1
|
Ali NSM, Ngalimat MS, Lim BC, Hsu CC, Salleh A, Nazarudin MF, Yasin ISM, Azmai MNA. Efficacy of Feed-Based Genome-Free Bacterial Vaccine Against Aeromonas hydrophila Infection in Red Tilapia ( Oreochromis sp.). Vaccines (Basel) 2024; 12:1271. [PMID: 39591174 PMCID: PMC11598948 DOI: 10.3390/vaccines12111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024] Open
Abstract
Aeromonas hydrophila causes motile Aeromonas septicemia (MAS), a disease with a high mortality rate in tilapia culture. Feed-based vaccines with the incorporation of inactivated whole-cell bacteria into the feed offer promising tools to control MAS. Currently, the incorporation of genome-free bacteria as bacterial vaccine through the implementation of SimCells® technology into the feed has become a particular interest. Background/Objectives: This study investigates the efficacy of a feed-based vaccine incorporating genome-free A. hydrophila (FBV-GFAH) against MAS infection in red tilapia. Methods: The vaccine was prepared and delivered at 5% fish body weight for three consecutive days in weeks 0 (prime vaccination) and 2 (first booster vaccination), orally. Throughout a five-week experimental period, the immune-related genes (IL-1β, MHC-II, CD4, IgT, and IgM) expression in the hindgut and head kidney of the fish was determined using RT-qPCR assay. Lysozyme (serum) and overall IgM (serum, gut lavage, and skin mucus) productions were also detected. Results: Fish vaccinated with FBV-GFAH showed a significant (p ≤ 0.05) improvement in relative percent survival compared with unvaccinated fish following bacterial challenge. FBV-GFAH induced the expression of immune-related genes in the hindgut and head kidney, especially after booster vaccination. Furthermore, serum lysozyme activity and overall IgM production in serum, skin mucus, and gut lavage were also significantly (p ≤ 0.05) improved in the FBV-GFAH vaccinated fish than the unvaccinated fish. Conclusions: This study showed that FBV-GFAH is a promising feed-based vaccine technology to control MAS in cultured tilapia.
Collapse
Affiliation(s)
- Nur Shidaa Mohd Ali
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.M.A.); (M.F.N.); (I.S.M.Y.)
| | - Mohamad Syazwan Ngalimat
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Boon Chuan Lim
- Oxford SimCell Ltd., Centre for Innovation and Enterprise, Begbroke Science Park, Begbroke, Oxfordshire OX5 1PF, UK; (B.C.L.); (C.-C.H.)
| | - Chia-Chen Hsu
- Oxford SimCell Ltd., Centre for Innovation and Enterprise, Begbroke Science Park, Begbroke, Oxfordshire OX5 1PF, UK; (B.C.L.); (C.-C.H.)
| | - Annas Salleh
- Laboratory Diagnosis, Department of Veterinary, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.M.A.); (M.F.N.); (I.S.M.Y.)
| | - Ina Salwany Md Yasin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.M.A.); (M.F.N.); (I.S.M.Y.)
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.S.M.A.); (M.F.N.); (I.S.M.Y.)
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Lan NGT, Dong HT, Shinn AP, Vinh NT, Senapin S, Salin KR, Rodkhum C. Review of current perspectives and future outlook on bacterial disease prevention through vaccination in Asian seabass (Lates calcarifer). JOURNAL OF FISH DISEASES 2024; 47:e13964. [PMID: 38798108 DOI: 10.1111/jfd.13964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Asian seabass, Lates calcarifer, is an important aquatic species in mariculture. Intensive farming of this species has faced episodes of bacterial diseases, including those due to vibriosis, scale drop, and muscle necrosis disease, big belly disease, photobacteriosis, columnaris, streptococcosis, aeromoniasis, and tenacibaculosis. Vaccination is one of the most efficient, non-antibiotic, and eco-friendly strategies for protecting fish against bacterial diseases, contributing to aquaculture expansion and ensuring food security. As of now, although numerous vaccines have undergone laboratory research, only one commercially available inactivated vaccine, suitable for both immersion and injection administration, is accessible for preventing Streptococcus iniae. Several key challenges in developing vaccines for Asian seabass must be addressed, such as the current limited understanding of immunological responses to vaccines, the costs associated with vaccine production, forms, and routes of vaccine application, and how to increase the adoption of vaccines by farmers. The future of vaccine development for the Asian seabass industry, therefore, is discussed with these key critical issues in mind. The focus is on improving our understanding of Asian seabass immunity, including maternal immunity, immunocompetence, and immune responses post-vaccination, as well as developing tools to assess vaccine effectiveness. The need for an alignment of fish vaccines with state-of-the-art vaccine technologies employed in human and terrestrial animal healthcare is also discussed. This review also discusses the necessity of providing locally-produced autogenous vaccines, especially for immersion and oral vaccines, to benefit small-scale fish farmers, and the potential benefits that might be extended through changes to current husbandry practices such as the vaccination of broodstock and earlier life stages of their off-spring.
Collapse
Affiliation(s)
- Nguyen Giang Thu Lan
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | | | - Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Channarong Rodkhum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Thu Lan NG, Dong HT, Vinh NT, Salin KR, Senapin S, Pimsannil K, St-Hilaire S, Shinn AP, Rodkhum C. A novel vaccination strategy against Vibrio harveyi infection in Asian seabass (Lates calcarifer) with the aid of oxygen nanobubbles and chitosan. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109557. [PMID: 38608847 DOI: 10.1016/j.fsi.2024.109557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Immersion vaccination, albeit easier to administer than immunization by injection, sometimes has challenges with antigen uptake, resulting in sub-optimal protection. In this research, a new strategy to enhance antigen uptake of a heat-inactivated Vibrio harveyi vaccine in Asian seabass (Lates calcarifer) using oxygen nanobubble-enriched water (ONB) and positively charged chitosan (CS) was explored. Antigen uptake in fish gills was assessed, as was the antibody response and vaccine efficacy of four different combinations of vaccine with ONB and CS, and two control groups. Pre-mixing of ONB and CS before introducing the vaccine, referred to as (ONB + CS) + Vac, resulted in superior antigen uptake and anti-V. harveyi antibody (IgM) production in both serum and mucus compared to other formulas. The integration of an oral booster (4.22 × 108 CFU/g, at day 21-25) within a vaccine trial experiment set out to further evaluate how survival rates post exposure to V. harveyi might be improved. Antibody responses were measured over 42 days, and vaccine efficacy was assessed through an experimental challenge with V. harveyi. The expression of immune-related genes IL1β, TNFα, CD4, CD8, IgT and antibody levels were assessed at 1, 3, and 7-day(s) post challenge (dpc). The results revealed that antibody levels in the group (ONB + CS) + Vac were consistently higher than the other groups post immersion immunization and oral booster, along with elevated expression of immune-related genes after challenge with V. harveyi. Ultimately, this group demonstrated a significantly higher relative percent survival (RPS) of 63 % ± 10.5 %, showcasing the potential of the ONB-CS-Vac complex as a promising immersion vaccination strategy for enhancing antigen uptake, stimulating immunological responses, and improving survival of Asian seabass against vibriosis.
Collapse
Affiliation(s)
- Nguyen Giang Thu Lan
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Ha Thanh Dong
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand.
| | - Nguyen Tien Vinh
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Krishna R Salin
- Aquaculture and Aquatic Resources Management, Department of Food Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Khaettareeya Pimsannil
- Fish Heath Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Andrew P Shinn
- INVE (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi, 11120, Thailand
| | - Channarong Rodkhum
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Islam SI, Mahfuj S, Baqar Z, Asadujjaman M, Islam MJ, Alsiwiehri N, Almehmadi M, Sanjida S, Ahammad F. Bacterial diseases of Asian sea bass ( Lates calcarifer): A review for health management strategies and future aquaculture sustainability. Heliyon 2024; 10:e29793. [PMID: 38707314 PMCID: PMC11068540 DOI: 10.1016/j.heliyon.2024.e29793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The advent of aquaculture has been one of the most significant shifts in world food supply during the last century. Aquaculture has rapidly expanded and become a global food industry, spurred by population expansion, increased seafood consumption, and decreased captured fisheries. Nonetheless, the exponential growth of aquaculture has emerged as a significant contributor to anthropogenic changes. Unexpectedly, the result has focused in the emergence and spread of new diseases. The Asian sea bass (Lates calcarifer) is an economically important species in aquaculture, contributing significantly to the global seafood market. However, bacterial diseases have emerged as a major concern, affecting both wild and cultured populations of this species. The most prevalent bacterial pathogens are streptococcus, vibriosis, nocardiosis, tenacibaculosis, and pot-belly disease. Therefore, this review aims to comprehensively analyze both emerging and non-emerging bacterial diseases affecting L. calcarifer and explore potential management approaches for their control. Through an extensive literature survey and critical evaluation of research findings, this review highlights the current understanding of bacterial diseases in L. calcarifer and proposes strategies for better disease management. In addition, this review looks at the rise and characteristics of aquaculture, the major bacterial pathogens of L. calcarifer and their effects, and the specific attributes of disease emergence in an aquatic rather than terrestrial context. It also considers the potential for future disease emergence in L. calcarifer due to aquaculture expansion and climate changes.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sarower Mahfuj
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zulqarnain Baqar
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Md Asadujjaman
- Department of Aquaculture, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Jakiul Islam
- Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Naif Alsiwiehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Foysal Ahammad
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
5
|
Erfanmanesh A, Beikzadeh B, Khanzadeh M, Alishahi M. Immuno-protective response of Asian seabass (Lates calcarifer) to inactivated vaccines against Streptococcus iniae and Vibrio harveyi. BMC Vet Res 2024; 20:89. [PMID: 38459562 PMCID: PMC10921715 DOI: 10.1186/s12917-024-03935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND In this study, the protective immunity and immunogenicity of the monovalent and bivalent Streptococcus iniae and Vibrio harveyi vaccine were evaluated in Asian seabass. To analyze immune responses, 1200 Asian seabass with an average weight of 132.6 ± 25.4 g were divided into eight treatments in triplicates (50 fish per tank) as follows: S. iniae immunized by injection (SI), V. harveyi immunized by injection (VI), bivalent S. iniae and V. harveyi (SVI) immunized by injection, S. iniae immunized by immersion (SIM), V. harveyi (VIM) immunized by immersion, bivalent S. iniae and V. harvei (SVIM) immunized by immersion, phosphate-buffered saline (PBS) by injection (PBSI) and control group without vaccine administration (CTRL). Blood and serum samples were taken at the end of the 30th and 60th days. Then the vaccinated groups were challenged with two bacteria (S. iniae) and (V. harveyi) separately and mortality was recorded for 14 days. RESULTS This study reveals that there is no significant difference in the hematological parameters on the 30th and 60th days of the experiment in the vaccine-immunized groups compared to the CTRL group (P > 0.05). Meanwhile, there was no significant difference in the amount of serum albumin level, respiratory burst activity, and serum bactericidal activity in the vaccine-immunized groups compared to the CTRL group on the 30th and 60th days of the experiment (P > 0.05). Total protein on the 60th day (in the VI and SVI groups), globulin on the 30th day (in the VI and SVI groups) and the 60th day (in the VI group) compared to the CTRL and PBSI groups had a significant increase (P < 0.05). Complement activity (in the VI and SVI groups) and lysozyme (in the SI and SVI groups) increased significantly compared to the control group (P < 0.05). Serum antibody titer against S. iniae had a significant increase in the SI, VI, SVI and SVIM groups compared to the CTRL and PBSI groups (P < 0.05). Serum antibody titer against V. harveyi had a significant increase in the groups immunized with the vaccine compared to the CTRL and PBSI groups (P < 0.05). A significant increase in the relative percentage survival (RPS) following challenge with S. iniae in the SVI (86.6%), SI (83.3%,) and VI (73.3%) groups were observed compared to the CTRL (43.3%) and PBSI (40%) groups (P < 0.05). Also, a significant increase in the RPS after challenge with V. harveyi in the SVI group, VI 86.6%, SVI 83.3%, VIM 80% and SVIM 76.6% were observed compared to the CTRL (46.6%) and PBSI (50%) groups (P < 0.05). CONCLUSION Overall, the results demonstrated that the bivalent vaccine of S. iniae and V. harveywas able to produce significant immunogenicity and RPS in Asian seabass.
Collapse
Affiliation(s)
- Ahmad Erfanmanesh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran Organization, Tehran, Iran
| | - Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Khanzadeh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran Organization, Tehran, Iran.
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Mojtaba Alishahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Centre of Excellence for Warm Water Fish Health and Disease, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|