1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
Mitrović D, Zaklan D, Đanić M, Stanimirov B, Stankov K, Al-Salami H, Pavlović N. The Pharmaceutical and Pharmacological Potential Applications of Bilosomes as Nanocarriers for Drug Delivery. Molecules 2025; 30:1181. [PMID: 40076403 PMCID: PMC11901966 DOI: 10.3390/molecules30051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Nano-drug delivery systems provide targeted solutions for addressing various drug delivery challenges, leveraging nanotechnology to enhance drug solubility and permeability. Liposomes, explored for several decades, face hurdles, especially in oral delivery. Bile-acid stabilized vesicles (bilosomes) are flexible lipid vesicles, composed of phospholipids or other surfactants, along with amphiphilic bile salts, and they show superior stability and pharmacokinetic behavior in comparison to conventional vesicular systems (liposomes and niosomes). Bilosomes enhance skin penetration, fluidize the stratum corneum, and improve drug stability. In oral applications, bilosomes overcome drawbacks, offering improved bioavailability, controlled release, and reduced side effects. Vaccines using bilosomes demonstrate efficacy, and bilosomes for intranasal, inhalation, ocular, and buccal applications enhance drug delivery, offering targeted, efficient, and controlled activities. Formulations vary based on active substances and optimization techniques, showcasing the versatility and potential of bilosomes across diverse drug delivery routes. Therefore, the aim of this comprehensive review was to critically explore the state-of-the-art of bilosomes in drug delivery and potential therapeutic applications.
Collapse
Affiliation(s)
- Darko Mitrović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | - Dragana Zaklan
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.); (K.S.)
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.); (K.S.)
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6845, Australia;
- UWA Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (D.M.); (D.Z.)
| |
Collapse
|
3
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
4
|
Ola OO, Emikpe BO, Kuntworbe N, Odeniyi MA, Jarikre TA, Onilude OM, Osei YA, Asare DA. Development of cashew-alginate microbeads and powdered dose forms: prospects for oral vaccine delivery in chickens. J Immunoassay Immunochem 2024; 45:549-565. [PMID: 39169555 DOI: 10.1080/15321819.2024.2393184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conventional oral vaccine delivery in poultry is challenging due to vaccine degradation in the gastrointestinal (GI) environment and the need for cold-chain storage. Microencapsulation offers a solution by protecting vaccines from GI degradation and improving stability. Natural polymers like alginate and cashew gum have mucoadhesive properties, making them promising candidates for oral vaccine delivery. This study developed cashew-alginate microbeads and a powdered dose form for oral vaccine delivery in chickens. The microbeads were created using ionotropic gelation, while the powdered form was obtained via freeze-drying. These formulations were characterized for size, shape, and stability using scanning electron microscopy (SEM), light microscopy, X-ray diffraction (XRD), and Energy Dispersive X-ray (EDX). Peak adhesion time (PAT) was determined using chicken intestinal and esophageal tissues, and antigenicity was assessed with in-vitro hemagglutination (HA) and hemagglutination inhibition (HI) assays. The microbeads exhibited a spherical shape with a porous structure, suggesting enhanced antigen accommodation. Hemagglutination Inhibition tests indicated that the experimental vaccine remained effective without cold-chain storage for three months. These findings suggest that cashew-alginate microbeads are promising for oral vaccine delivery in poultry.
Collapse
Affiliation(s)
| | - Benjamin Obukowho Emikpe
- School of Veterinary Medicine, Kwame Nkruma University of Science and Technology Kumasi, Kumasi, Ghana
| | - Noble Kuntworbe
- Department of pharmaceutics, Kwame Nkruma University of Science and Technology Kumasi, Kumasi, Ghana
| | | | | | - Opeyemi Mayowa Onilude
- Department of Veterinary Services, Ministry of Agriculture and Natural resources, Ogun, Nigeria
| | - Yaa Asantewaa Osei
- Department of pharmaceutics, Kwame Nkruma University of Science and Technology Kumasi, Kumasi, Ghana
| | - Derrick Adu Asare
- School of Veterinary Medicine, Kwame Nkruma University of Science and Technology Kumasi, Kumasi, Ghana
| |
Collapse
|
5
|
Fatmi S, Taouzinet L, Lezreg A, Pokajewicz K, Toutou Z, Skiba M, Wieczorek PP, Iguerouada M. Advances and Trends in the Encapsulation of Nigella sativa Oil and Essential Oil Using Cyclodextrins and Liposomes: a Review. BIONANOSCIENCE 2024; 14:3599-3616. [DOI: 10.1007/s12668-024-01463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2024] [Indexed: 01/06/2025]
|
6
|
Liu Z, Lu H, Li S, Liu B, Zhao Q, Gao Y, Mao Y, Zhang J, Wang S. Size effect of mesoporous silica nanoparticles on regulating the immune effect of oral influenza split vaccine. Colloids Surf B Biointerfaces 2024; 238:113920. [PMID: 38688058 DOI: 10.1016/j.colsurfb.2024.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Mucosal immunization is a powerful weapon against viral infection. In this paper, large pore mesoporous silica nanoparticles (LMSN) with different particle sizes were synthesized for loading influenza split vaccine (SV) to explore the effect of nanoparticle sizes on mucosal immunization and adjuvant efficacy. Interestingly, it was found that among the three particle sizes of nanoparticles, only LMSN-M with around 250 nm could significantly enhance the mucosal immune effect of SV, possessing adjuvant effect. The results indicated that particle size affected the adjuvant effect of LMSN. There was no apparent difference in vaccine loading capacity of LMSN with different particle sizes, but the release of SV depended on the pore length of LMSN. The adjuvant effect of LMSN-M was attributed to its higher cellular uptake performance, intestine absorption and transport efficiency, and the ability to stimulate the maturation of dendritic cells. Simultaneously, compared with LMSN-S and LMSN-L, the more retention of LMSN-M in mesenteric lymph nodes increased the chance of interaction between vaccine and immune system, resulting in the enhanced immunity. This is the first time to study the impact of particle size of LMSN adjuvant on improving mucosal immunity of oral influenza vaccine, and the present work provides a scientific reference for adjuvant design of oral vaccine.
Collapse
Affiliation(s)
- Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shi Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Bin Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jinghai Zhang
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
7
|
Hillman T. The application of plant-exosome-like nanovesicles as improved drug delivery systems for cancer vaccines. Discov Oncol 2024; 15:136. [PMID: 38683256 PMCID: PMC11058161 DOI: 10.1007/s12672-024-00974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
The use of cancer immunotherapeutics is currently increasing. Cancer vaccines, as a form of immunotherapy, are gaining much attention in the medical community since specific tumor-antigens can activate immune cells to induce an anti-tumor immune response. However, the delivery of cancer vaccines presents many issues for research scientists when designing cancer treatments and requires further investigation. Nanoparticles, synthetic liposomes, bacterial vectors, viral particles, and mammalian exosomes have delivered cancer vaccines. In contrast, the use of many of these nanotechnologies produces many issues of cytotoxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system (MPS). Plant-exosome-like nanovesicles (PELNVs) can provide solutions for many of these challenges because they are innocuous and nonimmunogenic when delivering nanomedicines. Hence, this review will describe the potential use of PELNVs to deliver cancer vaccines. In this review, different approaches of cancer vaccine delivery will be detailed, the mechanism of oral vaccination for delivering cancer vaccines will be described, and the review will discuss the use of PELNVs as improved drug delivery systems for cancer vaccines via oral administration while also addressing the subsequent challenges for advancing their usage into the clinical setting.
Collapse
|
8
|
Gai C, Pomatto MAC, Deregibus MC, Dieci M, Piga A, Camussi G. Edible Plant-Derived Extracellular Vesicles for Oral mRNA Vaccine Delivery. Vaccines (Basel) 2024; 12:200. [PMID: 38400183 PMCID: PMC10893065 DOI: 10.3390/vaccines12020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Nucleic acid delivery through extracellular vesicles (EVs) is a well-preserved evolutionary mechanism in all life kingdoms including eukaryotes, prokaryotes, and plants. EVs naturally allow horizontal transfer of native as well as exogenous functional mRNAs, which once incorporated in EVs are protected from enzymatic degradation. This observation has prompted researchers to investigate whether EVs from different sources, including plants, could be used for vaccine delivery. Several studies using human or bacterial EVs expressing mRNA or recombinant SARS-CoV-2 proteins showed induction of a humoral and cell mediated immune response. Moreover, EV-based vaccines presenting the natural configuration of viral antigens have demonstrated advantages in conferring long-lasting immunization and lower toxicity than synthetic nanoparticles. Edible plant-derived EVs were shown to be an alternative to human EVs for vaccine delivery, especially via oral administration. EVs obtained from orange juice (oEVs) loaded with SARS-CoV-2 mRNAs protected their cargo from enzymatic degradation, were stable at room temperature for one year, and were able to trigger a SARS-CoV-2 immune response in mice. Lyophilized oEVs containing the S1 mRNA administered to rats via gavage induced a specific humoral immune response with generation of blocking antibodies, including IgA and Th1 lymphocyte activation. In conclusion, mRNA-containing oEVs could be used for developing new oral vaccines due to optimal mucosal absorption, resistance to stress conditions, and ability to stimulate a humoral and cellular immune response.
Collapse
Affiliation(s)
- Chiara Gai
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| | - Margherita Alba Carlotta Pomatto
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| | | | - Marco Dieci
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
| | - Alessandro Piga
- EvoBiotech s.r.l., 10148 Torino, Italy; (C.G.); (M.A.C.P.); (M.D.); (A.P.)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Torino, Italy;
| |
Collapse
|
9
|
Kwong KWY, Xin Y, Lai NCY, Sung JCC, Wu KC, Hamied YK, Sze ETP, Lam DMK. Oral Vaccines: A Better Future of Immunization. Vaccines (Basel) 2023; 11:1232. [PMID: 37515047 PMCID: PMC10383709 DOI: 10.3390/vaccines11071232] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Oral vaccines are gaining more attention due to their ease of administration, lower invasiveness, generally greater safety, and lower cost than injectable vaccines. This review introduces certified oral vaccines for adenovirus, recombinant protein-based, and transgenic plant-based oral vaccines, and their mechanisms for inducing an immune response. Procedures for regulatory approval and clinical trials of injectable and oral vaccines are also covered. Challenges such as instability and reduced efficacy in low-income countries associated with oral vaccines are discussed, as well as recent developments, such as Bacillus-subtilis-based and nanoparticle-based delivery systems that have the potential to improve the effectiveness of oral vaccines.
Collapse
Affiliation(s)
- Keith Wai-Yeung Kwong
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Ying Xin
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | - Nelson Cheuk-Yin Lai
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Johnny Chun-Chau Sung
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Kam-Chau Wu
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | | | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Dominic Man-Kit Lam
- DrD Novel Vaccines Limited, Hong Kong, China
- Torsten Wiesel International Research Institute, Sichuan University, Chengdu 610064, China
| |
Collapse
|