1
|
Gopakumar G, Coppo MJ, Diaz-Méndez A, Hartley CA, Devlin JM. Host-virus interactions during infection with a wild-type ILTV strain or a glycoprotein G deletion mutant ILTV vaccine strain in an ex vivo system. Microbiol Spectr 2025; 13:e0118324. [PMID: 39804092 PMCID: PMC11792554 DOI: 10.1128/spectrum.01183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/22/2024] [Indexed: 02/05/2025] Open
Abstract
Previous studies have demonstrated the safety and efficacy of a live-attenuated glycoprotein G (gG) deletion mutant vaccine strain of ILTV (∆gG-ILTV). In the current study, transcriptional profiles of chicken tracheal organ cultures (TOCs), 24 h post inoculation with ∆gG-ILTV or the gG-expressing parent wild-type strain, CSW-1 ILTV were explored and compared with the mock-infected TOCs using RNA-seq analysis. Transcriptomes of the vaccine and wild-type ILTV were also compared with each other. Although no viral genes (except for gG) were differentially regulated between the two ILTV-infected TOCs, pair-wise comparison of the transcriptomes of the ∆gG-ILTV or the CSW-1 ILTV-infected TOCs (each compared with mock-infected TOCs) identified the similarities and differences in host gene transcription between them. Several immune checkpoint inhibitors with likely roles in ILTV-mediated immune augmentation, and gene ontologies indicating cytokine response, and cytokine signaling were upregulated in both TOCs. Additionally, several other biological processes, molecular functions, and cellular components were enriched uniquely in the ∆gG-ILTV-infected TOCs, including those that indicated modifications to tracheal extracellular matrix (ECM) structural components, which may have a role in immune modulation in vivo. This study has revealed that the modifications of transcription of host genes during the early stages of ILTV infection are not limited to changes in cytokine or chemokine gene transcription, but several other immune-related genes and ECM components. Moreover, their differential regulation in the ex vivo system appears to be influenced by gG expression, potentially affecting the outcome of ILTV infection in vivo.IMPORTANCEInfectious laryngotracheitis virus (ILTV) remains a serious threat to poultry industries worldwide, causing significant economic losses. The glycoprotein G (gG) of ILTV is a virulence factor and a chemokine-binding protein with immunoregulatory functions. The influence of gG on the transcription of select host chemokine and cytokine genes has been demonstrated previously. This study extends our understanding of the early and localized host-ILTV interactions using genome-wide transcriptome analysis of ILTV-infected chicken tracheal organ cultures, and the role of gG during the process. Differential regulation of genes encoding immune checkpoint inhibitors observed in this study may have a role in ILTV-induced inhibition of type I interferon response, or negative regulation of T cell responses, bringing clarity to these ILTV immune-evasion mechanisms. Furthermore, differential regulation of genes encoding certain structural components and receptors with roles in cell migration, in the absence of gG, is consistent with the immunomodulatory role of ILTV gG.
Collapse
Affiliation(s)
- Gayathri Gopakumar
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Mauricio J.C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
- Escuela de Medicina Veterinaria, Universidad Andrés Bello, Concepción, Biobío, Chile
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Gopakumar G, Coppo MJC, Diaz-Méndez A, Hartley CA, Devlin JM. Clinical assessment and transcriptome analysis of host immune responses in a vaccination-challenge study using a glycoprotein G deletion mutant vaccine strain of infectious laryngotracheitis virus. Front Immunol 2025; 15:1458218. [PMID: 39926602 PMCID: PMC11802539 DOI: 10.3389/fimmu.2024.1458218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025] Open
Abstract
A glycoprotein-G-deleted live-attenuated vaccine strain of the infectious laryngotracheitis virus (ILTV), ΔgG-ILTV, is safe and efficacious against ILTV challenge. In the current study, the transcriptome of peripheral blood mononuclear cells (PBMCs) of the ΔgG-ILTV-vaccinated group of specific-pathogen-free chickens were compared to those of the nonvaccinated group at 7 days post-vaccination. Tracheal transcriptomes after challenge with virulent ILTV were compared between groups of the non-vaccinated-challenged and the vaccinated-challenged as well as the non-vaccinated-challenged and the uninfected chickens at 4 to 5 days post-challenge. The clinical outcomes after challenge between these groups were also evaluated. Significant differences were observed in the tracheal transcriptome of the non-vaccinated-challenged birds compared to the other two groups. Enriched gene ontologies and pathways that indicated heightened immune responses and impairments to ciliary and neuronal functions, cell junction components, and potential damages to cartilaginous and extracellular components in the trachea of the non-vaccinated-challenged birds were consistent with their severe tracheal pathology compared to the other two groups. On the contrary, the absence of any difference in the tracheal transcriptome between the vaccinated-challenged and the uninfected birds were reflected by the preservation of tracheal mucosal integrity in both groups and mild infiltration of leukocytes in the vaccinated-challenged birds. The results from this study demonstrated that vaccination with ΔgG-ILTV prevented the changes in tracheal transcriptome induced during ILTV challenge, resulting in clinical protection. Additionally, these results also provide insights into the molecular mechanisms underlying the tracheal pathology induced by ILTV infection.
Collapse
Affiliation(s)
- Gayathri Gopakumar
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Mauricio J. C. Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Escuela de Medicina Veterinaria, Universidad Andrés Bello, Concepción, Chile
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Carol A. Hartley
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Boone AC, Kulkarni RR, Cortes AL, Gaghan C, Mohammed J, Villalobos T, Esandi J, Gimeno IM. Evaluation of Adjuvant Effect of Cytosine-Guanosine-Oligodeoxynucleotide in Meat-Type Chickens Coadministered In Ovo with Herpesvirus of Turkey Vaccine. Viral Immunol 2024; 37:89-100. [PMID: 38301195 DOI: 10.1089/vim.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Herpesvirus of turkey (HVT) increases activation of T cells in 1-day-old chickens when administered in ovo. This study evaluated whether adding cytosine-guanosine oligodeoxynucleotides (CpG ODNs) to the HVT vaccine could enhance the adjuvant effect of HVT. We used a CpG ODN dose of 10 μg per egg. The experimental groups were (1) diluent-only control (sham), (2) HVT, (3) HVT+CpG ODN, (4) HVT+non-CpG ODN, (5) CpG ODN, and (6) non-CpG ODN control. Cellular response evaluation included measuring the frequencies of macrophages (KUL01+MHC-II+), gamma delta T cells (γδTCR+MHC-II+), CD4+, and CD8+ T cell subsets, including double-positive (DP) cells. In addition, CD4+ and CD8+ T cell activation was evaluated by measuring the cellular expression of major histocompatibility complex class II (MHC-II), CD44 or CD28 costimulatory molecules. An adjuvant effect was considered when HVT+CpG ODN, but not HVT+non CpG ODN, or CpG ODN, or non-CpG ODN, induced significantly increased effects on any of the immune parameters examined when compared with HVT. The findings showed that (1) HVT vaccination induced significantly higher frequencies of γδ+MHC-II+ and CD4+CD28+ T cells when compared with sham chickens. Frequencies of DP and CD4+CD28+ T cells in HVT-administered birds were significantly higher than those observed in the non-CpG ODN group. (2) Groups receiving HVT+CpG ODN or CpG ODN alone were found to have significantly increased frequencies of activated CD4+ and CD8+ T cells, when compared with HVT. Our results show that CpG ODN administration in ovo with or without HVT significantly increased frequencies of activated CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Allison C Boone
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Aneg L Cortes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Javid Mohammed
- Experimental Pathology Laboratories, Inc., Durham, North Carolina, USA
| | | | - Javier Esandi
- Zoetis-Global Biodevice, Durham, North Carolina, USA
| | - Isabel M Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Gaghan C, Browning M, Fares AM, Abdul-Careem MF, Gimeno IM, Kulkarni RR. In Ovo Vaccination with Recombinant Herpes Virus of the Turkey-Laryngotracheitis Vaccine Adjuvanted with CpG-Oligonucleotide Provides Protection against a Viral Challenge in Broiler Chickens. Viruses 2023; 15:2103. [PMID: 37896880 PMCID: PMC10612038 DOI: 10.3390/v15102103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an economically important disease in chickens. We previously showed that an in ovo adjuvantation of recombinant herpesvirus of the turkey-Laryngotracheitis (rHVT-LT) vaccine with CpG-oligonucleotides (ODN) can boost vaccine-induced responses in one-day-old broiler chickens. Here, we evaluated the protective efficacy of in ovo administered rHVT-LT + CpG-ODN vaccination against a wild-type ILT virus (ILTV) challenge at 28 days of age and assessed splenic immune gene expression as well as cellular responses. A chicken-embryo-origin (CEO)-ILT vaccine administered in water at 14 days of age was also used as a comparative control for the protection assessment. The results showed that the rHVT-LT + CpG-ODN or the CEO vaccinations provided significant protection against the ILTV challenge and that the level of protection induced by both the vaccines was statistically similar. The protected birds had a significantly upregulated expression of interferon (IFN)γ or interleukin (IL)-12 cytokine genes. Furthermore, the chickens vaccinated with the rHVT-LT + CpG-ODN or CEO vaccine had a significantly higher frequency of γδ T cells and activated CD4+ or CD8+ T cells, compared to the unvaccinated-ILTV challenge control. Collectively, our findings suggest that CpG-ODN can be used as an effective adjuvant for rHVT-LT in ovo vaccination to induce protective immunity against ILT in broiler chickens.
Collapse
Affiliation(s)
- Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| | - Matthew Browning
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| | - Abdelhamid M. Fares
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| | - Mohamed Faizal Abdul-Careem
- Health Research Innovation Center 2C58, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Isabel M. Gimeno
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA (A.M.F.)
| |
Collapse
|