuhai Modern Agriculture Development Center, Zhuhai 519000, China; (Y.L.); (H.S.); (C.H.); (F.Y.)
| | - Jianguo He
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Y.F.); (L.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (J.H.); (C.D.)
| | - Chuanfu Dong
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; (W.F.); (S.W.)
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: (J.H.); (C.D.)
| |
Collapse
|
14
|
Deng Z, Wang J, Zhang W, Geng Y, Zhao M, Gu C, Fu L, He M, Xiao Q, Xiao W, He L, Yang Q, Han J, Yan X, Yu Z. The Insights of Genomic Synteny and Codon Usage Preference on Genera Demarcation of Iridoviridae Family. Front Microbiol 2021; 12:657887. [PMID: 33868215 PMCID: PMC8044322 DOI: 10.3389/fmicb.2021.657887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
The members of the family Iridoviridae are large, double-stranded DNA viruses that infect various hosts, including both vertebrates and invertebrates. Although great progress has been made in genomic and phylogenetic analyses, the adequacy of the existing criteria for classification within the Iridoviridae family remains unknown. In this study, we redetermined 23 Iridoviridae core genes by re-annotation, core-pan analysis and local BLASTN search. The phylogenetic tree based on the 23 re-annotated core genes (Maximum Likelihood, ML-Tree) and amino acid sequences (composition vector, CV-Tree) were found to be consistent with previous reports. Furthermore, the information provided by synteny analysis and codon usage preference (relative synonymous codon usage, correspondence analysis, ENC-plot and Neutrality plot) also supports the phylogenetic relationship. Collectively, our results will be conducive to understanding the genera demarcation within the Iridoviridae family based on genomic synteny and component (codon usage preference) and contribute to the existing taxonomy methods for the Iridoviridae family.
Collapse
Affiliation(s)
- Zhaobin Deng
- Laboratory Animal Center, Southwest Medical University, Luzhou, China.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Wenjie Zhang
- Laboratory Animal Center, Southwest Medical University, Luzhou, China.,School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingde Zhao
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Congwei Gu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lu Fu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Qihai Xiao
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Jianhong Han
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Xuefeng Yan
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Development and comparison of qPCR and qLAMP for rapid detection of the decapod iridescent virus 1 (DIV1). J Invertebr Pathol 2021; 182:107567. [PMID: 33711317 DOI: 10.1016/j.jip.2021.107567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
Decapod iridescent virus 1 (DIV1) is a new virus discovered in recent years that infects farmed shrimp. DIV1 is highly infectious and causes substantial economic loss to the aquaculture industry of China. To prevent and control the spread and outbreak of DIV1 in a timely manner, it is necessary to establish an efficient method for DIV1 diagnosis. In this study, quantitative real-time polymerase chain reaction (qPCR) and quantitative real-time loop-mediated isothermal amplification (qLAMP) detection methods were established based on the specific sequence of the viral ATPase gene. The results indicated that the minimum detection limits of qPCR and qLAMP were 1.9 × 101 copies/μL and 1.9 × 102 copies/μL, respectively; the designed primer had good specificity for DIV1 and did not react with 13 other viruses, including white spot syndrome virus (WSSV), Enterocytozoon hepatopenaei (EHP), acute hepatopancreatic necrosis disease (AHPND), infectious hypodermal and haematopoietic necrosis virus (IHHNV), etc. A total of 43 clinical samples suspected of DIV1 infection were diagnosed by qPCR and qLAMP. Our qPCR demonstrated results consistent with a qPCR assay published previously, and the diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of qLAMP were 85.71% and 100%, respectively. This result indicates that qPCR and qLAMP have good accuracy in the detection of DIVI in clinical samples. As established in this study, qPCR and qLAMP combined with a comprehensive comparative analysis can provide effective new solutions for the detection of DIV1.
Collapse
|
16
|
Puneeth TG, Baliga P, Girisha SK, Shekar M, Nithin MS, Suresh T, Naveen Kumar BT. Complete genome analysis of a red seabream iridovirus (RSIV) isolated from Asian seabass (Lates calcarifer) in India. Virus Res 2020; 291:198199. [PMID: 33080247 DOI: 10.1016/j.virusres.2020.198199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Red sea bream iridovirus (RSIV) is the causative agent of the iridoviral disease with high mortality rates in cultured fish. Our laboratory reported the first case of RSIV infection in India which resulted in mass mortalities of Asian seabass, Lates calcarifer. The RSIV-LC strain isolated from infected fish was subjected to complete genome sequencing and analysis. The complete genome of RSIV-LC was found to be of 111,557 bp in size having a G + C content of 53 %. The complete genome has 114 open reading frames (ORFs) of which 38 ORFs were predicted as functional proteins while the rest were hypothetical proteins. Among the ORFs 26 were found to be core genes reported earlier to be homologous in iridovirus complete genomes. Phylogenetic tree constructed based on the 26 core gene sequences, major capsid protein and ATPase genes revealed RSIV-LC in this study to belong to the genus Megalocytivirus of the RSIV-Genotype II. The present study provides the first report of the complete genome sequence and annotation of the RSIV strain isolated from India.
Collapse
Affiliation(s)
- T G Puneeth
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - Pallavi Baliga
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - S K Girisha
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India.
| | - Malathi Shekar
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - M S Nithin
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - T Suresh
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - B T Naveen Kumar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
17
|
Tsai JM, Huang SL, Yang CD. PCR Detection and Phylogenetic Analysis of Megalocytivirus Isolates in Farmed Giant Sea Perch Lates calcarifer in Southern Taiwan. Viruses 2020; 12:v12060681. [PMID: 32599850 PMCID: PMC7354458 DOI: 10.3390/v12060681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/12/2023] Open
Abstract
The Megalocytivirus genus includes three genotypes, red sea bream iridovirus (RSIV), infectious spleen and kidney necrosis virus (ISKNV), and turbot reddish body iridovirus (TRBIV), and has caused mass mortalities in various marine and freshwater fish species in East and Southeast Asia. Of the three genotypes, TRBIV-like megalocytivirus is not included in the World Organization for Animal Health (OIE)-reportable virus list because of its geographic restriction and narrow host range. In 2017, 39 cases of suspected iridovirus infection were isolated from fingerlings of giant sea perch (Lates calcarifer) cultured in southern Taiwan during megalocytivirus epizootics. Polymerase chain reaction (PCR) with different specific primer sets was undertaken to identify the causative agent. Our results revealed that 35 out of the 39 giant sea perch iridovirus (GSPIV) isolates were TRBIV-like megalocytiviruses. To further evaluate the genetic variation, the nucleotide sequences of major capsid protein (MCP) gene (1348 bp) from 12 of the 35 TRBIV-like megalocytivirus isolates were compared to those of other known. High nucleotide sequence identity showed that these 12 TRBIV-like GSPIV isolates are the same species. Phylogenetic analysis based on the MCP gene demonstrated that these 12 isolates belong to the clade II of TRBIV megalocytiviruses, and are distinct from RSIV and ISKNV. In conclusion, the GSPIV isolates belonging to TRBIV clade II megalocytiviruses have been introduced into Taiwan and caused a severe impact on the giant sea perch aquaculture industry.
Collapse
Affiliation(s)
- Jia-Ming Tsai
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Song-Lang Huang
- Pingtung County Animal Disease Control Center, Pingtung 90001, Taiwan;
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: ; Tel.: +886-8-7703-202 (ext. 5334)
| |
Collapse
|
18
|
Ballard D, Davis A, Fuller R, Garner A, Mileham A, Serna J, Brue D, Harding C, Dodgen C, Culpepper W, Piatt B, Rosario S, Duffus A. An examination of the Iridovirus core genes for reconstructing Ranavirus phylogenies. Facets (Ott) 2020. [DOI: 10.1139/facets-2020-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ranaviruses are globally emerging infections of poikilothermic vertebrates and belong to the viral family Iridoviridae. The six species of ranaviruses are responsible for unknown numbers of infections and disease and mortality events around the world in amphibians, fish, and reptiles. Genomic investigations have shown that there are 24 core genes shared by all iridoviruses. In this study, we examine the utility of each of these genes in reconstructing phylogenetic relationships across six species of Ranavirus. We also performed dot-plot analysis for the 17 isolates in the study. For large-scale differentiation, using the major capsid protein gene creates a tree similar to the whole genome tree. Other comparable genes include open reading frame (ORF) 19R (a serine–theonine protein kinase) and ORF 88R (Erv I/Alr Family protein). The poorest candidate for phylogenetic reconstruction, due to high homology, was ORF 1R (a putative replication factor and (or) DNA binding-packing protein). There are a plethora of genes that may be useful to examine phylogenies at smaller scales (e.g., to examine local adaptation); however, they do not necessarily belong to the set of highly conserved core genes.
Collapse
Affiliation(s)
- D.R. Ballard
- Department of Mathematics and Computer Sciences, School of Arts and Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - A.J. Davis
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - R.B. Fuller
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - A.R. Garner
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - A.D. Mileham
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - J.D. Serna
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - D.E. Brue
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - C.M. Harding
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - C.D. Dodgen
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - W. Culpepper
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - B. Piatt
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| | - S.E. Rosario
- Science Division, Valencia College, Orlando, FL 32802, USA
| | - A.L.J. Duffus
- Department of Natural Sciences, School of Nursing, Health, and Natural Sciences, Gordon State College, Barnesville, GA 30204, USA
| |
Collapse
|
19
|
Papp T, Marschang RE. Detection and Characterization of Invertebrate Iridoviruses Found in Reptiles and Prey Insects in Europe over the Past Two Decades. Viruses 2019; 11:E600. [PMID: 31269721 PMCID: PMC6669658 DOI: 10.3390/v11070600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/05/2023] Open
Abstract
Invertebrate iridoviruses (IIVs), while mostly described in a wide range of invertebrate hosts, have also been repeatedly detected in diagnostic samples from poikilothermic vertebrates including reptiles and amphibians. Since iridoviruses from invertebrate and vertebrate hosts differ strongly from one another based not only on host range but also on molecular characteristics, a series of molecular studies and bioassays were performed to characterize and compare IIVs from various hosts and evaluate their ability to infect a vertebrate host. Eight IIV isolates from reptilian and orthopteran hosts collected over a period of six years were partially sequenced. Comparison of eight genome portions (total over 14 kbp) showed that these were all very similar to one another and to an earlier described cricket IIV isolate, thus they were given the collective name lizard-cricket IV (Liz-CrIV). One isolate from a chameleon was also subjected to Illumina sequencing and almost the entire genomic sequence was obtained. Comparison of this longer genome sequence showed several differences to the most closely related IIV, Invertebrateiridovirus6 (IIV6), the type species of the genus Iridovirus, including several deletions and possible recombination sites, as well as insertions of genes of non-iridoviral origin. Three isolates from vertebrate and invertebrate hosts were also used for comparative studies on pathogenicity in crickets (Gryllusbimaculatus) at 20 and 30 °C. Finally, the chameleon isolate used for the genome sequencing studies was also used in a transmission study with bearded dragons. The transmission studies showed large variability in virus replication and pathogenicity of the three tested viruses in crickets at the two temperatures. In the infection study with bearded dragons, lizards inoculated with a Liz-CrIV did not become ill, but the virus was detected in numerous tissues by qPCR and was also isolated in cell culture from several tissues. Highest viral loads were measured in the gastro-intestinal organs and in the skin. These studies demonstrate that Liz-CrIV circulates in the pet trade in Europe. This virus is capable of infecting both invertebrates and poikilothermic vertebrates, although its involvement in disease in the latter has not been proven.
Collapse
Affiliation(s)
- Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungaria krt 21, H-1143 Budapest, Hungary
| | - Rachel E Marschang
- Cell Culture Lab, Microbiology Department, Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany.
| |
Collapse
|
20
|
Ranavirus genotypes in the Netherlands and their potential association with virulence in water frogs (Pelophylax spp.). Emerg Microbes Infect 2018; 7:56. [PMID: 29615625 PMCID: PMC5882854 DOI: 10.1038/s41426-018-0058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/04/2017] [Accepted: 02/25/2018] [Indexed: 12/15/2022]
Abstract
Ranaviruses are pathogenic viruses for poikilothermic vertebrates worldwide. The identification of a common midwife toad virus (CMTV) associated with massive die-offs in water frogs (Pelophylax spp.) in the Netherlands has increased awareness for emerging viruses in amphibians in the country. Complete genome sequencing of 13 ranavirus isolates collected from ten different sites in the period 2011–2016 revealed three CMTV groups present in distinct geographical areas in the Netherlands. Phylogenetic analysis showed that emerging viruses from the northern part of the Netherlands belonged to CMTV-NL group I. Group II and III viruses were derived from the animals located in the center-east and south of the country, and shared a more recent common ancestor to CMTV-amphibian associated ranaviruses reported in China, Italy, Denmark, and Switzerland. Field monitoring revealed differences in water frog host abundance at sites where distinct ranavirus groups occur; with ranavirus-associated deaths, host counts decreasing progressively, and few juveniles found in the north where CMTV-NL group I occurs but not in the south with CMTV-NL group III. Investigation of tandem repeats of coding genes gave no conclusive information about phylo-geographical clustering, while genetic analysis of the genomes revealed truncations in 17 genes across CMTV-NL groups II and III compared to group I. Further studies are needed to elucidate the contribution of these genes as well as environmental variables to explain the observed differences in host abundance.
Collapse
|
21
|
Invertebrate Iridoviruses: A Glance over the Last Decade. Viruses 2018; 10:v10040161. [PMID: 29601483 PMCID: PMC5923455 DOI: 10.3390/v10040161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Members of the family Iridoviridae (iridovirids) are large dsDNA viruses that infect both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in host fitness to systemic disease and large-scale mortality. Several characteristics have been useful for classifying iridoviruses; however, novel strains are continuously being discovered and, in many cases, reliable classification has been challenging. Further impeding classification, invertebrate iridoviruses (IIVs) can occasionally infect vertebrates; thus, host range is often not a useful criterion for classification. In this review, we discuss the current classification of iridovirids, focusing on genomic and structural features that distinguish vertebrate and invertebrate iridovirids and viral factors linked to host interactions in IIV6 (Invertebrate iridescent virus 6). In addition, we show for the first time how complete genome sequences of viral isolates can be leveraged to improve classification of new iridovirid isolates and resolve ambiguous relations. Improved classification of the iridoviruses may facilitate the identification of genus-specific virulence factors linked with diverse host phenotypes and host interactions.
Collapse
|
22
|
Toenshoff ER, Fields PD, Bourgeois YX, Ebert D. The End of a 60-year Riddle: Identification and Genomic Characterization of an Iridovirus, the Causative Agent of White Fat Cell Disease in Zooplankton. G3 (BETHESDA, MD.) 2018; 8:1259-1272. [PMID: 29487186 PMCID: PMC5873915 DOI: 10.1534/g3.117.300429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
The planktonic freshwater crustacean of the genus Daphnia are a model system for biomedical research and, in particular, invertebrate-parasite interactions. Up until now, no virus has been characterized for this system. Here we report the discovery of an iridovirus as the causative agent of White Fat Cell Disease (WFCD) in Daphnia WFCD is a highly virulent disease of Daphnia that can easily be cultured under laboratory conditions. Although it has been studied from sites across Eurasia for more than 60 years, its causative agent had not been described, nor had an iridovirus been connected to WFCD before now. Here we find that an iridovirus-the Daphnia iridescent virus 1 (DIV-1)-is the causative agent of WFCD. DIV-1 has a genome sequence of about 288 kbp, with 39% G+C content and encodes 367 predicted open reading frames. DIV-1 clusters together with other invertebrate iridoviruses but has by far the largest genome among all sequenced iridoviruses. Comparative genomics reveal that DIV-1 has apparently recently lost a substantial number of unique genes but has also gained genes by horizontal gene transfer from its crustacean host. DIV-1 represents the first invertebrate iridovirus that encodes proteins to purportedly cap RNA, and it contains unique genes for a DnaJ-like protein, a membrane glycoprotein and protein of the immunoglobulin superfamily, which may mediate host-pathogen interactions and pathogenicity. Our findings end a 60-year search for the causative agent of WFCD and add to our knowledge of iridovirus genomics and invertebrate-virus interactions.
Collapse
Affiliation(s)
- Elena R Toenshoff
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Peter D Fields
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Yann X Bourgeois
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Dieter Ebert
- Basel University, Department of Environmental Sciences, Zoology, Vesalgasse 1, CH-4051 Basel, Switzerland
| |
Collapse
|
23
|
Chinchar V, Waltzek TB, Subramaniam K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere. Virology 2017. [DOI: 10.1016/j.virol.2017.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Hick PM, Subramaniam K, Thompson PM, Waltzek TB, Becker JA, Whittington RJ. Molecular epidemiology of Epizootic haematopoietic necrosis virus (EHNV). Virology 2017; 511:320-329. [PMID: 28818331 DOI: 10.1016/j.virol.2017.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Abstract
Low genetic diversity of Epizootic haematopoietic necrosis virus (EHNV) was determined for the complete genome of 16 isolates spanning the natural range of hosts, geography and time since the first outbreaks of disease. Genomes ranged from 125,591-127,487 nucleotides with 97.47% pairwise identity and 106-109 genes. All isolates shared 101 core genes with 121 potential genes predicted within the pan-genome of this collection. There was high conservation within 90,181 nucleotides of the core genes with isolates separated by average genetic distance of 3.43 × 10-4 substitutions per site. Evolutionary analysis of the core genome strongly supported historical epidemiological evidence of iatrogenic spread of EHNV to naïve hosts and establishment of endemic status in discrete ecological niches. There was no evidence of structural genome reorganization, however, the complement of non-core genes and variation in repeat elements enabled fine scale molecular epidemiological investigation of this unpredictable pathogen of fish.
Collapse
Affiliation(s)
- Paul M Hick
- OIE Reference Laboratory for Epizootic Haematopoietic Necrosis Virus and Ranavirus Infection of Amphibians, Sydney School of Veterinary Science and School of Life and Environmental Sciences, The University Sydney, Werombi Road, Camden 2570, NSW, Australia.
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Patrick M Thompson
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Disease and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joy A Becker
- OIE Reference Laboratory for Epizootic Haematopoietic Necrosis Virus and Ranavirus Infection of Amphibians, Sydney School of Veterinary Science and School of Life and Environmental Sciences, The University Sydney, Werombi Road, Camden 2570, NSW, Australia
| | - Richard J Whittington
- OIE Reference Laboratory for Epizootic Haematopoietic Necrosis Virus and Ranavirus Infection of Amphibians, Sydney School of Veterinary Science and School of Life and Environmental Sciences, The University Sydney, Werombi Road, Camden 2570, NSW, Australia
| |
Collapse
|
25
|
Claytor SC, Subramaniam K, Landrau-Giovannetti N, Chinchar VG, Gray MJ, Miller DL, Mavian C, Salemi M, Wisely S, Waltzek TB. Ranavirus phylogenomics: Signatures of recombination and inversions among bullfrog ranaculture isolates. Virology 2017; 511:330-343. [PMID: 28803676 DOI: 10.1016/j.virol.2017.07.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 01/23/2023]
Abstract
Ranaviruses are emerging pathogens of fish, amphibians, and reptiles that threaten aquatic animal industries and wildlife worldwide. Our objective was to genetically characterize ranaviruses isolated during separate bullfrog Lithobates catesbeianus die-offs that occurred eight years apart on the same North American farm. The earlier outbreak was due to a highly pathogenic strain of common midwife toad virus (CMTV) previously known only from Europe and China. The later outbreak was due to a chimeric ranavirus that displayed a novel genome arrangement and a DNA backbone typical for Frog virus 3 (FV3) strains except for interspersed fragments acquired through recombination with the CMTV isolated earlier. Both bullfrog ranaviruses are more pathogenic than wild-type FV3 suggesting recombination may have resulted in the increased pathogenicity observed in the ranavirus isolated in the later outbreak. Our study underscores the role international trade in farmed bullfrogs may have played in the global dissemination of highly pathogenic ranaviruses.
Collapse
Affiliation(s)
- Sieara C Claytor
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA
| | | | | | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Debra L Miller
- Center for Wildlife Health, University of Tennessee, Knoxville, TN, USA
| | - Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, and Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samantha Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, USA.
| |
Collapse
|
26
|
Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure. Microbiol Mol Biol Rev 2017; 81:81/3/e00010-17. [PMID: 28701329 DOI: 10.1128/mmbr.00010-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size.
Collapse
|
27
|
Qi H, Yi Y, Weng S, Zou W, He J, Dong C. Differential autophagic effects triggered by five different vertebrate iridoviruses in a common, highly permissive mandarinfish fry (MFF-1) cell model. FISH & SHELLFISH IMMUNOLOGY 2016; 49:407-419. [PMID: 26748344 DOI: 10.1016/j.fsi.2015.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Autophagy of five vertebrate iridoviruses, including one megalocytivirus (infectious spleen and kidney necrosis virus, ISKNV) and four ranaviruses (Chinese giant salamander iridovirus, CGSIV; Tiger frog virus, TFV; Grouper iridovirus, GIV; and Largemouth bass virus, LMBV) were investigated in a common, highly permissive mandarinfish fry (MFF-1) cell model. The results showed marked autophagosome formation in GIV- and LMBV-infected cells but not in ISKNV-, CGSIV- and TFV-infected MFF-1 cells. Strong evidence for the autophagosomes was provided by transmission electron microscopy, the detection of mandarinfish microtubule-associated protein 1 light chain 3B (mLC3)-based fluorescent dot formation and mLC3-I/mLC3-II conversion was provided by Western blotting. Pharmacological tests indicated that autophagy plays an antiviral role during GIV or LMBV infection. Collectively, our data are the first to show that antiviral autophagic effects can be triggered by GIV and LMBV but not by ISKNV, TFV and CGSIV in a common susceptible cell model. These results suggest that differential host-virus interaction strategies may be utilized against different vertebrate iridoviruses; they also indicate the potential effectiveness of an antiviral treatment that modulates autophagy to control iridoviral infections, such as GIV and LMBV.
Collapse
Affiliation(s)
- Hemei Qi
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yang Yi
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shaoping Weng
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weibing Zou
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jianguo He
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Chuanfu Dong
- State Key Laboratory for Bio-control, MOE Key Laboratory of Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou 510275, PR China; Bairong Aquatic Breeding Products Co., Ltd, Xiaan, Danzhao Town, Nanhai District, Foshan 528000, PR China.
| |
Collapse
|
28
|
Lin HY, Cheng CF, Chiou PP, Liou CJ, Yiu JC, Lai YS. Identification and characterization of a late gene encoded by grouper iridovirus 2L (GIV-2L). JOURNAL OF FISH DISEASES 2015; 38:881-890. [PMID: 25271832 DOI: 10.1111/jfd.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/29/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Grouper iridovirus (GIV) belongs to the Ranavirus genus and is one of the most important viral pathogens in grouper, particularly at the fry and fingerling stages. In this study, we identified and characterized the GIV-2L gene, which encodes a protein of unknown function. GIV-2L is 1242 bp in length, with a predicted protein mass of 46.2 kDa. It displayed significant identity only with members of the Ranavirus and Iridovirus genera. We produced mouse monoclonal antibodies against the GIV-2L protein by immunizing mice with GIV-2L-His-tag recombinant protein. By inhibiting de novo protein and DNA synthesis in GIV-infected cells, we showed that GIV-2L was a late gene during the viral replication. Finally, immunofluorescence microscopy revealed that GIV-2L protein accumulated in both the nucleus and cytoplasm of infected cells. These results offer important insights into the pathogenesis of GIV.
Collapse
Affiliation(s)
- H-Y Lin
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
- Department of Horticulture, National Ilan University, Yilan, Taiwan
| | - C-F Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - P P Chiou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - C-J Liou
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - J-C Yiu
- Department of Horticulture, National Ilan University, Yilan, Taiwan
| | - Y-S Lai
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| |
Collapse
|
29
|
A Novel Virus Causes Scale Drop Disease in Lates calcarifer. PLoS Pathog 2015; 11:e1005074. [PMID: 26252390 PMCID: PMC4529248 DOI: 10.1371/journal.ppat.1005074] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer) kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch's postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease.
Collapse
|
30
|
Chen ZY, Gao XC, Zhang QY. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV) Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments. Viruses 2015; 7:4282-302. [PMID: 26247954 PMCID: PMC4576181 DOI: 10.3390/v7082820] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/18/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV), was described. It comprises 11 dsRNA segments (S1–S11) covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST) protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV) and freshwater fish grass carp reovirus strain 109 (GCReV-109). MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.
Collapse
Affiliation(s)
- Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Xiao-Chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
31
|
Emmenegger EJ, Glenn JA, Winton JR, Batts WN, Gregg JL, Hershberger PK. Molecular identification of erythrocytic necrosis virus (ENV) from the blood of Pacific herring (Clupea pallasii). Vet Microbiol 2014; 174:16-26. [PMID: 25263493 DOI: 10.1016/j.vetmic.2014.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/05/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
Viral erythrocytic necrosis (VEN) is a condition affecting the red blood cells of more than 20 species of marine and anadromous fishes in the North Atlantic and North Pacific Oceans. Among populations of Pacific herring (Clupea pallasii) on the west coast of North America the disease causes anemia and elevated mortality in periodic epizootics. Presently, VEN is diagnosed by observation of typical cytoplasmic inclusion bodies in stained blood smears from infected fish. The causative agent, erythrocytic necrosis virus (ENV), is unculturable and a presumed iridovirus by electron microscopy. In vivo amplification of the virus in pathogen-free laboratory stocks of Pacific herring with subsequent virus concentration, purification, DNA extraction, and high-throughput sequencing were used to obtain genomic ENV sequences. Fragments with the highest sequence identity to the family Iridoviridae were used to design four sets of ENV-specific polymerase chain reaction (PCR) primers. Testing of blood and tissue samples from experimentally and wild infected Pacific herring as well as DNA extracted from other amphibian and piscine iridoviruses verified the assays were specific to ENV with a limit of detection of 0.0003 ng. Preliminary phylogenetic analyses of a 1448 bp fragment of the putative DNA polymerase gene supported inclusion of ENV in a proposed sixth genus of the family Iridoviridae that contains other erythrocytic viruses from ectothermic hosts. This study provides the first molecular evidence of ENV's inclusion within the Iridoviridae family and offers conventional PCR assays as a means of rapidly surveying the ENV-status of wild and propagated Pacific herring stocks.
Collapse
Affiliation(s)
- Eveline J Emmenegger
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th St., Seattle, WA 98115, USA.
| | - Jolene A Glenn
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th St., Seattle, WA 98115, USA
| | - James R Winton
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th St., Seattle, WA 98115, USA
| | - William N Batts
- U.S. Geological Survey, Western Fisheries Research Center (WFRC), 6505 NE 65th St., Seattle, WA 98115, USA
| | - Jacob L Gregg
- U.S. Geological Survey, WFRC, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| | - Paul K Hershberger
- U.S. Geological Survey, WFRC, Marrowstone Marine Field Station, 616 Marrowstone Point Road, Nordland, WA 98358, USA
| |
Collapse
|
32
|
Morrison EA, Garner S, Echaubard P, Lesbarrères D, Kyle CJ, Brunetti CR. Complete genome analysis of a frog virus 3 (FV3) isolate and sequence comparison with isolates of differing levels of virulence. Virol J 2014; 11:46. [PMID: 24620832 PMCID: PMC3995667 DOI: 10.1186/1743-422x-11-46] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/06/2014] [Indexed: 01/05/2023] Open
Abstract
Background Frog virus 3 (FV3) is the type species of the genus Ranavirus, and in the past few decades, FV3 infections have resulted in considerable morbidity and mortality in a range of wild and cultivated amphibian species in the Americas, Europe, and Asia. The reasons for the pathogenicity of FV3 are not well understood. Findings We investigated three FV3 isolates designated SSME, wt-FV3, and aza-Cr, and reported that our wt-FV3 and aza-Cr strains showed similar levels of virulence, while SSME was the least virulent in an in vivo study with Lithiobates pipiens tadpoles. Using 454 GS-FLX sequencing technology, we sequenced SSME and compared it to the published wt-FV3 genome. SSME had multiple amino acid deletions in ORFs 49/50L, 65L, 66L, and 87L, which may explain its reduced virulence. We also investigated repeat regions and found that repeat copy number differed between isolates, with only one group of 3 isolates and 1 pair of isolates being identical at all 3 locations. Conclusions In this study we have shown that genetic variability is present between closely related FV3 isolates, both in terms of deletions/insertions, and even more so at select repeat locations. These genomic areas with deletions/insertions may represent regions that affect virulence, and therefore require investigation. Furthermore, we have identified repeat regions that may prove useful in future phylogeographical tracking and identification of ranaviral strains across different environmental regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Craig R Brunetti
- Department of Biology, Trent University, 1600 East Bank Dr,, Peterborough, Ontario K9J 7B8, Canada.
| |
Collapse
|
33
|
Jia KT, Wu YY, Liu ZY, Mi S, Zheng YW, He J, Weng SP, Li SC, He JG, Guo CJ. Mandarin fish caveolin 1 interaction with major capsid protein of infectious spleen and kidney necrosis virus and its role in early stages of infection. J Virol 2013; 87:3027-3038. [PMID: 23283951 PMCID: PMC3592132 DOI: 10.1128/jvi.00552-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 12/15/2012] [Indexed: 12/31/2022] Open
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus from the family Iridoviridae. ISKNV is one of the major agents that cause mortality and economic losses to the freshwater fish culture industry in Asian countries, particularly for mandarin fish (Siniperca chuatsi). In the present study, we report that the interaction of mandarin fish caveolin 1 (mCav-1) with the ISKNV major capsid protein (MCP) was detected by using a virus overlay assay and confirmed by pulldown assay and coimmunoprecipitation. This interaction was independent of the classic caveolin 1 scaffolding domain (CSD), which is responsible for interacting with several signaling proteins and receptors. Confocal immunofluorescence microscopy showed that ISKNV MCP colocalized with mCav-1 in the perinuclear region of virus-infected mandarin fish fry (MFF-1) cells, which appeared as soon as 4 h postinfection. Subcellular fractionation analysis showed that ISKNV MCP was associated with caveolae in the early stages of viral infection. RNA interference silencing of mCav-1 did not change virus-cell binding but efficiently inhibited the entry of virions into the cell. Taken together, these results suggested that mCav-1 plays an important role in the early stages of ISKNV infection.
Collapse
Affiliation(s)
- Kun-Tong Jia
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan-Yan Wu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhao-Yu Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shu Mi
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi-Wen Zheng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian He
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shengwen Calvin Li
- CHOC Children's Hospital, University of California—Irvine, Orange, California, USA
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chang-Jun Guo
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
34
|
İnce İA, Özcan K, Vlak JM, van Oers MM. Temporal classification and mapping of non-polyadenylated transcripts of an invertebrate iridovirus. J Gen Virol 2013; 94:187-192. [DOI: 10.1099/vir.0.046359-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The temporal expression of the 54 Chilo iridescent virus (CIV) virion protein genes was investigated by combining drug treatments that inhibit protein or DNA synthesis and an RT-PCR strategy particularly suitable for non-polyadenylated mRNAs. This method generates a uniform 3′ terminus by ligation of a 5′-phosphorylated oligonucleotide to the 3′ end of the transcript that is recognized by a complementary primer during RT-PCR. This analysis showed that CIV virion proteins are encoded by genes in all three predetermined temporal classes: 23 immediate-early, 11 delayed-early and seven late virion gene transcripts were identified and assigned to ORFs. Early transcription of many virion protein genes supports the notion that virion proteins may also play essential roles in the initial stages of infection. In addition, some of the early gene products present in the virion may reflect the intracellular path that the virus follows during infection.
Collapse
Affiliation(s)
- İkbal Agah İnce
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
- Department of Biosystems Engineering, Faculty of Engineering, Giresun University, 28100, Giresun, Turkey
| | - Kadriye Özcan
- Department of Biosystems Engineering, Faculty of Engineering, Giresun University, 28100, Giresun, Turkey
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
35
|
Palmer LJ, Hogan NS, van den Heuvel MR. Phylogenetic analysis and molecular methods for the detection of lymphocystis disease virus from yellow perch, Perca flavescens (Mitchell). JOURNAL OF FISH DISEASES 2012; 35:661-670. [PMID: 22804739 DOI: 10.1111/j.1365-2761.2012.01391.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lymphocystis disease is a prevalent, non-fatal disease that affects many teleost fish and is caused by the DNA virus lymphocystis disease virus (LCDV). Lymphocystis-like lesions have been observed in yellow perch, Perca flavescens (Mitchell), in lakes in northern Alberta, Canada. In an effort to confirm the identity of the virus causing these lesions, DNA was extracted from these lesions and PCR with genotype generic LCDV primers specific to the major capsid protein (MCP) gene was performed. A 1357-base pair nucleotide sequence corresponding to a peptide length of 452 amino acids of the MCP gene was sequenced, confirming the lesions as being lymphocystis disease lesions. Phylogenetic analysis of the generated amino acid sequence revealed the perch LCDV isolate to be a distinct and novel genotype. From the obtained sequence, a real-time PCR identification method was developed using fluorgenic LUX primers. The identification method was used to detect the presence/absence of LCDV in yellow perch from two lakes, one where lymphocystis disease was observed to occur and the other where the disease had not been observed. All samples of fin, spleen and liver tested negative for LCDV in the lake where lymphocystis disease had not been observed. The second lake had a 2.6% incidence of LCD, and virus was detected in tissue samples from all individuals tested regardless of whether they were expressing the disease or not. However, estimated viral copy number in spleen and liver of symptomatic perch was four orders of magnitude higher than that in asymptomatic perch.
Collapse
Affiliation(s)
- L J Palmer
- Department of Biology, Canadian Rivers Institute, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| | | | | |
Collapse
|
36
|
Differential viral propagation and induction of apoptosis by grouper iridovirus (GIV) in cell lines from three non-host species. Virus Res 2012; 167:16-25. [DOI: 10.1016/j.virusres.2012.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 02/08/2023]
|