1
|
Gao P, Ren J, Zhou Q, Chen P, Zhang A, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. Pseudorabies virus inhibits the unfolded protein response for viral replication during the late stages of infection. Vet Microbiol 2025; 301:110360. [PMID: 39756331 DOI: 10.1016/j.vetmic.2024.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Pseudorabies virus (PRV) poses a significant threat to the global swine breeding industry and public health, but how the virus transverses the host defense systems for efficient viral replication and pathogenesis remains unclear. Here, we report that PRV could inhibit the unfolded protein response (UPR), a critical component of host innate immunity against viral infection, to promote virus replication during the late infection stages. PERK was shown phosphorylated and active in PRV-infected cells, but the subsequent events were suppressed post virus infection, such as eIF2α phosphorylation, ATF4 expression, and the formation of stress granules (SGs). In the meantime, although IRE1α was also active, its activated effector XBP1s was suppressed through downregulation of XBP1 mRNA levels and cleavage of XBP1s protein. Our findings also indicate that the Golgi apparatus, where ATF6 activation occur, was severely damaged in PRV-infected cells. Meanwhile, the downstream regulatory genes associated with the three UPR sensors, such as ERp60, CHOP, and EDEM1, remained silent in PRV-infected cells. Enhanced viral replication was observed post knockdown of UPR effectors ATF4 or XBP1, while stimulation with UPR activators inhibits virus replication. In conclusion, our findings address the critical question of how PRV regulates cellular UPR in favor of viral replication, and expand understanding of viruses mediated UPR suppression in general.
Collapse
Affiliation(s)
- Peng Gao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianle Ren
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Peng Chen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ailin Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Huang S, Lu H, Chen J, Jiang C, Jiang G, Maduraiveeran G, Pan Y, Liu J, Deng LE. Advances in drug delivery-based therapeutic strategies for renal fibrosis treatment. J Mater Chem B 2024; 12:6532-6549. [PMID: 38913013 DOI: 10.1039/d4tb00737a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Renal fibrosis is the result of all chronic kidney diseases and is becoming a major global health hazard. Currently, traditional treatments for renal fibrosis are difficult to meet clinical needs due to shortcomings such as poor efficacy or highly toxic side effects. Therefore, therapeutic strategies that target the kidneys are needed to overcome these shortcomings. Drug delivery can be attained by improving drug stability and addressing controlled release and targeted delivery of drugs in the delivery category. By combining drug delivery technology with nanosystems, controlled drug release and biodistribution can be achieved, enhancing therapeutic efficacy and reducing toxic cross-wise effects. This review discusses nanomaterial drug delivery strategies reported in recent years. Firstly, the present review describes the mechanisms of renal fibrosis and anti-renal fibrosis drug delivery. Secondly, different nanomaterial drug delivery strategies for the treatment of renal injury and fibrosis are highlighted. Finally, the limitations of these strategies are also discussed. Investigating various anti-renal fibrosis drug delivery strategies reveals the characteristics and therapeutic effects of various novel nanosystem-derived drug delivery approaches. This will serve as a reference for future research on drug delivery strategies for renal fibrosis treatment.
Collapse
Affiliation(s)
- Sida Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Hanqi Lu
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Jin Chen
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| | - Chengyi Jiang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Guanmin Jiang
- Department of Oncology, Affiliated Dongguan Hospital, Southern Medical University (Dongguan people's hospital), 78 Wandao Road South, Dongguan, 523059 Guangdong, China.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu, Tamil Nadu, India.
| | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Li-Er Deng
- Department of Nephrology, Dongguan Hospital of Guangzhou University of Traditional Chinese Medicine, Dongguan, Guangdong 523000, China.
| |
Collapse
|
3
|
Frericks N, Brown RJP, Reinecke BM, Herrmann M, Brüggemann Y, Todt D, Miskey C, Vondran FWR, Steinmann E, Pietschmann T, Sheldon J. Unraveling the dynamics of hepatitis C virus adaptive mutations and their impact on antiviral responses in primary human hepatocytes. J Virol 2024; 98:e0192123. [PMID: 38319104 PMCID: PMC10949430 DOI: 10.1128/jvi.01921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.
Collapse
Affiliation(s)
- Nicola Frericks
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Richard J. P. Brown
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | | | - Maike Herrmann
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
| | - Yannick Brüggemann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | - Florian W. R. Vondran
- Department for General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Clinic for General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Eike Steinmann
- Department for Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Julie Sheldon
- Institute for Experimental Virology, TWINCORE, Hannover, Germany
| |
Collapse
|
4
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Frericks N, Brown RJP, Reinecke BM, Herrmann M, Brüggemann Y, Todt D, Miskey C, Vondran FWR, Steinmann E, Pietschmann T, Sheldon J. Hepatitis C virus cell culture adaptive mutations enhance cell culture propagation by multiple mechanisms but boost antiviral responses in primary human hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568224. [PMID: 38045248 PMCID: PMC10690267 DOI: 10.1101/2023.11.22.568224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants which underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establishing persistence. Author Summary HCV infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms which underly persistence are incompletely defined. We utilized a long-term cell culture adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.
Collapse
|
6
|
Shin WS, Xie F, Chen B, Yu J, Lo KW, Tse GMK, To KF, Kang W. Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus. Cancers (Basel) 2023; 15:4993. [PMID: 37894360 PMCID: PMC10605912 DOI: 10.3390/cancers15204993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
While previous research has primarily focused on the impact of H. pylori and Epstein-Barr virus (EBV), emerging evidence suggests that other microbial influences, including viral and fungal infections, may also contribute to gastric cancer (GC) development. The intricate interactions between these microbes and the host's immune response provide a more comprehensive understanding of gastric cancer pathogenesis, diagnosis, and treatment. The review highlights the roles of established players such as H. pylori and EBV and the potential impacts of gut bacteria, mainly Lactobacillus, Streptococcus, hepatitis B virus, hepatitis C virus, and fungi such as Candida albicans. Advanced sequencing technologies offer unprecedented insights into the complexities of the gastric microbiome, from microbial diversity to potential diagnostic applications. Furthermore, the review highlights the potential for advanced GC diagnosis and therapies through a better understanding of the gut microbiome.
Collapse
Affiliation(s)
- Wing Sum Shin
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Fuda Xie
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Bonan Chen
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kwok Wai Lo
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Gary M. K. Tse
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Ka Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wei Kang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
7
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
8
|
Tang Y, Zhou X, Cao T, Chen E, Li Y, Lei W, Hu Y, He B, Liu S. Endoplasmic Reticulum Stress and Oxidative Stress in Inflammatory Diseases. DNA Cell Biol 2022; 41:924-934. [PMID: 36356165 DOI: 10.1089/dna.2022.0353] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
Devi P, Punga T, Bergqvist A. Activation of the Ca2+/NFAT Pathway by Assembly of Hepatitis C Virus Core Protein into Nucleocapsid-like Particles. Viruses 2022; 14:v14040761. [PMID: 35458491 PMCID: PMC9031069 DOI: 10.3390/v14040761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) is the primary pathogen responsible for liver cirrhosis and hepatocellular carcinoma. The main virion component, the core (C) protein, has been linked to several aspects of HCV pathology, including oncogenesis, immune evasion and stress responses. We and others have previously shown that C expression in various cell lines activates Ca2+ signaling and alters Ca2+ homeostasis. In this study, we identified two distinct C protein regions that are required for the activation of Ca2+/NFAT signaling. In the basic N-terminal domain, which has been implicated in self-association of C, amino acids 1–68 were critical for NFAT activation. Sedimentation analysis of four mutants in this domain revealed that association of the C protein into nucleocapsid-like particles correlated with NFAT-activated transcription. The internal, lipid droplet-targeting domain was not required for NFAT-activated transcription. Finally, the C-terminal ER-targeting domain was required in extenso for the C protein to function. Our results indicate that targeting of HCV C to the ER is necessary but not sufficient for inducing Ca2+/NFAT signaling. Taken together, our data are consistent with a model whereby proteolytic intermediates of C with an intact transmembrane ER-anchor assemble into pore-like structures in the ER membrane.
Collapse
Affiliation(s)
- Priya Devi
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden;
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE 75123 Uppsala, Sweden;
| | - Anders Bergqvist
- Department of Medical Sciences, Uppsala University, SE 75185 Uppsala, Sweden;
- Clinical Microbiology and Hospital Infection Control, Uppsala University Hospital, SE 75185 Uppsala, Sweden
- Correspondence: ; Tel.: +46-186113937
| |
Collapse
|
10
|
Adherence to a Fish-Rich Dietary Pattern Is Associated with Chronic Hepatitis C Patients Showing Low Viral Load: Implications for Nutritional Management. Nutrients 2021; 13:nu13103337. [PMID: 34684338 PMCID: PMC8541240 DOI: 10.3390/nu13103337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatitis C virus (HCV) infection is influenced by genetic (e.g., APOE polymorphisms) and environmental factors between the virus and the host. HCV modulates the host’s lipid metabolism but dietary components influence lipids and in vitro HCV RNA replication. Few data exist on the role of dietary features or patterns (DPs) in HCV infection. Herein, we aimed to evaluate the nutritional profiles of chronic HCV (CHC) and spontaneous clearance (SC) Mexican patients in the context of APOE alleles and their correlation with HCV-related variables. The fibrosis-related APOEε3 allele prevailed in CHC and SC patients, who had four DPs (“meat and soft drinks”, DP1; “processed animal and fried foods”, DP2; “Mexican-healthy”, DP3; and “fish-rich”, DP4). In CHC subjects, polyunsaturated fatty acid intake (PUFA ≥ 4.9%) was negatively associated, and fiber intake (≥21.5 g/day) was positively associated with a high viral load (p < 0.036). High adherence to fish-rich DP4 was associated with a higher frequency of CHC individuals consuming PUFA ≥ 4.9% (p = 0.004) and low viral load (p = 0.036), but a lower frequency of CHC individuals consuming fiber ≥21.5 g/day (p = 0.038). In SC and CHC individuals, modifying unhealthy DPs and targeting HCV-interacting nutrients, respectively, could be part of a nutritional management strategy to prevent further liver damage.
Collapse
|
11
|
Wu F, Zhao Y, Shao Q, Fang K, Dong R, Jiang S, Lu F, Luo J, Chen G. Ameliorative Effects of Osthole on Experimental Renal Fibrosis in vivo and in vitro by Inhibiting IL-11/ERK1/2 Signaling. Front Pharmacol 2021; 12:646331. [PMID: 34054526 PMCID: PMC8155534 DOI: 10.3389/fphar.2021.646331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Objectives: Natural product, osthole, has been proven to have a protective effect on organ fibrosis, including renal fibrosis. All of these studies are mainly focused on the regulation of TGF-β/Smad signaling pathway. However, due to the pleiotropic roles of TGF-β/Smad signaling, direct TGF-β-targeted treatments are unlikely to be therapeutically feasible in clinic. Recently, the downstream IL-11/ERK1/2 signaling of TGF-β has become an attractive therapeutic target without upstream disadvantages. Based on that, this study was designed to identify the potential effects of osthole on IL-11/ERK1/2 signaling pathway in renal fibrosis. Methods: The renal fibrosis model was established in vivo and in vitro, we investigated the effects of osthole on unilateral ureteral obstruction (UUO)-induced renal fibrosis and TGF-β-induced HK-2 cells. After preliminarily confirming the antifibrogenic effects of osthole and the link between its antifibrogenic effects and the inhibition of IL-11/ERK1/2 signaling, we applied a direct IL-11-induced HK-2 cells fibrosis model to further explore the inhibitory effects of osthole on IL-11/ERK1/2 signaling pathway. Results: Our results confirmed that osthole can decrease the secretion of fibrosis proteins, such as α-smooth muscle actin (α-SMA), collagen I, and fibronectin, ameliorate experimental renal fibrosis in vivo and in vitro, and the effect was associated with suppressing TGF-β1/Smad signaling. More importantly, we found that IL-11/ERK1/2 signaling in UUO-induced renal fibrosis and TGF-β-induced HK-2 cell model was obviously upregulated, and osthole treatment also significantly inhibited the abnormal IL-11/ERK1/2 signaling activation. Given the direct link between TGF-β/Smad signaling and IL-11/ERK1/2 signaling pathway, we have verified that osthole has a direct inhibitory effect on IL-11/ERK1/2 signaling independent of TGF-β signaling by using an IL-11-induced HK-2 cells fibrosis model. Osthole treatment decreased the protein expression of α-SMA, collagen I and fibronectin without changing their mRNA levels in IL-11-induced HK-2 cells. Moreover, it was observed that the IL-11/ERK1/2 inhibitor, U0126, partly blocked the antifibrogenic effects of osthole. Conclusion: In this study, we found that osthole has a previously unrecognized role in inhibiting IL-11/ERK1/2 signaling pathway. Our work demonstrated that the antifibrogenic effect of osthole is not only mediated by TGF-β/Smad2/3 signaling, but also directly mediated by IL-11/ERK1/2 signaling pathway independent of TGF-β1 signaling.
Collapse
Affiliation(s)
- Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Li S, Liu W, Chen Y, Wang L, An W, An X, Song L, Tong Y, Fan H, Lu C. Transcriptome analysis of cepharanthine against a SARS-CoV-2-related coronavirus. Brief Bioinform 2021; 22:1378-1386. [PMID: 33423067 PMCID: PMC7929461 DOI: 10.1093/bib/bbaa387] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core. CEP was potent to reverse most dysregulated genes and pathways in infected cells including ER stress/unfolded protein response and HSF1-mediated heat shock response. Additionally, single-cell transcriptomes also confirmed that genes of cellular stress responses and autophagy pathways were enriched in several peripheral blood mononuclear cells populations from COVID-19 patients. In summary, this study uncovered the transcriptome of a SARS-CoV-2-related coronavirus infection model and anti-viral activities of CEP, providing evidence for CEP as a promising therapeutic option for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shasha Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Wenli Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Yangzhen Chen
- College of Life Science and Technology, Beijing University of Chemical Technology
| | - Liqin Wang
- College of Life Science and Technology, Beijing University of Chemical Technology
| | - Wenlin An
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Xiaoping An
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Lihua Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Huahao Fan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University
| |
Collapse
|
13
|
Dihazi GH, Eltoweissy M, Jahn O, Tampe B, Zeisberg M, Wülfrath HS, Müller GA, Dihazi H. The Secretome Analysis of Activated Human Renal Fibroblasts Revealed Beneficial Effect of the Modulation of the Secreted Peptidyl-Prolyl Cis-Trans Isomerase A in Kidney Fibrosis. Cells 2020; 9:cells9071724. [PMID: 32708451 PMCID: PMC7407823 DOI: 10.3390/cells9071724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
The secretome is an important mediator in the permanent process of reciprocity between cells and their environment. Components of secretome are involved in a large number of physiological mechanisms including differentiation, migration, and extracellular matrix modulation. Alteration in secretome composition may therefore trigger cell transformation, inflammation, and diseases. In the kidney, aberrant protein secretion plays a central role in cell activation and transition and in promoting renal fibrosis onset and progression. Using comparative proteomic analyses, we investigated in the present study the impact of cell transition on renal fibroblast cells secretome. Human renal cell lines were stimulated with profibrotic hormones and cytokines, and alterations in secretome were investigated using proteomic approaches. We identified protein signatures specific for the fibrotic phenotype and investigated the impact of modeling secretome proteins on extra cellular matrix accumulation. The secretion of peptidyl-prolyl cis-trans isomerase A (PPIA) was demonstrated to be associated with fibrosis phenotype. We showed that the in-vitro inhibition of PPIA with ciclosporin A (CsA) resulted in downregulation of PPIA and fibronectin (FN1) expression and significantly reduced their secretion. Knockdown studies of PPIA in a three-dimensional (3D) cell culture model significantly impaired the secretion and accumulation of the extracellular matrix (ECM), suggesting a positive therapeutic effect on renal fibrosis progression.
Collapse
Affiliation(s)
- Gry H. Dihazi
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (G.H.D.); (H.S.W.)
| | - Marwa Eltoweissy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21500, Egypt;
| | - Olaf Jahn
- Proteomics Group, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany;
| | - Björn Tampe
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Michael Zeisberg
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Hauke S. Wülfrath
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (G.H.D.); (H.S.W.)
| | - Gerhard A. Müller
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
| | - Hassan Dihazi
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany; (B.T.); (M.Z.); (G.A.M.)
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, D-37075 Göttingen, Germany
- Correspondence: ; Tel.: +49-551-399-1221; Fax: +49-551-399-1039
| |
Collapse
|
14
|
Risk Factors Contributing to the Occurrence and Recurrence of Hepatocellular Carcinoma in Hepatitis C Virus Patients Treated with Direct-Acting Antivirals. Biomedicines 2020. [PMID: 32630610 DOI: 10.3390/biomedicines8060175.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although hepatitis C virus (HCV) RNA may be eliminated from blood circulation by direct-acting antivirals (DAA) therapy as assessed by real-time polymerase chain reaction (PCR), HCV RNA can still be present in liver tissue, and this is known as occult HCV. There has been a lot of controversy surrounding the recurrence of hepatocellular carcinoma (HCC) after DAA treatment of hepatic cells infected with chronic HCV. One of the main risk factors that leads to de novo HCC is the chronicity of HCV in hepatic cells. There are many studies regarding the progression of HCV-infected hepatic cells to HCC. However, there is a lack of research on the different molecular mechanisms that lead to the progression of chronic HCV infection to HCC, as well as on the effect of HCV on the alteration of DNA ploidy, which eventually leads to a recurrence of HCC after DAA treatment. In this review article, we will address some risk factors that could lead to the development/recurrence of HCC after treatment of HCV with DAA therapy, such as the role of liver cirrhosis, the alteration of DNA ploidy, the reactivation of hepatitis B virus (HBV), the role of cytokines and the alteration of the immune system, concomitant non- alcoholic fatty liver disease (NAFLD), obesity, alcohol consumption and also occult HCV infection/co-infection. Clinicians should be cautious considering that full eradication of hepatocarcinogenesis cannot be successfully accomplished by anti-HCV treatment alone.
Collapse
|
15
|
Kishta S, Tabll A, Omanovic Kolaric T, Smolic R, Smolic M. Risk Factors Contributing to the Occurrence and Recurrence of Hepatocellular Carcinoma in Hepatitis C Virus Patients Treated with Direct-Acting Antivirals. Biomedicines 2020; 8:biomedicines8060175. [PMID: 32630610 PMCID: PMC7344618 DOI: 10.3390/biomedicines8060175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Although hepatitis C virus (HCV) RNA may be eliminated from blood circulation by direct-acting antivirals (DAA) therapy as assessed by real-time polymerase chain reaction (PCR), HCV RNA can still be present in liver tissue, and this is known as occult HCV. There has been a lot of controversy surrounding the recurrence of hepatocellular carcinoma (HCC) after DAA treatment of hepatic cells infected with chronic HCV. One of the main risk factors that leads to de novo HCC is the chronicity of HCV in hepatic cells. There are many studies regarding the progression of HCV-infected hepatic cells to HCC. However, there is a lack of research on the different molecular mechanisms that lead to the progression of chronic HCV infection to HCC, as well as on the effect of HCV on the alteration of DNA ploidy, which eventually leads to a recurrence of HCC after DAA treatment. In this review article, we will address some risk factors that could lead to the development/recurrence of HCC after treatment of HCV with DAA therapy, such as the role of liver cirrhosis, the alteration of DNA ploidy, the reactivation of hepatitis B virus (HBV), the role of cytokines and the alteration of the immune system, concomitant non- alcoholic fatty liver disease (NAFLD), obesity, alcohol consumption and also occult HCV infection/co-infection. Clinicians should be cautious considering that full eradication of hepatocarcinogenesis cannot be successfully accomplished by anti-HCV treatment alone.
Collapse
Affiliation(s)
- Sara Kishta
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, El Behooth Street, Dokki 12622, Egypt; (S.K.); (A.T.)
- Virology Division, Federal Institute for Vaccines and Biomedicines, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Ashraf Tabll
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, El Behooth Street, Dokki 12622, Egypt; (S.K.); (A.T.)
- Department of immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo 11517, Egypt
| | - Tea Omanovic Kolaric
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (T.O.K.); (R.S.)
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-3100 Osijek, Croatia
| | - Robert Smolic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (T.O.K.); (R.S.)
- Division of Gastroenterology/Hepatology, Department of Medicine, University Hospital Osijek, J. Huttlera 4, HR-3100 Osijek, Croatia
| | - Martina Smolic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (T.O.K.); (R.S.)
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Crkvena 21, HR-3100 Osijek, Croatia
- Correspondence: ; Tel.: +385-31-512-800
| |
Collapse
|
16
|
Dash S, Aydin Y, Wu T. Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: A novel mechanism for host-microbe survival and HCC development in liver cirrhosis. Semin Cell Dev Biol 2020; 101:20-35. [PMID: 31386899 PMCID: PMC7007355 DOI: 10.1016/j.semcdb.2019.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanism(s) how liver damage during the chronic hepatitis C virus (HCV) infection evolve into cirrhosis and hepatocellular carcinoma (HCC) is unclear. HCV infects hepatocyte, the major cell types in the liver. During infection, large amounts of viral proteins and RNA replication intermediates accumulate in the endoplasmic reticulum (ER) of the infected hepatocyte, which creates a substantial amount of stress response. Infected hepatocyte activates a different type of stress adaptive mechanisms such as unfolded protein response (UPR), antioxidant response (AR), and the integrated stress response (ISR) to promote virus-host cell survival. The hepatic stress is also amplified by another layer of innate and inflammatory response associated with cellular sensing of virus infection through the production of interferon (IFN) and inflammatory cytokines. The interplay between various types of cellular stress signal leads to different forms of cell death such as apoptosis, necrosis, and autophagy depending on the intensity of the stress and nature of the adaptive cellular response. How do the adaptive cellular responses decode such death programs that promote host-microbe survival leading to the establishment of chronic liver disease? In this review, we discuss how the adaptive cellular response through the Nrf2 pathway that promotes virus and cell survival. Furthermore, we provide a glimpse of novel stress-induced Nrf2 mediated compensatory autophagy mechanisms in virus-cell survival that degrade tumor suppressor gene and activation of oncogenic signaling during HCV infection. Based on these facts, we hypothesize that the balance between hepatic stress, inflammation and different types of cell death determines liver disease progression outcomes. We propose that a more nuanced understanding of virus-host interactions under excessive cellular stress may provide an answer to the fundamental questions why some individuals with chronic HCV infection remain at risk of developing cirrhosis, cancer and some do not.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| |
Collapse
|
17
|
Ríos-Ocampo WA, Navas MC, Buist-Homan M, Faber KN, Daemen T, Moshage H. Hepatitis C Virus Proteins Core and NS5A Are Highly Sensitive to Oxidative Stress-Induced Degradation after eIF2α/ATF4 Pathway Activation. Viruses 2020; 12:v12040425. [PMID: 32283772 PMCID: PMC7232227 DOI: 10.3390/v12040425] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is accompanied by increased oxidative stress and endoplasmic reticulum stress as a consequence of viral replication, production of viral proteins, and pro-inflammatory signals. To overcome the cellular stress, hepatocytes have developed several adaptive mechanisms like anti-oxidant response, activation of Unfolded Protein Response and autophagy to achieve cell survival. These adaptive mechanisms could both improve or inhibit viral replication, however, little is known in this regard. In this study, we investigate the mechanisms by which hepatocyte-like (Huh7) cells adapt to cellular stress in the context of HCV protein overexpression and oxidative stress. Huh7 cells stably expressing individual HCV (Core, NS3/4A and NS5A) proteins were treated with the superoxide anion donor menadione to induce oxidative stress. Production of reactive oxygen species and activation of caspase 3 were quantified. The activation of the eIF2α/ATF4 pathway and changes in the steady state levels of the autophagy-related proteins LC3 and p62 were determined either by quantitative polymerase chain reaction (qPCR) or Western blotting. Huh7 cells expressing Core or NS5A demonstrated reduced oxidative stress and apoptosis. In addition, phosphorylation of eIF2α and increased ATF4 and CHOP expression was observed with subsequent HCV Core and NS5A protein degradation. In line with these results, in liver biopsies from patients with hepatitis C, the expression of ATF4 and CHOP was confirmed. HCV Core and NS5A protein degradation was reversed by antioxidant treatment or silencing of the autophagy adaptor protein p62. We demonstrated that hepatocyte-like cells expressing HCV proteins and additionally exposed to oxidative stress adapt to cellular stress through eIF2a/ATF4 activation and selective degradation of HCV pro-oxidant proteins Core and NS5A. This selective degradation is dependent on p62 and results in increased resistance to apoptotic cell death induced by oxidative stress. This mechanism may provide a new key for the study of HCV pathology and lead to novel clinically applicable therapeutic interventions.
Collapse
Affiliation(s)
- W. Alfredo Ríos-Ocampo
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Gastrohepatology Group, Medicine School, University of Antioquia, Medellin 050010, Colombia;
- Correspondence: ; Tel.: +31-50-361-2364 or +31-638-955-716
| | - María-Cristina Navas
- Gastrohepatology Group, Medicine School, University of Antioquia, Medellin 050010, Colombia;
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| | - Toos Daemen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.B.-H.); (K.N.F.); (H.M.)
| |
Collapse
|
18
|
The Role of Autophagy in Interferon/Ribavirin Responders and Non-Responders with Hepatitis C Virus Infection. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.92560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Ríos-Ocampo WA, Daemen T, Buist-Homan M, Faber KN, Navas MC, Moshage H. Hepatitis C virus core or NS3/4A protein expression preconditions hepatocytes against oxidative stress and endoplasmic reticulum stress. Redox Rep 2020; 24:17-26. [PMID: 30909829 PMCID: PMC6748607 DOI: 10.1080/13510002.2019.1596431] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives: The occurrence of oxidative stress and endoplasmic
reticulum (ER) stress in hepatitis C virus (HCV) infection has been demonstrated
and play an important role in liver injury. During viral infection, hepatocytes
must handle not only the replication of the virus, but also inflammatory signals
generating oxidative stress and damage. Although several mechanisms exist to
overcome cellular stress, little attention has been given to the adaptive
response of hepatocytes during exposure to multiple noxious triggers. Methods: In the present study, Huh-7 cells and hepatocytes
expressing HCV Core or NS3/4A proteins, both inducers of oxidative and ER
stress, were additionally challenged with the superoxide anion generator
menadione to mimic external oxidative stress. The production of reactive oxygen
species (ROS) as well as the response to oxidative stress and ER stress were
investigated. Results: We demonstrate that hepatocytes diminish oxidative stress
through a reduction in ROS production, ER-stress markers (HSPA5
[GRP78], sXBP1) and apoptosis (caspase-3 activity) despite
external oxidative stress. Interestingly, the level of the autophagy substrate
protein p62 was downregulated together with HCV Core degradation, suggesting
that hepatocytes can overcome excess oxidative stress through autophagic
degradation of one of the stressors, thereby increasing cell survival. Duscussion: In conclusion, hepatocytes exposed to direct and
indirect oxidative stress inducers are able to cope with cellular stress
associated with viral hepatitis and thus promote cell survival.
Collapse
Affiliation(s)
- W Alfredo Ríos-Ocampo
- a Department of Gastroenterology and Hepatology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,b Department Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,c Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia , Medellin , Colombia
| | - Toos Daemen
- b Department Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Manon Buist-Homan
- a Department of Gastroenterology and Hepatology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,d Department of Laboratory Medicine , University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - Klaas Nico Faber
- a Department of Gastroenterology and Hepatology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,d Department of Laboratory Medicine , University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| | - María-Cristina Navas
- c Grupo Gastrohepatología, Facultad de Medicina, Universidad de Antioquia , Medellin , Colombia
| | - Han Moshage
- a Department of Gastroenterology and Hepatology , University of Groningen, University Medical Center Groningen , Groningen , Netherlands.,d Department of Laboratory Medicine , University of Groningen, University Medical Center Groningen , Groningen , Netherlands
| |
Collapse
|
20
|
Autophagy in hepatitis B or C virus infection: An incubator and a potential therapeutic target. Life Sci 2020; 242:117206. [DOI: 10.1016/j.lfs.2019.117206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
|
21
|
Hepatitis C Virus Downregulates Ubiquitin-Conjugating Enzyme E2S Expression To Prevent Proteasomal Degradation of NS5A, Leading to Host Cells More Sensitive to DNA Damage. J Virol 2019; 93:JVI.01240-18. [PMID: 30381483 DOI: 10.1128/jvi.01240-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection may cause chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV exploits cellular machineries to establish persistent infection. We demonstrate here that ubiquitin-conjugating enzyme E2S (UBE2S), a member of the ubiquitin-conjugating enzyme family (E2s), was downregulated by endoplasmic reticulum stress caused by HCV in Huh7 cells. UBE2S interacted with domain I of HCV NS5A and degraded NS5A protein through the Lys11-linked proteasome-dependent pathway. Overexpression of UBE2S suppressed viral propagation, while depletion of UBE2S expression increased viral infectivity. Enzymatically inactive UBE2S C95A mutant exerted no antiviral activity, suggesting that ubiquitin-conjugating enzymatic activity was required for the suppressive role of UBE2S. Chromatin ubiquitination plays a crucial role in the DNA damage response. We showed that the levels of UBE2S and Lys11 chains bound to the chromatin were markedly decreased in the context of HCV replication, rendering HCV-infected cells more sensitive to DNA damage. These data suggest that HCV counteracts antiviral activity of UBE2S to optimize viral propagation and may contribute to HCV-induced liver pathogenesis.IMPORTANCE Protein homeostasis is essential to normal cell function. HCV infection disturbs the protein homeostasis in the host cells. Therefore, host cells exert an anti-HCV activity in order to maintain normal cellular metabolism. We showed that UBE2S interacted with HCV NS5A and degraded NS5A protein through the Lys11-linked proteasome-dependent pathway. However, HCV has evolved to overcome host antiviral activity. We demonstrated that the UBE2S expression level was suppressed in HCV-infected cells. Since UBE2S is an ubiquitin-conjugating enzyme and this enzyme activity is involved in DNA damage repair, HCV-infected cells are more sensitive to DNA damage, and thus UBE2S may contribute to viral oncogenesis.
Collapse
|
22
|
Lin CK, Tseng CK, Liaw CC, Huang CY, Wei CK, Sheu JH, Lee JC. Lobohedleolide suppresses hepatitis C virus replication via JNK/c-Jun-C/EBP-mediated down-regulation of cyclooxygenase-2 expression. Sci Rep 2018; 8:8676. [PMID: 29875371 PMCID: PMC5989199 DOI: 10.1038/s41598-018-26999-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) chronically infects 2–3% people of the global population, which leads to liver cirrhosis and hepatocellular carcinoma. Drug resistance remains a serious problem that limits the effectiveness of US Food and Drug Administration (FDA)-approved direct-acting antiviral (DAA) drugs against HCV proteins. The objective of our study was to discover new antivirals from natural products to supplement current therapeutics. We demonstrated that lobohedleolide, isolated from the Formosan soft coral Lobophytum crassum, significantly reduced HCV replication in replicon cells and JFH-1 infection system, with EC50 values of 10 ± 0.56 and 22 ± 0.75 μM, respectively, at non-toxic concentrations. We further observed that the inhibitory effect of lobohedleolide on HCV replication is due to suppression of HCV-induced cyclooxygenase-2 (COX-2) expression. Based on deletion-mutant analysis of the COX-2 promoter, we identified CCAAT/enhancer-binding protein (C/EBP) as a key transcription factor for the down-regulation of COX-2 by lobohedleolide, through which lobohedleolide decreased the phosphorylation of c-Jun NH2-terminal protein kinase and c-Jun to suppress HCV-induced C/EBP expression. The combination treatment of lobohedleolide with clinically used HCV drugs synergistically reduced HCV RNA replication, indicating that lobohedleolide exhibited a high biomedical potential to be used as a supplementary therapeutic agent to control HCV infection.
Collapse
Affiliation(s)
- Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chiung-Yao Huang
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ku Wei
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Qian G, Lv H, Lin J, Li X, Lv Q, Wang T, Zhang J, Dong W, Guo K, Zhang Y. FHC, an NS4B-interacting Protein, Enhances Classical Swine Fever Virus Propagation and Acts Positively in Viral Anti-apoptosis. Sci Rep 2018; 8:8318. [PMID: 29844394 PMCID: PMC5974352 DOI: 10.1038/s41598-018-26777-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
Classical swine fever virus (CSFV), the etiological agent of classical swine fever, causes enormous economic loss to the pig industry. Ferritin heavy chain (FHC) is a notable anti-apoptotic protein, and existing evidence suggests that CSFV cannot induce apoptosis of host cells, however, the role of FHC in CSFV replication remains unclear. In the present study, we found that recombinant lentivirus-mediated knockdown or overexpression of FHC inhibited or enhanced CSFV replication, respectively, indicating a positive role for FHC in CSFV proliferation. Furthermore, interaction between the CSFV NS4B protein and FHC was confirmed by glutathione S-transferase (GST) pull-down, co-immunoprecipitation (co-IP) and confocal imaging assays. In addition, both CSFV replication and NS4B expression upregulated expression of FHC, which counteracts apoptosis by modulating cellular reactive oxygen species (ROS). These results suggest that FHC, an NS4B-interacting protein, enhances CSFV replication and has a positive role in viral anti-apoptosis by regulating ROS accumulation. This work may provide a new perspective for understanding the mechanism of CSFV pathogenesis.
Collapse
Affiliation(s)
- Gui Qian
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Huifang Lv
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jihui Lin
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Xiaomeng Li
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China
| | - Tao Wang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jing Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Wang Dong
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
24
|
Mansberg K, Kull K, Salupere R, Prükk T, Margus B, Kariis T, Remmel T, Suurmaa K, Ott K, Jaago K, Šmidt J. A Population-Based Surveillance Study on the Epidemiology of Hepatitis C in Estonia. ACTA ACUST UNITED AC 2018; 54:medicina54010009. [PMID: 30344240 PMCID: PMC6037246 DOI: 10.3390/medicina54010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023]
Abstract
Background and objective: The hepatitis C virus (HCV)-infected patients serve as a reservoir for transmission of the disease to others and are at risk of developing chronic hepatitis C, cirrhosis, and hepatocellular carcinoma. Although the epidemiological data of high rate HCV infection have been obtained in many countries, such data are insufficient in Estonia. Therefore, the aim of the study was to analyze country-specific data on HCV patients. Materials and methods: Data about age, gender, diagnosis, possible risk factors, coinfections, HCV genotypes, liver fibrosis stages and extrahepatic manifestations were collected from 518 patients. Results: The most common risk factors for hepatitis C were injection drug use and tattooing in the 30–39 and 40–49 year age groups, and blood transfusion in the 50–59 and 60–69 year age groups. The other risk factors established were profession-related factors and sexual contact. The prevailing viral genotype among the HCV infected patients was genotype 1 (69% of the patients) followed by genotype 3 (25%). Genotypes 1 and 3 correlated with blood transfusions before 1994, drug injections and tattooing. Conclusions: Our study provides the best representation of genotype distribution across Estonia. As a result of the study, valuable data has been collected on hepatitis C patients in Estonia.
Collapse
Affiliation(s)
- Kairi Mansberg
- Department of Gastroenterology, Tartu University Hospital, University of Tartu, 51014 Tartu, Estonia.
- Internal Disease Clinic, Tartu University Hospital, University of Tartu, 51014 Tartu, Estonia.
| | - Karin Kull
- Department of Gastroenterology, Tartu University Hospital, University of Tartu, 51014 Tartu, Estonia.
- Internal Disease Clinic, Tartu University Hospital, University of Tartu, 51014 Tartu, Estonia.
| | - Riina Salupere
- Department of Gastroenterology, Tartu University Hospital, University of Tartu, 51014 Tartu, Estonia.
- Internal Disease Clinic, Tartu University Hospital, University of Tartu, 51014 Tartu, Estonia.
| | - Tiina Prükk
- Department of Gastroenterology, Tartu University Hospital, University of Tartu, 51014 Tartu, Estonia.
- Internal Disease Clinic, Tartu University Hospital, University of Tartu, 51014 Tartu, Estonia.
| | - Benno Margus
- Department of Gastroenterology, East Tallinn Central Hospital, 10138 Tallinn, Estonia.
| | - Toomas Kariis
- Department of Gastroenterology, East Tallinn Central Hospital, 10138 Tallinn, Estonia.
| | - Triin Remmel
- Department of Gastroenterology, East Tallinn Central Hospital, 10138 Tallinn, Estonia.
| | - Külliki Suurmaa
- Department of Gastroenterology and Infectios Diseases Clinic, West Tallinn Central Hospital, 10138 Tallinn, Estonia.
| | - Kristi Ott
- Department of Gastroenterology and Infectios Diseases Clinic, West Tallinn Central Hospital, 10138 Tallinn, Estonia.
| | - Krista Jaago
- Internal Disease Clinic, Pärnu Hospital, 80010 Pärnu, Estonia.
| | - Jelena Šmidt
- Internal Disease Clinic, East Viru Central Hospital, 31024 Kohtla-Järve, Estonia.
| |
Collapse
|
25
|
Kropski JA, Blackwell TS. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest 2018; 128:64-73. [PMID: 29293089 DOI: 10.1172/jci93560] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells contain an elegant protein quality control system that is crucial in maintaining cellular homeostasis; however, dysfunction of this system results in endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Severe or prolonged ER stress is associated with the development of degenerative and fibrotic disorders in multiple organs, as evidenced by the identification of disease-causing mutations in epithelial-restricted genes that lead to protein misfolding or mistrafficking in familial fibrotic diseases. Emerging evidence implicates ER stress and UPR signaling in a variety of profibrotic mechanisms in individual cell types. In epithelial cells, ER stress can induce apoptosis, inflammatory signaling, and epithelial-mesenchymal transition. In other cell types, ER stress is linked to myofibroblast activation, macrophage polarization, and T cell differentiation. ER stress-targeted therapies have begun to emerge using approaches that range from global enhancement of chaperone function to selective targeting of activated ER stress sensors and other downstream mediators. As the complex regulatory mechanisms of this system are further clarified, there are opportunities to develop new disease-modifying therapeutic strategies in a wide range of chronic fibrotic diseases.
Collapse
Affiliation(s)
- Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Masalova OV, Lesnova EI, Solyev PN, Zakirova NF, Prassolov VS, Kochetkov SN, Ivanov AV, Kushch AA. Modulation of Cell Death Pathways by Hepatitis C Virus Proteins in Huh7.5 Hepatoma Cells. Int J Mol Sci 2017; 18:E2346. [PMID: 29113144 PMCID: PMC5713315 DOI: 10.3390/ijms18112346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
The hepatitis C virus (HCV) causes chronic liver disease leading to fibrosis, cirrhosis, and hepatocellular carcinoma. HCV infection triggers various types of cell death which contribute to hepatitis C pathogenesis. However, much is still unknown about the impact of viral proteins on them. Here we present the results of simultaneous immunocytochemical analysis of markers of apoptosis, autophagy, and necrosis in Huh7.5 cells expressing individual HCV proteins or their combinations, or harboring the virus replicon. Stable replication of the full-length HCV genome or transient expression of its core, Е1/Е2, NS3 and NS5B led to the death of 20-47% cells, 72 h posttransfection, whereas the expression of the NS4A/B, NS5A or NS3-NS5B polyprotein did not affect cell viability. HCV proteins caused different impacts on the activation of caspases-3, -8 and -9 and on DNA fragmentation. The structural core and E1/E2 proteins promoted apoptosis, whereas non-structural NS4A/B, NS5A, NS5B suppressed apoptosis by blocking various members of the caspase cascade. The majority of HCV proteins also enhanced autophagy, while NS5A also induced necrosis. As a result, the death of Huh7.5 cells expressing the HCV core was induced via apoptosis, the cells expressing NS3 and NS5B via autophagy-associated death, and the cells expressing E1/E2 glycoproteins or harboring HCV the replicon via both apoptosis and autophagy.
Collapse
Affiliation(s)
- Olga V Masalova
- Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia.
| | - Ekaterina I Lesnova
- Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia.
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alla A Kushch
- Ivanovsky Institute of Virology, Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow 123098, Russia.
| |
Collapse
|
27
|
Abstract
Tubulointerstitial fibrosis is a chronic and progressive process affecting kidneys during aging and in chronic kidney disease (CKD), regardless of cause. CKD and renal fibrosis affect half of adults above age 70 and 10% of the world's population. Although no targeted therapy yet exists to slow renal fibrosis, a number of important recent advances have clarified the cellular and molecular mechanisms underlying the disease. In this review, I highlight these advances with a focus on cells and pathways that may be amenable to therapeutic targeting. I discuss pathologic changes regulating interstitial myofibroblast activation, including profibrotic and proinflammatory paracrine signals secreted by epithelial cells after either acute or chronic injury. I conclude by highlighting novel therapeutic targets and approaches with particular promise for development of new treatments for patients with fibrotic kidney disease.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
28
|
Wang Q, Liu M, Xu L, Wu Y, Huang Y. Transcriptome analysis reveals the molecular mechanism of hepatic fat metabolism disorder caused by Muscovy duck reovirus infection. Avian Pathol 2017; 47:127-139. [PMID: 28911249 DOI: 10.1080/03079457.2017.1380294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this work was to clarify the molecular mechanism underlying the fatty degeneration of livers infected with Muscovy duck reovirus (MDRV), which produces obvious white necrotic foci in the liver. Transcriptome data for MDRV-infected Muscovy duck livers and control livers were sequenced, assembled, and annotated with Illumina® HiSeq 2000. The differentially expressed genes were screened and their functions were analysed. We also determined and confirmed the molecular mechanism of the hepatic fat metabolism disorder caused by MDRV infection. The expression of 4190 genes was higher in the infected livers than in the control livers, and the expression of 1113 genes was reduced. A Gene Ontology analysis showed that these genes were involved in 48 biological functions, and were significantly enriched in 237 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The free fatty acid content was significantly higher in the livers of infected Muscovy ducks than in the control livers (P < 0.01). The KEGG analysis showed that MDRV infection inhibited the cholesterol efflux from hepatic cells and reduced the expression of key enzymes involved in fatty acid degradation (scavenger receptor class b type 1, ABCG8, and APOA4), leading to the accumulation of fatty acids and cholesterol in the liver cells. In this study, we have identified the genes differentially expressed in livers infected by MDRV, from which we inferred the genes associated with lipodystrophia, and elucidated the molecular mechanism of the hepatic steatosis induced by MDRV. ABBREVIATIONS ABC: ATP binding cassette transport; ACADVL: acyl-CoA dehydrogenase, very long chain; ACAT: mitochondrial-like acetyl-CoA acetyltransferase A; ACAT2: acetyl-CoA acyltransferase 2; ACNAT2: acyl-coenzyme A amino acid N-acyltransferase 2-like; ACOT1: acyl-CoA thioesterase 1; ACOT7: acyl-CoA thioesterase 7; ACOX1: acyl-CoA oxidase 1, palmitoyl; ACSBG2: acyl-CoA synthetase bubblegum family member 2; ACSL1: acyl-CoA synthetase long-chain family member 1; ADH1: alcohol dehydrogenase 1; APOA4: apolipoprotein A-IV; ARV: avian reovirus; cDNA: complementary deoxyribonucleic acid; COG: Clusters of Orthologous Groups; DEG: differentially expressed gene; DGAT: diacylgycerol acyltransferase; DNA: deoxyribonucleic acid; ECI2: enoyl-CoA delta isomerase 2; EHHADH: enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase; FDR: false discovery rate; GCDH: Pseudopodoces humilis glutaryl-CoA dehydrogenase; GO: Gene Ontology; HADHA: hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit; I-FABP: intestinal fatty acid binding protein; KEGG: Kyoto Encyclopedia of Genes and Genomes; L-FABP: liver fatty acid binding protein; MDRV: Muscovy duck reovirus; MOI: multiplicity of infection; NPC1L1: Niemann-Pick C1-like 1; qPCR: real-time quantitative polymerase chain reaction; RNA: ribonucleic acid; RNase: ribonuclease; RNA-seq: RNA sequencing technology; RPKM: reads per kilobase per million mapped reads; SR-B1: scavenger receptor class b type 1.
Collapse
Affiliation(s)
- Quanxi Wang
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,b Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Mengxi Liu
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,b Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Lihui Xu
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Yijian Wu
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,b Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| | - Yifan Huang
- a College of Animal Science , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,b Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health , Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| |
Collapse
|
29
|
Yu YC, Mao YM, Chen CW, Chen JJ, Chen J, Cong WM, Ding Y, Duan ZP, Fu QC, Guo XY, Hu P, Hu XQ, Jia JD, Lai RT, Li DL, Liu YX, Lu LG, Ma SW, Ma X, Nan YM, Ren H, Shen T, Wang H, Wang JY, Wang TL, Wang XJ, Wei L, Xie Q, Xie W, Yang CQ, Yang DL, Yu YY, Zeng MD, Zhang L, Zhao XY, Zhuang H. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int 2017; 11:221-241. [PMID: 28405790 PMCID: PMC5419998 DOI: 10.1007/s12072-017-9793-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is an important clinical problem, which has received more attention in recent decades. It can be induced by small chemical molecules, biological agents, traditional Chinese medicines (TCM), natural medicines (NM), health products (HP), and dietary supplements (DS). Idiosyncratic DILI is far more common than intrinsic DILI clinically and can be classified into hepatocellular injury, cholestatic injury, hepatocellular-cholestatic mixed injury, and vascular injury based on the types of injured target cells. The CSH guidelines summarized the epidemiology, pathogenesis, pathology, and clinical manifestation and gives 16 evidence-based recommendations on diagnosis, differential diagnosis, treatment, and prevention of DILI.
Collapse
Affiliation(s)
- Yue-Cheng Yu
- Liver Disease Center of PLA, Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, 210002, China
| | - Yi-Min Mao
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China.
| | - Cheng-Wei Chen
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China.
| | - Jin-Jun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Chen
- Liver Diseases Center, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 201805, China
| | - Yang Ding
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhong-Ping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qing-Chun Fu
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China
| | - Xiao-Yan Guo
- Department of Gastroenterology, Second Affiliated Hospital, Xi'an Jiaotong University, Xian, 710004, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xi-Qi Hu
- Department of Pathology, School of Medicine, Fudan University, Shanghai, 200433, China
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University, Beijing, 100069, China
| | - Rong-Tao Lai
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Dong-Liang Li
- Department of Hepatobiliary Disease, Fuzhou General Hospital of PLA, Fuzhou, 350025, China
| | - Ying-Xia Liu
- Department of Liver Disease, Shenzhen Third People's Hospital, Shenzhen, 518040, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Shi-Wu Ma
- Department of Infectious Diseases, Kunming General Hospital of PLA, Kunming, 650032, China
| | - Xiong Ma
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | - Hong Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Beijing University, Beijing, 100083, China
| | - Hao Wang
- Institute of Hepatology, People's Hospital, Beijing University, Beijing, 100044, China
| | - Ji-Yao Wang
- Department of Gastroenterology, Zhongshan Hospital, School of Medicine, Fudan University, Shanghai, 200032, China
| | - Tai-Ling Wang
- Department of Pathology, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Xiao-Jin Wang
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China
| | - Lai Wei
- Institute of Hepatology, People's Hospital, Beijing University, Beijing, 100044, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100011, China
| | - Chang-Qing Yang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065c, China
| | - Dong-Liang Yang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan-Yan Yu
- Department of Infectious Disease, Beijing University First Hospital, Beijing, 100034, China
| | - Min-de Zeng
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Li Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078c, China
| | - Xin-Yan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University, Beijing, 100069, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Beijing University, Beijing, 100083, China
| |
Collapse
|
30
|
Obakan-Yerlikaya P, Arisan ED, Coker-Gurkan A, Adacan K, Ozbey U, Somuncu B, Baran D, Palavan-Unsal N. Calreticulin is a fine tuning molecule in epibrassinolide-induced apoptosis through activating endoplasmic reticulum stress in colon cancer cells. Mol Carcinog 2017; 56:1603-1619. [PMID: 28112451 DOI: 10.1002/mc.22616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/29/2016] [Accepted: 01/20/2017] [Indexed: 12/26/2022]
Abstract
Epibrassinolide (EBR), a member of brassinostreoids plant hormones with cell proliferation promoting role in plants, is a natural polyhydroxysteroid with structural similarity to steroid hormones of vertebrates. EBR has antiproliferative and apoptosis-inducing effect in various cancer cells. Although EBR has been shown to affect survival and mitochondria-mediated apoptosis pathways in a p53-independent manner, the exact molecular targets of EBR are still under investigation. Our recent SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) data showed that the most significantly altered protein after EBR treatment was calreticulin (CALR). CALR, a chaperone localized in endoplasmic reticulum (ER) lumen, plays role in protein folding and buffering Ca2+ ions. The alteration of CALR may cause ER stress and unfolded protein response correspondingly the induction of apoptosis. Unfolded proteins are conducted to 26S proteasomal degradation following ubiquitination. Our study revealed that EBR treatment caused ER stress and UPR by altering CALR expression causing caspase-dependent apoptosis in HCT 116, HT29, DLD-1, and SW480 colon cancer cells. Furthermore, 48 h EBR treatment did not caused UPR in Fetal Human Colon cells (FHC) and Mouse Embryonic Fibroblast cells (MEF). In addition our findings showed that HCT 116 colon cancer cells lacking Bax and Puma expression still undergo UPR and related apoptosis. CALR silencing and rapamycin co-treatment prevented EBR-induced UPR and apoptosis, whereas 26S proteasome inhibition further increased the effect of EBR in colon cancer cells. All these findings showed that EBR is an ER stress and apoptotic inducer in colon cancer cells without affecting non-malignant cells.
Collapse
Affiliation(s)
- Pinar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Elif Damla Arisan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Kaan Adacan
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Utku Ozbey
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Berna Somuncu
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Didem Baran
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Ataköy Campus, Istanbul, Turkey
| |
Collapse
|
31
|
Chiang AWT, Wu WYL, Wang T, Hwang MJ. Identification of Entry Factors Involved in Hepatitis C Virus Infection Based on Host-Mimicking Short Linear Motifs. PLoS Comput Biol 2017; 13:e1005368. [PMID: 28129350 PMCID: PMC5302801 DOI: 10.1371/journal.pcbi.1005368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/10/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Host factors that facilitate viral entry into cells can, in principle, be identified from a virus-host protein interaction network, but for most viruses information for such a network is limited. To help fill this void, we developed a bioinformatics approach and applied it to hepatitis C virus (HCV) infection, which is a current concern for global health. Using this approach, we identified short linear sequence motifs, conserved in the envelope proteins of HCV (E1/E2), that potentially can bind human proteins present on the surface of hepatocytes so as to construct an HCV (envelope)-host protein interaction network. Gene Ontology functional and KEGG pathway analyses showed that the identified host proteins are enriched in cell entry and carcinogenesis functionalities. The validity of our results is supported by much published experimental data. Our general approach should be useful when developing antiviral agents, particularly those that target virus-host interactions. Viruses recruit host proteins, called entry factors, to help gain entry to host cells. Identification of entry factors can provide targets for developing antiviral drugs. By exploring the concept that short linear peptide motifs involved in human protein-protein interactions may be mimicked by viruses to hijack certain host cellular processes and thereby assist viral infection/survival, we developed a bioinformatics strategy to computationally identify entry factors of hepatitis C virus (HCV) infection, which is a worldwide health problem. Analysis of cellular functions and biochemical pathways indicated that the human proteins we identified usually play a role in cell entry and/or carcinogenesis, and results of the analysis are generally supported by experimental studies on HCV infection, including the ~80% (15 of 19) prediction rate of known HCV hepatocyte entry factors. Because molecular mimicry is a general concept, our bioinformatics strategy is a timely approach to identify new targets for antiviral research, not only for HCV but also for other viruses.
Collapse
Affiliation(s)
| | - Walt Y. L. Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Medvedev R, Hildt E, Ploen D. Look who's talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol 2016; 33:211-231. [PMID: 27987184 DOI: 10.1007/s10565-016-9376-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/04/2016] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly conserved and regulated intracellular lysosomal degradation pathway that is essential for cell survival. Dysregulation has been linked to the development of various human diseases, including neurodegeneration and tumorigenesis, infection, and aging. Besides, many viruses hijack the autophagosomal pathway to support their life cycle. The hepatitis C virus (HCV), a major cause of chronic liver diseases worldwide, has been described to induce autophagy. The autophagosomal pathway can be further activated in response to elevated levels of reactive oxygen species (ROS). HCV impairs the Nrf2/ARE-dependent induction of ROS-detoxifying enzymes by a so far unprecedented mechanism. In line with this, this review aims to discuss the relevance of HCV-dependent elevated ROS levels for the induction of autophagy as a result of the impaired Nrf2 signaling and the described crosstalk between p62 and the Nrf2/Keap1 signaling pathway. Moreover, autophagy is functionally connected to the endocytic pathway as components of the endosomal trafficking are involved in the maturation of autophagosomes. The release of HCV particles is still not fully understood. Recent studies suggest an involvement of exosomes that originate from the endosomal pathway in viral release. In line with this, it is tempting to speculate whether HCV-dependent elevated ROS levels induce autophagy to support exosome-mediated release of viral particles. Based on recent findings, in this review, we will further highlight the impact of HCV-induced autophagy and its interplay with the endosomal pathway as a novel mechanism for the release of HCV particles.
Collapse
Affiliation(s)
- Regina Medvedev
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Gießen, Marburg, Langen, Germany
| | - Daniela Ploen
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| |
Collapse
|
33
|
Wang Y, Jiang Y, Zhou J, Song W, Li J, Wang M, Chen J, Xu R, Zhang J, Ma F, Chen YH, Ma Y. Hepatitis C virus promotes hepatocellular carcinogenesis by targeting TIPE2, a new regulator of DNA damage response. Tumour Biol 2016; 37:15265-15274. [PMID: 27696294 PMCID: PMC5126206 DOI: 10.1007/s13277-016-5409-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Infection of hepatitis C virus (HCV) is associated with primary hepatocellular carcinoma (HCC). However, its underlying molecular mechanisms remain enigmatic. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a new negative regulator of immunity, plays significant roles in modulating inflammation and tumorigenesis. We hypothesized that TIPE2 might be involved in the development of HCV-induced HCC. To test this hypothesis, the expression of TIPE2 was determined by Western blot in the tumor and pericarcinomatous tissues collected from ten HCV-positive HCC patients; the interaction between TIPE2 and HCV-encoded non-structural proteins was analyzed by immunoprecipitation and immunofluorescence assays, and tumorigenesis and its mechanisms were studied in cell models and nude mice. Our results demonstrated that the expression of TIPE2 was significantly reduced in HCC tissues compared to that in the paracarcinoma tissues. HCV-encoded non-structural protein NS5A could specifically interact with TIPE2 and induce its degradation. Downregulation of TIPE2 by shRNA in cell lines increased genomic DNA damage and promoted cell colony formation in vitro and tumorigenesis in nude mice. In contrast, overexpression of TIPE2 had an opposite effect. Downregulation of TIPE2 by NS5A is associated with genomic DNA instability and HCV-induced HCC development. Thus, TIPE2 may be a new therapeutic target for the treatment of HCV-associated HCC.
Collapse
Affiliation(s)
- Yaohui Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Yinan Jiang
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jinxue Zhou
- Zhengzhou University Affiliated Tumor Hospital, Zhengzhou, Henan, 450001, China
| | - Wuhui Song
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Mingli Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Jiuge Chen
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Rui Xu
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Jingjing Zhang
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Fanni Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yuanfang Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Medical College of Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
34
|
Valadão ALC, Aguiar RS, de Arruda LB. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses. Front Microbiol 2016; 7:1233. [PMID: 27610098 PMCID: PMC4996823 DOI: 10.3389/fmicb.2016.01233] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae family comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile, Japanese Encephalitis viruses, and Hepatitis C Virus. Those are enveloped, single-stranded positive sense RNA viruses, which replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER) and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs), RIG-I-like receptors (RIG-I and MDA5) and RNA-dependent protein kinases (PKR), inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, unfolded protein response pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response.
Collapse
Affiliation(s)
- Ana L C Valadão
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Renato S Aguiar
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Luciana B de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett 2016; 590:2375-97. [PMID: 27404485 DOI: 10.1002/1873-3468.12301] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 12/17/2022]
Abstract
p62/SQSTM1 is a multifunctional signaling hub and autophagy adaptor with many binding partners, which allow it to activate mTORC1-dependent nutrient sensing, NF-κB-mediated inflammatory responses, and the NRF2-activated antioxidant defense. p62 recognizes polyubiquitin chains via its C-terminal domain and binds to LC3 via its LIR motif, thereby promoting the autophagic degradation of ubiquitinated cargos. p62 accumulates in many human liver diseases, including nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC), where it is a component of Mallory-Denk bodies and intracellular hyaline bodies. Chronic p62 elevation contributes to HCC development by preventing oncogene-induced senescence and death of cancer-initiating cells and enhancing their proliferation. In this review, we discuss p62-mediated signaling pathways and their roles in liver pathophysiology, especially NASH and HCC.
Collapse
Affiliation(s)
- Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Yamachika
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Feng He
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
Olagnier D, Amatore D, Castiello L, Ferrari M, Palermo E, Diamond MS, Palamara AT, Hiscott J. Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus. J Mol Biol 2016; 428:3429-48. [PMID: 27130436 DOI: 10.1016/j.jmb.2016.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 01/07/2023]
Abstract
Dengue is the leading mosquito-transmitted viral infection in the world. There are more than 390 million new infections annually; while the majority of infected individuals are asymptomatic or develop a self-limited dengue fever, up to 1 million clinical cases develop severe manifestations, including dengue hemorrhagic fever and shock syndrome, resulting in ~25,000 deaths annually, mainly in children. Gaps in our understanding of the mechanisms that contribute to dengue infection and immunopathogenesis have hampered the development of vaccines and antiviral agents. Some of these limitations are highlighted by the explosive re-emergence of another arthropod-borne flavivirus-Zika virus-spread by the same vector, the Aedes aegypti mosquito, that also carries dengue, yellow fever and chikungunya viruses. This review will discuss the early virus-host interactions in dengue infection, with emphasis on the interrelationship between oxidative stress and innate immune pathways, and will provide insight as to how lessons learned from dengue research may expedite therapeutic strategies for Zika virus.
Collapse
Affiliation(s)
- David Olagnier
- Lady Davis Institute, Jewish General Hospital, McGill University Montreal, Canada
| | - Donatella Amatore
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Matteo Ferrari
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Palermo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University at St. Louis, St. Louis, MO, USA
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy
| | - John Hiscott
- Istituto Pasteur-Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
37
|
Datan E, Roy SG, Germain G, Zali N, McLean JE, Golshan G, Harbajan S, Lockshin RA, Zakeri Z. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation. Cell Death Dis 2016; 7:e2127. [PMID: 26938301 PMCID: PMC4823927 DOI: 10.1038/cddis.2015.409] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/31/2022]
Abstract
A virus that reproduces in a host without killing cells can easily establish a successful infection. Previously, we showed that dengue-2, a virus that threatens 40% of the world, induces autophagy, enabling dengue to reproduce in cells without triggering cell death. Autophagy further protects the virus-laden cells from further insults. In this study, we evaluate how it does so; we show that dengue upregulates host pathways that increase autophagy, namely endoplasmic reticulum (ER) stress and ataxia telangiectasia mutated (ATM) signaling followed by production of reactive oxygen species (ROS). Inhibition of ER stress or ATM signaling abrogates the dengue-conferred protection against other cell stressors. Direct inhibition of ER stress response in infected cells decreases autophagosome turnover, reduces ROS production and limits reproduction of dengue virus. Blocking ATM activation, which is an early response to infection, decreases transcription of ER stress response proteins, but ATM has limited impact on production of ROS and virus titers. Production of ROS determines only late-onset autophagy in infected cells and is not necessary for dengue-induced protection from stressors. Collectively, these results demonstrate that among the multiple autophagy-inducing pathways during infection, ER stress signaling is more important to viral replication and protection of cells than either ATM or ROS-mediated signaling. To limit virus production and survival of dengue-infected cells, one must address the earliest phase of autophagy, induced by ER stress.
Collapse
Affiliation(s)
- E Datan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - S G Roy
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - G Germain
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - N Zali
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - J E McLean
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - G Golshan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - S Harbajan
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - R A Lockshin
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| | - Z Zakeri
- Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY, USA
| |
Collapse
|
38
|
Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun 2016; 7:10631. [PMID: 26868272 PMCID: PMC4754343 DOI: 10.1038/ncomms10631] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) utilizes autophagy to promote its propagation. Here we show the autophagy-mediated suppression of HCV replication via the endoplasmic reticulum (ER) protein SCOTIN. SCOTIN overexpression inhibits HCV replication and infectious virion production in cells infected with cell culture-derived HCV. HCV nonstructural 5A (NS5A) protein, which is a critical factor for HCV RNA replication, interacts with the IFN-β-inducible protein SCOTIN, which transports NS5A to autophagosomes for degradation. Furthermore, the suppressive effect of SCOTIN on HCV replication is impaired in both ATG7-silenced cells and cells treated with autophagy or lysosomal inhibitors. SCOTIN does not affect the overall flow of autophagy; however, it is a substrate for autophagic degradation. The physical association between the transmembrane/proline-rich domain (TMPRD) of SCOTIN and Domain-II of NS5A is essential for autophagosomal trafficking and NS5A degradation. Altogether, our findings suggest that IFN-β-induced SCOTIN recruits the HCV NS5A protein to autophagosomes for degradation, thereby restricting HCV replication.
Collapse
|
39
|
Verchot J. How does the stressed out ER find relief during virus infection? Curr Opin Virol 2016; 17:74-79. [PMID: 26871502 DOI: 10.1016/j.coviro.2016.01.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/09/2023]
Abstract
The endoplasmic reticulum and Golgi network (ERGN) is vital to most cellular biosynthetic processes. Many positive strand RNA viruses depend upon the ERGN for replication, maturation, and egress. Viruses induce changes in ER architecture and stimulate fatty acid synthesis to create environments that can scaffold replication complexes, plant virus movement complexes, or virion maturation. Potato virus X (PVX) and Turnip mosaic virus (TuMV) each encode small membrane binding proteins that embed in the ERGN and activate the unfolded protein response (UPR). The UPR ensures ERGN homeostasis in the face of environmental assaults that could negatively impact the biosynthetic functions of the ERGN. This article explores the relationship between ER stress, the UPR, and membrane synthesis occurring during virus infection.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, United States.
| |
Collapse
|
40
|
Tsunoda I, Omura S, Sato F, Kusunoki S, Fujita M, Park AM, Hasanovic F, Yanagihara R, Nagata S. Neuropathogenesis of Zika Virus Infection : Potential Roles of Antibody-Mediated Pathology. ACTA MEDICA KINKI UNIVERSITY 2016; 41:37-52. [PMID: 28428682 DOI: pmid/28428682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) is an enveloped, positive-sense, single-stranded RNA virus that belongs to the genus Flavivirus, family Flaviviridae, which includes many human and animal pathogens, such as dengue virus (DENV), West Nile virus, and Japanese encephalitis virus. In the original as well as subsequent experimental and clinical reports, ZIKV seems to have moderate neurotropism (in animal models) and neurovirulence (in human fetuses), but no neuroinvasiveness (in human adults). Intrauterine ZIKV infection (viral pathology) has been linked to an increased incidence of microcephaly, while increased Guillain-Barré syndrome (GBS) following ZIKV infection is likely immune-mediated (immunopathology). Clinically, in ZIKV infection, antibodies against other flaviviruses, such as DENV, have been detected; these antibodies can cross-react with ZIKV without ZIKV neutralization. In theory, such non-neutralizing antibodies are generated at the expense of decreased production of neutralizing antibodies ("antigenic sin"), leading to poor viral clearance, while the non-neutralizing antibodies can also enhance viral replication in Fc receptor (FcR)-bearing cells via antibody-dependent enhancement (ADE). Here, we propose three potential roles of the antibody-mediated pathogenesis of ZIKV infection: 1) cross-reactive antibodies that recognize ZIKV and neural antigens cause GBS; 2) ZIKV-antibody complex is transported transplacentally via neonatal FcR (FcRn), resulting in fetal infection; and 3) ZIKV-antibody complex is taken up at peripheral nerve endings and transported to neurons in the central nervous system (CNS), by which the virus can enter the CNS without crossing the blood-brain barrier.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Susumu Kusunoki
- Department of Neurology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka 589-8511, Japan
| | - Faris Hasanovic
- Department of Pathology, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Richard Yanagihara
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
41
|
Zhang H, Xue L, Chen L, Jiang S, Xin Y, Xuan S. A Meta-Analysis of the Association Between the I148M Variant of Patatin-Like Phospholipase Domain Containing 3 Gene and the Presence of Chronic Hepatitis C. HEPATITIS MONTHLY 2015; 15:e31987. [PMID: 26834791 PMCID: PMC4717312 DOI: 10.5812/hepatmon.31987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/20/2015] [Accepted: 10/02/2015] [Indexed: 12/11/2022]
Abstract
CONTEXT The objective of the current study was to evaluate the association between the I148M variant of patatin-like phospholipase domain-containing protein 3 (PNPLA3) and the presence of Chronic Hepatitis C (CHC) across different populations. EVIDENCE ACQUISITION This study was a meta-analysis of all relevant researches published in the literature from year 2000 to 2015. The odds ratios (ORs) of PNPLA3 allele distributions in CHC patients were analyzed and compared with healthy controls. The meta-analysis Revman 5.2 software was applied for investigating heterogeneity among individual studies and for summarizing all the studies. The meta-analysis was carried out according to the Cochrane Reviewers' Handbook recommendations. A total of 120 clinical trials or reports were retrieved, yet only five trials met the study selection criteria. RESULTS Five hospital-based case-control studies were included in the final analysis. The overall frequency of PNPLA3 gene polymorphisms was 20.4% (205/1005) in CHC and 10.23% (53/518) in controls. The summary odds ratio for the association of gene polymorphisms of PNPLA3 with the risk for CHC was determined as 2.20 (95% CI: 1.56 -3.11) and was statistically significant (P < 0.05). CONCLUSIONS The current meta-analysis showed an association between frequency of GG genotype of PNPLA3 and the risk of development of CHC in various populations throughout the world.
Collapse
Affiliation(s)
- Haiying Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
- Department of Gastroenterology, Qingdao Central Hospital, Qingdao, China
- Corresponding Authors: Haiying Zhang, Department of Gastroenterology, The Second Affiliated Hospital of Medical College, Qingdao University, Qingdao, China. Tel: +86-53284963627, Fax: +86-53288905293, E-mail: ; Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China. Tel: +86-53288905289, Fax: +86-53288905293, E-mail:
| | - Li Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
- Department of Gastroenterology, Qingdao Central Hospital, Qingdao, China
| | - Lizhen Chen
- Medical College, Qingdao University, Qingdao, China
| | - Shunshun Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
- Department of Gastroenterology, Qingdao Central Hospital, Qingdao, China
| | - Yongning Xin
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Shiying Xuan
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Corresponding Authors: Haiying Zhang, Department of Gastroenterology, The Second Affiliated Hospital of Medical College, Qingdao University, Qingdao, China. Tel: +86-53284963627, Fax: +86-53288905293, E-mail: ; Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China. Tel: +86-53288905289, Fax: +86-53288905293, E-mail:
| |
Collapse
|
42
|
Hiura M, Honma Y, Miyagawa K, Oe S, Shimajiri S, Mihara H, Oe M, Sato-Morita M, Katsuki Y, Harada M. Alleviation mechanisms against hepatocyte oxidative stress in patients with chronic hepatic disorders. Hepatol Res 2015; 45:1124-35. [PMID: 25581125 DOI: 10.1111/hepr.12478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 02/08/2023]
Abstract
AIM Autophagy induction and Mallory-Denk body (MDB) formation have been considered to have cytoprotective effects from cellular stress in liver diseases. We investigated the relations among oxidative stress, autophagy and MDB formation in patients with chronic hepatitis B (CHB), chronic hepatitis C (CHC) and non-alcoholic fatty liver disease (NAFLD) to clarify the alleviation mechanisms against oxidative stress of hepatocytes. METHODS First, we treated cultured cells with proteasome inhibitor (PI) or free fatty acid (FFA) and evaluated endoplasmic reticulum (ER) stress, oxidative stress, ubiquitinated proteins and p62 by western blotting. Then, we used human liver biopsy samples to evaluate oxidative stress, autophagy and MDB formation by immunohistochemical analysis. RESULTS Treatment with PI or FFA increased ER stress, oxidative stress, ubiquitinated proteins and p62 in cultured cells. Human liver biopsy samples of CHC and NAFLD showed that MDB formed in areas with strong oxidative stress and that the MDB-containing cells circumvented oxidative stress. Keratin 8 (K8) expression was strong in MDB-containing cells in CHC and NAFLD. However, in CHB samples, the expression of K8 was not increased in response to oxidative stress and MDB aggregates did not appear. Aminotransferase values were significantly lower in patients with CHC and NAFLD in whom light chain 3 antibody expression was increased in response to oxidative stress. CONCLUSION Strong expression of K8 was considered to be important for MDB formation. MDB protect liver cells from oxidative stress at a cellular level and autophagy reduced hepatic damage when it was induced in the hepatocytes exposed to strong oxidative stress.
Collapse
Affiliation(s)
- Masaaki Hiura
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Yuichi Honma
- Third Department of Internal Medicine, Kitakyushu, Japan
| | | | - Shinji Oe
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Pathology and Cell Biology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Hitomi Mihara
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Masami Oe
- Third Department of Internal Medicine, Kitakyushu, Japan
| | | | - Yuka Katsuki
- Third Department of Internal Medicine, Kitakyushu, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, Kitakyushu, Japan
| |
Collapse
|
43
|
Nasheri N, Ning Z, Figeys D, Yao S, Goto NK, Pezacki JP. Activity-based profiling of the proteasome pathway during hepatitis C virus infection. Proteomics 2015; 15:3815-25. [PMID: 26314548 DOI: 10.1002/pmic.201500169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) infection often leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The stability of the HCV proteins is controlled by ubiquitin-dependent and ubiquitin-independent proteasome pathways. Many viruses modulate proteasome function for their propagation. To examine the interrelationship between HCV and the proteasome pathways we employed a quantitative activity-based protein profiling method. Using this approach we were able to quantify the changes in the activity of several proteasome subunits and found that proteasome activity is drastically reduced by HCV replication. The results imply a link between the direct downregulation of the activity of this pathway and chronic HCV infection.
Collapse
Affiliation(s)
- Neda Nasheri
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Zhibin Ning
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Shao Yao
- Department of Chemistry, National University of Singapore, Singapore
| | - Natalie K Goto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Life Sciences Division, National Research Council of Canada, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
44
|
Cai Z, Shen L, Ma H, Yang J, Yang D, Chen H, Wei J, Lu Q, Wang DW, Xiang M, Wang J. Involvement of Endoplasmic Reticulum Stress-Mediated C/EBP Homologous Protein Activation in Coxsackievirus B3-Induced Acute Viral Myocarditis. Circ Heart Fail 2015; 8:809-18. [PMID: 25985795 DOI: 10.1161/circheartfailure.114.001244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study tested the hypothesis whether endoplasmic reticulum (ER) stress/C/EBP homologous protein (CHOP) signaling is linked with coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC) in vivo. METHODS AND RESULTS AVMC was induced by intraperitoneal injection of 1000 tissue culture infectious dose (TCID50) of CVB3 virus in mice. In AVMC mouse hearts (n=11), ER stress and CHOP were significantly activated, and were linked to the induction of proapoptotic signaling including reduction of Bcl-2, activation of Bax and caspase 3, compared with the controls (n=10), whereas these could be markedly blocked by ER stress inhibitor tauroursodeoxycholic acid administration (n=11). Moreover, chemical inhibition of ER stress significantly attenuated cardiomyocytes apoptosis, and prevented cardiac troponin I elevation, ameliorated cardiac dysfunction assessed by both hemodynamic and echocardiographic analysis, reduced viral replication, and increased survival rate after CVB3 inoculation. We further discovered that genetic ablation of CHOP (n=10) suppressed cardiac Bcl-2/Bax ratio reduction and caspase 3 activation, and prevented cardiomyotes apoptosis in vivo, compared with wild-type receiving CVB3 inoculation (n=10). Strikingly, CHOP deficiency exhibited dramatic protective effects on cardiac damage, cardiac dysfunction, viral replication, and promoted survival in CVB3-caused AVMC. CONCLUSIONS Our data imply the involvement of ER stress/CHOP signaling in CVB3-induced AVMC via proapoptotic pathways, and provide a novel strategy for AVMC treatment.
Collapse
Affiliation(s)
- Zhejun Cai
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Li Shen
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Hong Ma
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Jin Yang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Du Yang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Han Chen
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Jia Wei
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Qiulun Lu
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Dao Wen Wang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.)
| | - Meixiang Xiang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.).
| | - Jian'an Wang
- From the Key Laboratory of Cardiovascular Disease of Zhejiang Province and Department of Cardiology, Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China (Z.C., L.S., H.M., D.Y., H.C., M.X., J. Wang); Department of Medicine, Blood Center of Zhejiang Province, Hangzhou, China (J.Y.); Transform Medical Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China (J.Y.); Department of Pediatric Surgery (J. Wei) and Institute of Hypertension and Department of Internal Medicine (D.W.W.), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (Q.L.).
| |
Collapse
|
45
|
Lo Schiavo A, Ruocco E, Russo T, Brancaccio G. Locus minoris resistentiae: An old but still valid way of thinking in medicine. Clin Dermatol 2015; 32:553-6. [PMID: 25160095 DOI: 10.1016/j.clindermatol.2014.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Locus minoris resistentiae (lmr) refers to a body region more vulnerable than others. This ancient concept, which is also present in Achilles' and Siegfried's old epic myths, weaves through many fields of medicine. In any internal organ or external body region with a congenital or acquired altered defense capacity, a disease process may occur more easily than elsewhere. Illustrative instances are the appearance of hepatocarcinoma on a cirrhotic liver, the onset of lung carcinoma in a tuberculosis scar, cases of osteosarcoma arising in chronic osteomyelitis, and carcinoma complicating chronic cholelithiasis, just to name a few. In dermatology there are countless reports of privileged localization of cutaneous lesions on injured skin which, therefore, represents a typical condition of lmr. The Köbner phenomenon itself features the oldest, simplest, and most common example of lmr, because it denotes the appearance of new lesions pertaining to a previously present skin disorder at the sites of trauma or other insult. The modern transposition of this old but still valid way of thinking in medicine is the reading key of this issue, devoted to lmr in dermatology.
Collapse
Affiliation(s)
- Ada Lo Schiavo
- Department of Dermatology, 2nd University of Naples, via Sergio Pansini, 580131 Napoli, Italy.
| | - Eleonora Ruocco
- Department of Dermatology, 2nd University of Naples, via Sergio Pansini, 580131 Napoli, Italy
| | - Teresa Russo
- Department of Dermatology, 2nd University of Naples, via Sergio Pansini, 580131 Napoli, Italy
| | - Gabriella Brancaccio
- Department of Dermatology, 2nd University of Naples, via Sergio Pansini, 580131 Napoli, Italy
| |
Collapse
|
46
|
Zhang J, Singh N, Robinson-Taylor KS, Dorsett-Martin WA, Morris MW, Earl TM, Anderson CD. Hepatocyte autophagy is linked to C/EBP-homologous protein, Bcl2-interacting mediator of cell death, and BH3-interacting domain death agonist gene expression. J Surg Res 2015; 195:588-95. [PMID: 25772147 DOI: 10.1016/j.jss.2015.01.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress and autophagy each play important roles in hepatocyte cell injury. We hypothesized that gene expression of C/EBP-homologous protein (CHOP) and the BH3 proteins Bcl2-interacting mediator of cell death (BIM) and BH3-interacting domain death agonist (BID) are involved in a complex interplay that regulates ER stress-induced autophagy and cell death. MATERIALS AND METHODS Hepatocytes were cultured from lean Zucker rats. Confluent hepatocytes were incubated with single or combined small interfering RNA for CHOP, BIM, and/or BID for 24 h providing gene inhibition. Incubation with tunicamycin (TM) for another 24 h stimulated ER stress. Quantitative real-time polymerase chain reaction determined the expression levels of CHOP, BIM, and BID. Immunostaining with microtubule-associated protein 1 light chain 3 measured autophagy activity. Trypan blue exclusion determined the cell viability. RESULTS TM treatment increased the messenger RNA levels of CHOP and BIM but decreased the messenger RNA levels of BID. TM increased autophagy and decreased cell viability. Individual inhibition of CHOP, BIM, or BID protected against autophagy and cell death. However, simultaneous treatment with any combination of CHOP, BIM, and BID small interfering RNAs reduced autophagy activity but increased cell death independent of ER stress induction. CONCLUSIONS Autophagy in hepatocytes results from acute ER stress and involves interplay, at the gene expression level, of CHOP, BIM, and BID. Inhibition of any one of these individual genes during acute ER stress is protective against cell death. Conversely, inhibition of any two of the three genes results in increased nonautophagic cell death independent of ER stress induction. This study suggests interplay between CHOP, BIM, and BID expression that can be leveraged for protection against ER stress-related cell death. However, disruption of the CHOP/BH3 gene expression homeostasis is detrimental to cell survival independent of other cellular stress.
Collapse
Affiliation(s)
- Junlin Zhang
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nitesh Singh
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | - Michael W Morris
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Truman M Earl
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | | |
Collapse
|
47
|
Al-Anazi MR, Matou-Nasri S, Abdo AA, Sanai FM, Khan MQ, Albenmousa A, Al-Ashgar HI, Khalaf NZ, Al-Ahdal MN, Al-Qahtani AA. Variations in DEPDC5 gene and its association with chronic hepatitis C virus infection in Saudi Arabia. BMC Infect Dis 2014; 14:632. [PMID: 25551790 PMCID: PMC4311515 DOI: 10.1186/s12879-014-0632-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/13/2014] [Indexed: 02/08/2023] Open
Abstract
Background Variations at DEPDC5 gene have been recently reported as genetic markers associated with hepatocellular carcinoma (HCC) progression in chronic HCV-infected patients. This study was conducted to assess the association of DEPDC5 variants with advanced liver cirrhosis and HCC development among chronic HCV-infected patients in Saudi Arabian population. Methods Six-hundred and one HCV-infected patients were genotyped for DEPDC5 polymorphisms (rs1012068 and rs5998152), in comparison with 592 non-infected healthy control subjects. The allelic frequency and genotype distribution of both DEPDC5 polymorphisms were determined followed by haplotype frequency estimation and multiple logistic regression analysis. Results The frequency of the risk alleles of both rs1012068 and rs5998152 was shown to be more in healthy control subjects than in patients (p = 0.0001, OR = 0.704, CI = 0.591-0.839; p = 0.002, OR = 0.761, CI = 0. 0.639-0.907, respectively). Also, our results revealed that GT for SNP rs1012068 (OR =1.715; 95% CI 1.132-2.597; p = 0.0104) and CT for SNP rs5998152 (OR = 1.932; 95% CI 1.276-2.925; p = 0.0017) showed significant association with development of cirrhosis compared with the GG and CC genotypes, respectively. The data also revealed that subjects with the T allele of both SNPs appeared to have a lower susceptibility to HCV-related cirrhosis/HCC than those with the G allele of rs1012068 (p = 0.038, OR = 1.353, 95 % CI 1.017-1.800) and C allele of rs5998152 (p = 0.043, OR = 1.342, 95 % CI 1.010-1.784). Haplotype analysis showed that a combination of T-T alleles of rs1012068 and rs5998152 was significantly associated with liver cirrhosis (frequency = 71.3% and p = 0.027) and with cirrhosis/HCC (frequency = 71.4% and P = 0.045). Also, multiple logistic regression analysis showed that rs5998152 (OR = 2.844, 95% CI 1.333-6.069 and p = 0.007), rs1012068 (OR = 2.793, 95% CI 1.316-5.928 and p = 0.010), age (OR = 1.029, 95% CI 1.001-1.057 and p = 0.041) and HCV genotypes (OR = 0.247, 95% CI 0.097-0.630 and p = 0.003) were independently associated with chronicity of HCV infection. Conclusion Genetic variations in DEPDC5 gene region may influence HCV-associated liver cirrhosis and/or HCC development.
Collapse
|
48
|
Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 2014; 13:11-35. [PMID: 25544499 PMCID: PMC4712384 DOI: 10.1038/cmi.2014.127] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.
Collapse
|
49
|
Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol Immunol 2014; 11:218-20. [PMID: 25544499 DOI: 10.1038/cmi.2014.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication. Conversely, HCV employs diverse strategies to escape host innate immune surveillance. Type I IFN elicits its antiviral actions by inducing a wide array of IFN-stimulated genes (ISGs). Nevertheless, the mechanisms by which these ISGs participate in IFN-mediated anti-HCV actions remain largely unknown. In this review, we first outline the signaling pathways known to be involved in the production of type I IFN and ISGs and the tactics that HCV uses to subvert innate immunity. Then, we summarize the effector mechanisms of scaffold ISGs known to modulate IFN function in HCV replication. We also highlight the potential functions of emerging ISGs, which were identified from genome-wide siRNA screens, in HCV replication. Finally, we discuss the functions of several cellular determinants critical for regulating host immunity in HCV replication. This review will provide a basis for understanding the complexity and functionality of the pleiotropic IFN system in HCV infection. Elucidation of the specificity and the mode of action of these emerging ISGs will also help to identify novel cellular targets against which effective HCV therapeutics can be developed.
Collapse
|
50
|
Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog 2014; 10:e1004566. [PMID: 25521078 PMCID: PMC4270780 DOI: 10.1371/journal.ppat.1004566] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is a re-emerging arthropod borne flavivirus that infects more than 300 million people worldwide, leading to 50,000 deaths annually. Because dendritic cells (DC) in the skin and blood are the first target cells for DENV, we sought to investigate the early molecular events involved in the host response to the virus in primary human monocyte-derived dendritic cells (Mo-DC). Using a genome-wide transcriptome analysis of DENV2-infected human Mo-DC, three major responses were identified within hours of infection - the activation of IRF3/7/STAT1 and NF-κB-driven antiviral and inflammatory networks, as well as the stimulation of an oxidative stress response that included the stimulation of an Nrf2-dependent antioxidant gene transcriptional program. DENV2 infection resulted in the intracellular accumulation of reactive oxygen species (ROS) that was dependent on NADPH-oxidase (NOX). A decrease in ROS levels through chemical or genetic inhibition of the NOX-complex dampened the innate immune responses to DENV infection and facilitated DENV replication; ROS were also essential in driving mitochondrial apoptosis in infected Mo-DC. In addition to stimulating innate immune responses to DENV, increased ROS led to the activation of bystander Mo-DC which up-regulated maturation/activation markers and were less susceptible to viral replication. We have identified a critical role for the transcription factor Nrf2 in limiting both antiviral and cell death responses to the virus by feedback modulation of oxidative stress. Silencing of Nrf2 by RNA interference increased DENV-associated immune and apoptotic responses. Taken together, these data demonstrate that the level of oxidative stress is critical to the control of both antiviral and apoptotic programs in DENV-infected human Mo-DC and highlight the importance of redox homeostasis in the outcome of DENV infection. Dengue virus (DENV), the leading arthropod-borne viral infection in the world, represents a major human health concern with a global at risk population of over 3 billion people. Currently, there are no antivirals or vaccines available to treat patients with dengue fever, nor is it possible to predict which patients will progress to life-threatening severe dengue fever. Markers associated with oxidative stress responses have been reported in patients with severe DENV infection, suggesting a relationship between oxidative stress and viral pathogenesis. In order to uncover biological processes that determine the outcome of disease in patients, we utilized human dendritic cells, the primary target of DENV infection, in an in vitro model. Transcriptional analysis of pathways activated upon de novo DENV infection revealed a major role for cellular oxidative stress in the induction of antiviral, inflammatory, and cell death responses. We also demonstrated that antioxidant mechanisms play a critical role in controlling antiviral and cell death responses to the virus, acting as feedback regulators of the oxidative stress response. This report highlights the importance of oxidative stress responses in the outcome of DENV infection, and identifies this pathway as a potential new entry-point for treating dengue-associated diseases.
Collapse
|