1
|
Crawford MW, Abdelwahab WM, Siram K, Parkins CJ, Harrison HF, Osman SR, Schweitzer D, Evans JT, Burkhart DJ, Pinto AK, Brien JD, Smith JL, Hirsch AJ. The TLR7/8 agonist INI-4001 enhances the immunogenicity of a Powassan virus-like-particle vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.28.625832. [PMID: 39677812 PMCID: PMC11642962 DOI: 10.1101/2024.11.28.625832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Powassan virus (POWV) is a pathogenic tick-borne flavivirus that causes fatal neuroinvasive disease in humans. There are currently no approved therapies or vaccines for POWV infection. Here, we develop a POW virus-like-particle (POW-VLP) based vaccine adjuvanted with the novel synthetic Toll-like receptor 7/8 agonist INI-4001. We demonstrate that INI-4001 outperforms both alum and the Toll-like receptor 4 agonist INI-2002 in enhancing the immunogenicity of a dose-sparing POW-VLP vaccine in mice. INI-4001 increases the magnitude and breadth of the antibody response as measured by whole-virus ELISA, induces neutralizing antibodies measured by FRNT, reduces viral burden in the brain of infected mice measured by RT qPCR, and confers 100% protection from lethal challenge with both lineages of POWV. We show that the antibody response induced by INI-4001 is more durable than standard alum, and 80% of mice remain protected from lethal challenge 9-months post-vaccination. Lastly, we show that the protection elicited by INI-4001 adjuvanted POW-VLP vaccine is unaffected by either CD4+ or CD8+ T cell depletion and can be passively transferred to unvaccinated mice indicating that protection is mediated through humoral immunity. This study highlights the utility of novel synthetic adjuvants in VLP-based vaccines.
Collapse
Affiliation(s)
- Michael W. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Walid M. Abdelwahab
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - Karthik Siram
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Henry F. Harrison
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Samantha R. Osman
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Dillon Schweitzer
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - Jay T. Evans
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - David J. Burkhart
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
- Center for Translational Medicine – Adjuvant Research Team, University of Montana, Missoula, MT, USA
| | - Amelia K. Pinto
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - James D. Brien
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jessica L. Smith
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Alec J. Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
2
|
Hboub H, Ben Mrid R, Bouchmaa N, Oukkache N, El Fatimy R. An in-depth exploration of snake venom-derived molecules for drug discovery in advancing antiviral therapeutics. Heliyon 2024; 10:e37321. [PMID: 39323826 PMCID: PMC11422003 DOI: 10.1016/j.heliyon.2024.e37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Snake venom is a cocktail and rich source of various bioactive compounds that have been extensively studied for their potential as pharmaceutical agents due to their diverse chemical structures and wide range of biological activities. In light of the emergency and the re-emergence of viral infectious diseases that threaten human health and economic systems, exploring new fertile and rich fields such as snake venom is an attractive path for anti-viral drug discovery, especially in the lack of effective vaccines. Although 85 % of reported antiviral molecules belong to the phospholipase A2 (PLA2) family, other protein families including L-amino acid oxidases (LAAO), disintegrins, metalloproteases (SVMPs), and cathelicidins have also shown antiviral activity. Thus, in this review, we have highlighted the antiviral properties of compounds derived from snake venom and their mechanisms of action against virus classes like HIV, Coronaviridae, Flaviviridae, and Paramyxoviridae. Although the initial research emphasis has been on Retroviridae (HIV) and Flaviviridae viruses, it is crucial to extend the exploration of the potential of these compounds to other viruses. The utilization of snake venom-derived compounds as antivirals shows significant promise for the development of novel therapeutics to address viral infections. However, a more in-depth investigation is necessary to fully assess the potential of these compounds against other viruses and unveil the mechanisms underlying their action.
Collapse
Affiliation(s)
- Hicham Hboub
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca, 20360, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences (FMS), Mohammed VI Polytechnic University (UM6P), Ben Guerir, 43150, Morocco
| |
Collapse
|
3
|
Alvim RGF, Lima TM, Silva JL, de Oliveira GAP, Castilho LR. Process intensification for the production of yellow fever virus-like particles as potential recombinant vaccine antigen. Biotechnol Bioeng 2021; 118:3581-3592. [PMID: 34143442 DOI: 10.1002/bit.27864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/08/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Yellow fever (YF) is a life-threatening viral disease endemic in parts of Africa and Latin America. Although there is a very efficacious vaccine since the 1930s, YF still causes 29,000-60,000 annual deaths. During recent YF outbreaks there were issues of vaccine shortage of the current egg-derived vaccine; rare but fatal vaccine adverse effects occurred; and cases were imported to Asia, where the circulating mosquito vector could potentially start local transmission. Here we investigated the production of YF virus-like particles (VLPs) using stably transfected HEK293 cells. Process intensification was achieved by combining sequential FACS (fluorescence-activated cell sorting) rounds to enrich the stable cell pool in terms of high producers and the use of perfusion processes. At shaken-tube scale, FACS enrichment of cells allowed doubling VLP production, and pseudoperfusion cultivation (with daily medium exchange) further increased VLP production by 9.3-fold as compared to batch operation mode. At perfusion bioreactor scale, the use of an inclined settler as cell retention device showed operational advantages over an ATF system. A one-step steric exclusion chromatography purification allowed significant removal of impurities and is a promising technique for future integration of upstream and downstream operations. Characterization by different techniques confirmed the identity and 3D-structure of the purified VLPs.
Collapse
Affiliation(s)
- Renata G F Alvim
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Túlio M Lima
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,School of Chemistry (EQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Leda R Castilho
- COPPE, PEQ, Cell Culture Engineering Laboratory (LECC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Belizário J. Immunity, virus evolution, and effectiveness of SARS-CoV-2 vaccines. Braz J Med Biol Res 2021; 54:e10725. [PMID: 33729394 PMCID: PMC7959154 DOI: 10.1590/1414-431x202010725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
Phylogenetic and pathogenesis studies of the severe acute respiratory syndrome-related coronaviruses (SARS-CoVs) strains have highlighted some specific mutations that could confer the RNA genome fitness advantages and immunological resistance for their rapid spread in the human population. The analyses of 30 kb RNA SARS-CoVs genome sequences, protein structures, and functions have provided us a perspective of how host-virus protein-protein complexes act to mediate virus infection. The open reading frame (ORF)1a and ORF1b translation yields 16 non-structural (nsp1-16) and 6 accessory proteins (p6, p7a, p8ab, p9b) with multiple functional domains. Viral proteins recruit over 300 host partners forming hetero-oligomeric complexes enabling the viral RNA synthesis, packing, and virion release. Many cellular host factors and the innate immune cells through pattern-recognition receptors and intracellular RNA sensor molecules act to inhibit virus entry and intracellular replication. However, non-structural ORF proteins hijack them and suppress interferon synthesis and its antiviral effects. Pro-inflammatory chemokines and cytokines storm leads to dysfunctional inflammation, lung injury, and several clinical symptoms in patients. During the global pandemic, COVID-19 patients were identified with non-synonymous substitution of G614D in the spike protein, indicating virus co-evolution in host cells. We review findings that suggest that host RNA editing and DNA repair systems, while carrying on recombination, mutation, and repair of viral RNA intermediates, may facilitate virus evolution. Understanding how the host cell RNA replication process may be driven by SARS-CoV-2 RNA genome fitness will help the testing of vaccines effectiveness to multiple independent mutated coronavirus strains that will emerge.
Collapse
Affiliation(s)
- J.E. Belizário
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Vang L, Morello CS, Mendy J, Thompson D, Manayani D, Guenther B, Julander J, Sanford D, Jain A, Patel A, Shabram P, Smith J, Alexander J. Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Negl Trop Dis 2021; 15:e0009195. [PMID: 33711018 PMCID: PMC7990201 DOI: 10.1371/journal.pntd.0009195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/24/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Zika virus (ZIKV), a mosquito-borne flavivirus, is a re-emerging virus that constitutes a public health threat due to its recent global spread, recurrent outbreaks, and infections that are associated with neurological abnormalities in developing fetuses and Guillain-Barré syndrome in adults. To date, there are no approved vaccines against ZIKV infection. Various preclinical and clinical development programs are currently ongoing in an effort to bring forward a vaccine for ZIKV. Methodology/Principle findings We have developed a ZIKV vaccine candidate based on Virus-Like-Particles (VLPs) produced in HEK293 mammalian cells using the prM (a precursor to M protein) and envelope (E) structural protein genes from ZIKV. Transient transfection of cells via plasmid and electroporation produced VLPs which were subsequently purified by column chromatography yielding approximately 2mg/L. Initially, immunogenicity and efficacy were evaluated in AG129 mice using a dose titration of VLP with and without Alhydrogel 2% (alum) adjuvant. We found that VLP with and without alum elicited ZIKV-specific serum neutralizing antibodies (nAbs) and that titers correlated with protection. A follow-up immunogenicity and efficacy study in rhesus macaques was performed using VLP formulated with alum. Multiple neutralization assay methods were performed on immune sera including a plaque reduction neutralization test, a microneutralization assay, and a Zika virus Renilla luciferase neutralization assay. All of these assays indicate that following immunization, VLP induces high titer nAbs which correlate with protection against ZIKV challenge. Conclusions/Significance These studies confirm that ZIKV VLPs could be efficiently generated and purified. Upon VLP immunization, in both mice and NHPs, nAb was induced that correlate with protection against ZIKV challenge. These studies support translational efforts in developing a ZIKV VLP vaccine for evaluation in human clinical trials. Zika virus (ZIKV) is a significant global health threat particularly due to the speed in which epidemics can occur. The resulting infections have been demonstrated to harm a developing fetus and, in some adults, be a co-factor for the development of Guillain-Barré syndrome. ZIKV is typically spread by the Aedes mosquito, but sexual transmission is also possible. We sought to develop a ZIKV prophylactic vaccine based on surface glycoproteins of the virus that would be devoid of any viral genetic material. This Virus-Like-Particle (VLP) was generated in vitro following introduction of plasmid DNA encoding Zika structural protein (prM-E) genes into mammalian cells. The aluminum-adjuvanted VLP induced nAbs in mice and nonhuman primates and protected against ZIKV challenge in vivo. These studies support the evaluation of this VLP candidate vaccine in human clinical trials.
Collapse
Affiliation(s)
- Lo Vang
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- * E-mail:
| | | | - Jason Mendy
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Danielle Thompson
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Darly Manayani
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| | - Ben Guenther
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Justin Julander
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Daniel Sanford
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| | - Amit Jain
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Amish Patel
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Paul Shabram
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Jonathan Smith
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| | - Jeff Alexander
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| |
Collapse
|
6
|
Pechelyulko A, Andreeva-Kovalevskaya Z, Dmitriev D, Lavrov V, Massino Y, Nagel A, Segal O, Sokolova OS, Solonin A, Tarakanova Y, Dmitriev A. A simple method to purify recombinant HCV core protein expressed in Pichia pastoris for obtaining virus-like particles and producing monoclonal antibodies. Protein Expr Purif 2021; 183:105864. [PMID: 33677084 DOI: 10.1016/j.pep.2021.105864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
In this study, we describe an optimized method of obtaining virus-like particles (VLPs) of the recombinant hepatitis C virus (HCV) core protein (HCcAg) expressed in yeast cells (Pichia pastoris), which can be used for the construction of diagnostic test systems and vaccine engineering. The described simplified procedure was developed to enable in vitro self-assembly of HCcAg molecules into VLPs during protein purification. In brief, the HCcAg protein was precipitated from yeast cell lysates with ammonium sulfate and renatured by gel filtration on Sephadex G-25 under reducing conditions. VLPs were self-assembled after the removal of the reducing agent by gel filtration on Sephadex G-25. Protein purity and specificity were evaluated by SDS-PAGE and immunoblotting analysis. The molecular mass of VLPs and their relative quantity were measured by HPLC, followed by confirmation of VLPs production and estimation of their shape and size by transmission electron microscopy. As a result, we obtained recombinant HCcAg preparation (with ~90% purity) in the form of VLPs and monomers, which has been used to produce hybridomas secreting monoclonal antibodies (mAbs) against HCcAg.
Collapse
Affiliation(s)
- Anastasia Pechelyulko
- Mechnikov Scientific Research Institute of Vaccines and Sera, 5A Maly Kazenny Lane, Moscow, 105064, Russia.
| | - Zhanna Andreeva-Kovalevskaya
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Dmitriy Dmitriev
- Mechnikov Scientific Research Institute of Vaccines and Sera, 5A Maly Kazenny Lane, Moscow, 105064, Russia
| | - Viacheslav Lavrov
- Mechnikov Scientific Research Institute of Vaccines and Sera, 5A Maly Kazenny Lane, Moscow, 105064, Russia
| | - Yulia Massino
- Mechnikov Scientific Research Institute of Vaccines and Sera, 5A Maly Kazenny Lane, Moscow, 105064, Russia
| | - Alexey Nagel
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Olga Segal
- Mechnikov Scientific Research Institute of Vaccines and Sera, 5A Maly Kazenny Lane, Moscow, 105064, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander Solonin
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Yulia Tarakanova
- Mechnikov Scientific Research Institute of Vaccines and Sera, 5A Maly Kazenny Lane, Moscow, 105064, Russia
| | - Alexander Dmitriev
- Mechnikov Scientific Research Institute of Vaccines and Sera, 5A Maly Kazenny Lane, Moscow, 105064, Russia
| |
Collapse
|
7
|
Current Flavivirus Research Important for Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8030477. [PMID: 32867038 PMCID: PMC7563144 DOI: 10.3390/vaccines8030477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/07/2023] Open
Abstract
The Flaviviridae family of RNA viruses includes numerous human disease-causing pathogens that largely are increasing in prevalence due to continual climate change, rising population sizes and improved ease of global travel [...].
Collapse
|
8
|
Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines (Basel) 2020; 8:E451. [PMID: 32806696 PMCID: PMC7564546 DOI: 10.3390/vaccines8030451] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany;
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University (LMU) Munich, Veterinaerstr. 13, 80539 Munich, Germany;
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| |
Collapse
|
9
|
Chang YH, Chiao DJ, Hsu YL, Lin CC, Wu HL, Shu PY, Chang SF, Chang JH, Kuo SC. Mosquito Cell-Derived Japanese Encephalitis Virus-Like Particles Induce Specific Humoral and Cellular Immune Responses in Mice. Viruses 2020; 12:v12030336. [PMID: 32204533 PMCID: PMC7150764 DOI: 10.3390/v12030336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
The Japanese encephalitis virus (JEV) is the major cause of an acute encephalitis syndrome in many Asian countries, despite the fact that an effective vaccine has been developed. Virus-like particles (VLPs) are self-assembled multi-subunit protein structures which possess specific epitope antigenicities related to corresponding native viruses. These properties mean that VLPs are considered safe antigens that can be used in clinical applications. In this study, we developed a novel baculovirus/mosquito (BacMos) expression system which potentially enables the scalable production of JEV genotype III (GIII) VLPs (which are secreted from mosquito cells). The mosquito-cell-derived JEV VLPs comprised 30-nm spherical particles as well as precursor membrane protein (prM) and envelope (E) proteins with densities that ranged from 30% to 55% across a sucrose gradient. We used IgM antibody-capture enzyme-linked immunosorbent assays to assess the resemblance between VLPs and authentic virions and thereby characterized the epitope specific antigenicity of VLPs. VLP immunization was found to elicit a specific immune response toward a balanced IgG2a/IgG1 ratio. This response effectively neutralized both JEV GI and GIII and elicited a mixed Th1/Th2 response in mice. This study supports the development of mosquito cell-derived JEV VLPs to serve as candidate vaccines against JEV.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Cell Line
- Culicidae/virology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalitis Virus, Japanese/immunology
- Encephalitis Virus, Japanese/ultrastructure
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/virology
- Enzyme-Linked Immunosorbent Assay
- Epitopes/immunology
- Fluorescent Antibody Technique
- Immunity, Cellular
- Immunity, Humoral
- Mice
- Neutralization Tests
- Vaccines, Virus-Like Particle/immunology
- Virion
Collapse
Affiliation(s)
- Yu-Hsiu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsueh-Ling Wu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan; (P.-Y.S.); (S.-F.C.)
| | - Jui-Huan Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-H.C.); (D.-J.C.); (Y.-L.H.); (C.-C.L.); (H.-L.W.); (J.-H.C.)
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: ; Tel.: +886-2-8177-7038 (ext. 19946)
| |
Collapse
|
10
|
Virus Like Particles (VLP) as multivalent vaccine candidate against Chikungunya, Japanese Encephalitis, Yellow Fever and Zika Virus. Sci Rep 2020; 10:4017. [PMID: 32132648 PMCID: PMC7055223 DOI: 10.1038/s41598-020-61103-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mosquito borne viral diseases are an emerging threat as evident from the recent outbreak of Zika virus (ZIKV) as well as repeated outbreaks of Chikungunya (CHIKV), Yellow fever (YFV) and Japanese encephalitis (JEV) virus in different geographical regions. These four arboviruses are endemic in overlapping regions due to the co-prevalence of the transmitting mosquito vector species Aedes and Culex. Thus, a multivalent vaccine that targets all four viruses would be of benefit to regions of the world where these diseases are endemic. We developed a potential Virus Like Particle (VLP) based multivalent vaccine candidate to target these diseases by using stable cell lines that continuously secrete VLPs in the culture supernatants. Moreover, inclusion of Capsid in the VLPs provides an additional viral protein leading to an enhanced immune response as evident from our previous studies with ZIKV. Immunization of Balb/c mice with different combinations of Capsid protein containing VLPs either as monovalent, bivalent or tetravalent formulation resulted in generation of high levels of neutralizing antibodies. Interestingly, the potential tetravalent VLP vaccine candidate provided strong neutralizing antibody titers against all four viruses. The 293 T stable cell lines secreting VLPs were adapted to grow in suspension cultures to facilitate vaccine scale up. Our stable cell lines secreting individual VLPs provide a flexible yet scalable platform conveniently adaptable to different geographical regions as per the need. Further studies in appropriate animal models will be needed to define the efficacy of the multivalent vaccine candidate to protect against lethal virus challenge.
Collapse
|