1
|
Szöllősi D, Hajdrik P, Tordai H, Bergmann R, Horváth I, Mihály J, Gaál A, Jezsó B, Shailaja KD, Felföldi T, Padmanabhan P, Zoltán Gulyás B, Máthé D, Varga Z, Szigeti K. Quantitative Biodistribution of OMVs Using SPECT/CT Imaging with HYNIC-Duramycin Radiolabeling. ACS OMEGA 2024; 9:42808-42813. [PMID: 39464435 PMCID: PMC11500362 DOI: 10.1021/acsomega.4c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Introduction: Bacterial outer membrane vesicles (OMVs) are emerging as important players in the host-microbiome interaction, while also proving to be a promising platform for vaccine development and targeted drug delivery. The available methods for measuring their biodistribution, however, are limited. We aimed to establish a high-efficiency radiolabeling method for the treatment of OMVs. Methods: 99mTc-HYNIC-duramycin was incubated with OMVs isolated from E. coli BL21(DE3) ΔnlpI ΔlpxM. Radiolabeling efficiency (RLE) and radiochemical purity (RCP) were measured with size-exclusion high-performance liquid chromatography. The biodistribution was quantitatively measured in mice using SPECT/CT imaging. Results: RLE was 81.84 ± 2.03% for undiluted OMV suspension and 56.17 ± 2.29% for 100× dilution. Postlabeling purification with a spin-desalting column results in 100% radioactivity in the OMV fraction according to HPLC, indicating 100% RCP of the final product. The biodistribution was found to be in line with previous data reported in the literature using other OMV tracking attempts. Conclusions: Our findings illustrate that using HYNIC-duramycin for labeling of the OMVs enhances efficiency and is easily implementable for in vivo imaging studies, significantly improving upon earlier methods.
Collapse
Affiliation(s)
- Dávid Szöllősi
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
| | - Polett Hajdrik
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
| | - Hedvig Tordai
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
| | - Ralf Bergmann
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
| | - Ildikó Horváth
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
| | - Judith Mihály
- Biological
Nanochemistry Research Group, HUN-REN Research Centre for Natural
Sciences, Institute of Materials and Environmental
Chemistry, Budapest 1117, Hungary
| | - Anikó Gaál
- Biological
Nanochemistry Research Group, HUN-REN Research Centre for Natural
Sciences, Institute of Materials and Environmental
Chemistry, Budapest 1117, Hungary
| | - Bálint Jezsó
- Molecular
Cell Biology Research Group, Institute of
Enzymology, Research Center for Natural Sciences, Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Kanni Das Shailaja
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
| | - Tamás Felföldi
- Department
of Microbiology, ELTE Eötvös
Loránd University, Pázmány Péter stny. 1/c, Budapest 1117, Hungary
- Institute
for Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina u. 29, Budapest 1113, Hungary
| | - Parasuraman Padmanabhan
- Lee
Kong
Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
- Cognitive
Neuroimaging Centre, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Balázs Zoltán Gulyás
- Lee
Kong
Chian School of Medicine, Nanyang Technological
University, Singapore 636921, Singapore
- Cognitive
Neuroimaging Centre, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Domokos Máthé
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
- CROmed
Translational Research Centers, Budapest 1094, Hungary
- In
Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence
for Molecular Medicine (HCEMM), Budapest 1094, Hungary
| | - Zoltán Varga
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
- Biological
Nanochemistry Research Group, HUN-REN Research Centre for Natural
Sciences, Institute of Materials and Environmental
Chemistry, Budapest 1117, Hungary
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3 H-1111, Budapest, Hungary
| | - Krisztián Szigeti
- Department
of Biophysics and Radiation Biology, Semmelweis
University, Budapest 1094, Hungary
| |
Collapse
|
2
|
Andranilla RK, Anjani QK, Hartrianti P, Donnelly RF, Ramadon D. Fabrication of dissolving microneedles for transdermal delivery of protein and peptide drugs: polymer materials and solvent casting micromoulding method. Pharm Dev Technol 2023; 28:1016-1031. [PMID: 37987717 DOI: 10.1080/10837450.2023.2285498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Proteins and peptides are rapidly developing pharmaceutical products and are expected to continue growing in the future. However, due to their nature, their delivery is often limited to injection, with drawbacks such as pain and needle waste. To overcome these limitations, microneedles technology is developed to deliver protein and peptide drugs through the skin. One type of microneedles, known as dissolving microneedles, has been extensively studied for delivering various proteins and peptides, including ovalbumin, insulin, bovine serum albumin, polymyxin B, vancomycin, and bevacizumab. This article discusses polymer materials used for fabricating dissolving microneedles, which are poly(vinylpyrrolidone), hyaluronic acid, poly(vinyl alcohol), carboxymethylcellulose, GantrezTM, as well as other biopolymers like pullulan and ulvan. The paper is focused solely on solvent casting micromoulding method for fabricating dissolving microneedles containing proteins and peptides, which will be divided into one-step and two-step casting micromoulding. Additionally, future considerations in the market plan for dissolving microneedles are discussed in this article.
Collapse
Affiliation(s)
| | - Qonita Kurnia Anjani
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Pietradewi Hartrianti
- Department of Pharmacy, School of Life Sciences, Indonesia International Institute for Life Sciences, East Jakarta, DKI Jakarta, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Delly Ramadon
- Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia
| |
Collapse
|
3
|
Pastor Y, Calvo A, Salvador-Erro J, Gamazo C. Refining Immunogenicity through Intradermal Delivery of Outer Membrane Vesicles against Shigella flexneri in Mice. Int J Mol Sci 2023; 24:16910. [PMID: 38069232 PMCID: PMC10706920 DOI: 10.3390/ijms242316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Shigellosis remains a global health concern, especially in low- and middle-income countries. Despite improvements in sanitation, the absence of a licensed vaccine for human use has prompted global health organizations to support the development of a safe and effective multivalent vaccine that is cost-effective and accessible for limited-resource regions. Outer Membrane Vesicles (OMVs) have emerged in recent years as an alternative to live attenuated or whole-inactivated vaccines due to their immunogenicity and self-adjuvating properties. Previous works have demonstrated the safety and protective capacity of OMVs against Shigella flexneri infection in mouse models when administered through mucosal or intradermal routes. However, some immunological properties, such as the cellular response or cross-protection among different Shigella strains, remained unexplored. In this study, we demonstrate that intradermal immunization of OMVs with needle-free devices recruits a high number of immune cells in the dermis, leading to a robust cellular response marked by antigen-specific cytokine release and activation of effector CD4 T cells. Additionally, functional antibodies are generated, neutralizing various Shigella serotypes, suggesting cross-protective capacity. These findings highlight the potential of OMVs as a promising vaccine platform against shigellosis and support intradermal administration as a simple and painless vaccination strategy to address this health challenge.
Collapse
Affiliation(s)
| | | | | | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (Y.P.); (A.C.); (J.S.-E.)
| |
Collapse
|
4
|
Szöllősi D, Hajdrik P, Tordai H, Horváth I, Veres DS, Gillich B, Shailaja KD, Smeller L, Bergmann R, Bachmann M, Mihály J, Gaál A, Jezsó B, Barátki B, Kövesdi D, Bősze S, Szabó I, Felföldi T, Oszwald E, Padmanabhan P, Gulyás BZ, Hamdani N, Máthé D, Varga Z, Szigeti K. Molecular imaging of bacterial outer membrane vesicles based on bacterial surface display. Sci Rep 2023; 13:18752. [PMID: 37907509 PMCID: PMC10618197 DOI: 10.1038/s41598-023-45628-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
The important roles of bacterial outer membrane vesicles (OMVs) in various diseases and their emergence as a promising platform for vaccine development and targeted drug delivery necessitates the development of imaging techniques suitable for quantifying their biodistribution with high precision. To address this requirement, we aimed to develop an OMV specific radiolabeling technique for positron emission tomography (PET). A novel bacterial strain (E. coli BL21(DE3) ΔnlpI, ΔlpxM) was created for efficient OMV production, and OMVs were characterized using various methods. SpyCatcher was anchored to the OMV outer membrane using autotransporter-based surface display systems. Synthetic SpyTag-NODAGA conjugates were tested for OMV surface binding and 64Cu labeling efficiency. The final labeling protocol shows a radiochemical purity of 100% with a ~ 29% radiolabeling efficiency and excellent serum stability. The in vivo biodistribution of OMVs labeled with 64Cu was determined in mice using PET/MRI imaging which revealed that the biodistribution of radiolabeled OMVs in mice is characteristic of previously reported data with the highest organ uptakes corresponding to the liver and spleen 3, 6, and 12 h following intravenous administration. This novel method can serve as a basis for a general OMV radiolabeling scheme and could be used in vaccine- and drug-carrier development based on bioengineered OMVs.
Collapse
Affiliation(s)
- Dávid Szöllősi
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Dániel S Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Bernadett Gillich
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Kanni Das Shailaja
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Ralf Bergmann
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- Institute for Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 400 Bautzner Landstraße, 01328, Dresden, Germany
| | - Michael Bachmann
- Institute for Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 400 Bautzner Landstraße, 01328, Dresden, Germany
| | - Judith Mihály
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Anikó Gaál
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Bálint Jezsó
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Balázs Barátki
- Department of Immunology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös L. Research Network, Eötvös L. University, 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös L. Research Network, Eötvös L. University, 1/A Pázmány Péter Sétány, Budapest, 1117, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, 1/C Pázmány Péter Sétány, Budapest, 1117, Hungary
- Centre for Ecological Research, Institute of Aquatic Ecology, 29 Karolina Road, Budapest, 1113, Hungary
| | - Erzsébet Oszwald
- Department of Anatomy, Histology, and Embryology, Semmelweis University, 58 Tűzoltó Street, Budapest, 1094, Hungary
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 30823, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Balázs Zoltán Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 30823, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, 1089, Hungary
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- CROmed Translational Research Centers, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- In Vivo Imaging Advanced Core Facility, Hungarian Center of Excellence for Molecular Medicine (HCEMM), 37-47 Tűzoltó Street, Budapest, 1094, Hungary
| | - Zoltán Varga
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, Budapest, 1117, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, 37-47 Tűzoltó Street, Budapest, 1094, Hungary.
| |
Collapse
|
5
|
Luo X, Yang L, Cui Y. Microneedles: materials, fabrication, and biomedical applications. Biomed Microdevices 2023; 25:20. [PMID: 37278852 PMCID: PMC10242236 DOI: 10.1007/s10544-023-00658-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 06/07/2023]
Abstract
The microneedles have attracted great interests for a wide range of transdermal biomedical applications, such as biosensing and drug delivery, due to the advantages of being painless, semi-invasive, and sustainable. The ongoing challenges are the materials and fabrication methods of the microneedles in order to obtain a specific shape, configuration and function of the microneedles to achieve a target biomedical application. Here, this review would introduce the types of materials of the microneedles firstly. The hardness, Young's modulus, geometric structure, processability, biocompatibility and degradability of the microneedles are explored as well. Then, the fabrication methods for the solid and hollow microneedles in recent years are reviewed in detail, and the advantages and disadvantages of each process are analyzed and compared. Finally, the biomedical applications of the microneedles are reviewed, including biosensing, drug delivery, body fluid extraction, and nerve stimulation. It is expected that this work provides the fundamental knowledge for developing new microneedle devices, as well as the applications in a variety of biomedical fields.
Collapse
Affiliation(s)
- Xiaojin Luo
- School of Materials Science and Engineering, Peking University, First Hospital Interdisciplinary Research Center, Peking University, Beijing, 100871, People's Republic of China
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, People's Republic of China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University, First Hospital Interdisciplinary Research Center, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
6
|
Nguyen HX, Nguyen CN. Microneedle-Mediated Transdermal Delivery of Biopharmaceuticals. Pharmaceutics 2023; 15:277. [PMID: 36678906 PMCID: PMC9864466 DOI: 10.3390/pharmaceutics15010277] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Transdermal delivery provides numerous benefits over conventional routes of administration. However, this strategy is generally limited to a few molecules with specific physicochemical properties (low molecular weight, high potency, and moderate lipophilicity) due to the barrier function of the stratum corneum layer. Researchers have developed several physical enhancement techniques to expand the applications of the transdermal field; among these, microneedle technology has recently emerged as a promising platform to deliver therapeutic agents of any size into and across the skin. Typically, hydrophilic biomolecules cannot penetrate the skin by passive diffusion. Microneedle insertion disrupts skin integrity and compromises its protective function, thus creating pathways (microchannels) for enhanced permeation of macromolecules. Microneedles not only improve stability but also enhance skin delivery of various biomolecules. Academic institutions and industrial companies have invested substantial resources in the development of microneedle systems for biopharmaceutical delivery. This review article summarizes the most recent research to provide a comprehensive discussion about microneedle-mediated delivery of macromolecules, covering various topics from the introduction of the skin, transdermal delivery, microneedles, and biopharmaceuticals (current status, conventional administration, and stability issues), to different microneedle types, clinical trials, safety and acceptability of microneedles, manufacturing and regulatory issues, and the future of microneedle technology.
Collapse
Affiliation(s)
- Hiep X. Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Chien N. Nguyen
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
- Faculty of Pharmaceutics and Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi 100000, Vietnam
| |
Collapse
|
7
|
Zhang XP, He YT, Li WX, Chen BZ, Zhang CY, Cui Y, Guo XD. An update on biomaterials as microneedle matrixes for biomedical applications. J Mater Chem B 2022; 10:6059-6077. [PMID: 35916308 DOI: 10.1039/d2tb00905f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microneedles (MNs) have been developed for various applications such as drug delivery, cosmetics, diagnosis, and biosensing. To meet the requirements of MNs used in these areas, numerous materials have been used for the fabrication of MNs. However, MNs will be exposed to skin tissues after piercing the stratum corneum barrier. Thus, it is necessary to ensure that the matrix materials of MNs have the characteristics of low toxicity, good biocompatibility, biodegradability, and sufficient mechanical properties for clinical application. In this review, the matrix materials currently used for preparing MNs are summarized and reviewed in terms of these factors. In addition, MN products used on the market and their applications are summarized in the end. This work may provide some basic information to researchers in the selection of MN matrix materials and in developing new materials.
Collapse
Affiliation(s)
- Xiao Peng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wen Xuan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Can Yang Zhang
- Biopharmaceutical and Health Engineering Division, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, East Street Cherry Park, Chaoyang District, Beijing, 100029, P. R. China.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 10029, China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
8
|
Trends in Drug- and Vaccine-based Dissolvable Microneedle Materials and Methods of Fabrication. Eur J Pharm Biopharm 2022; 173:54-72. [DOI: 10.1016/j.ejpb.2022.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/24/2022] [Accepted: 02/19/2022] [Indexed: 12/18/2022]
|
9
|
Berzosa M, Nemeskalova A, Zúñiga-Ripa A, Salvador-Bescós M, Larrañeta E, Donnelly RF, Gamazo C, Irache JM. Immune Response after Skin Delivery of a Recombinant Heat-Labile Enterotoxin B Subunit of Enterotoxigenic Escherichia coli in Mice. Pharmaceutics 2022; 14:pharmaceutics14020239. [PMID: 35213971 PMCID: PMC8875158 DOI: 10.3390/pharmaceutics14020239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections have been identified as a major cause of acute diarrhoea in children in developing countries, associated with substantial morbidity and mortality rates. Additionally, ETEC remains the most common cause of acute diarrhea of international travellers to endemic areas. The heat-labile toxin (LT) is a major virulence factor of ETEC, with a significant correlation between the presence of antibodies against LT and protection in infected patients. In the present work, we constructed a recombinant LTB unit (rLTB) and studied the capacity of this toxoid incorporated in microneedles (rLTB-MN) to induce a specific immune response in mice. MN were prepared from aqueous blends of the polymer Gantrez AN® [poly (methyl vinyl ether-co-maleic anhydride)], which is not cytotoxic and has been shown to possess immunoadjuvant properties. The mechanical and dissolution properties of rLTB-MNs were evaluated in an in vitro Parafilm M® model and in mice and pig skin ex vivo models. The needle insertion ranged between 378 µm and 504 µm in Parafilm layers, and MNs fully dissolved within 15 min of application inside porcine skin. Moreover, female and male BALB/c mice were immunized through ear skin with one single dose of 5 μg·rLTB in MNs, eliciting significant fecal anti-LT IgA antibodies, higher in female than in male mice. Moreover, we observed an enhanced production of IL-17A by spleen cells in the immunized female mice, indicating a mucosal non-inflammatory and neutralizing mediated response. Further experiments will now be required to validate the protective capacity of this new rLTB-MN formulation against this deadly non-vaccine-preventable disease.
Collapse
Affiliation(s)
- Melibea Berzosa
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Alzbeta Nemeskalova
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Amaia Zúñiga-Ripa
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Miriam Salvador-Bescós
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
| | - Eneko Larrañeta
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.L.); (R.F.D.)
| | - Ryan F. Donnelly
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (E.L.); (R.F.D.)
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Institute of Tropical Health, IDISNA, University of Navarra, 31008 Pamplona, Spain; (M.B.); (A.N.); (A.Z.-R.); (M.S.-B.)
- Correspondence: (C.G.); (J.M.I.)
| | - Juan M. Irache
- Department of Pharmacy and Pharmaceutical Technology, University of Navarra, 31008 Pamplona, Spain
- Correspondence: (C.G.); (J.M.I.)
| |
Collapse
|
10
|
Abstract
The current situation, heavily influenced by the ongoing pandemic, puts vaccines back into the spotlight. However, the conventional and traditional vaccines present disadvantages, particularly related to immunogenicity, stability, and storage of the final product. Often, such products require the maintenance of a “cold chain,” impacting the costs, the availability, and the distribution of vaccines. Here, after a recall of the mode of action of vaccines and the types of vaccines currently available, we analyze the past, present, and future of vaccine formulation. The past focuses on conventional formulations, the present discusses the use of nanoparticles for vaccine delivery and as adjuvants, while the future presents microneedle patches as alternative formulation and administration route. Finally, we compare the advantages and disadvantages of injectable solutions, nanovaccines, and microneedles in terms of efficacy, stability, and patient-friendly design. Different approaches to vaccine formulation development, the conventional vaccine formulations from the past, the current development of lipid nanoparticles as vaccines, and the near future microneedles formulations are discussed in this review. ![]()
Collapse
|
11
|
Korkmaz E, Balmert SC, Carey CD, Erdos G, Falo LD. Emerging skin-targeted drug delivery strategies to engineer immunity: A focus on infectious diseases. Expert Opin Drug Deliv 2021; 18:151-167. [PMID: 32924651 PMCID: PMC9355143 DOI: 10.1080/17425247.2021.1823964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Infectious pathogens are global disrupters. Progress in biomedical science and technology has expanded the public health arsenal against infectious diseases. Specifically, vaccination has reduced the burden of infectious pathogens. Engineering systemic immunity by harnessing the cutaneous immune network has been particularly attractive since the skin is an easily accessible immune-responsive organ. Recent advances in skin-targeted drug delivery strategies have enabled safe, patient-friendly, and controlled deployment of vaccines to cutaneous microenvironments for inducing long-lived pathogen-specific immunity to mitigate infectious diseases, including COVID-19. AREAS COVERED This review briefly discusses the basics of cutaneous immunomodulation and provides a concise overview of emerging skin-targeted drug delivery systems that enable safe, minimally invasive, and effective intracutaneous administration of vaccines for engineering systemic immune responses to combat infectious diseases. EXPERT OPINION In-situ engineering of the cutaneous microenvironment using emerging skin-targeted vaccine delivery systems offers remarkable potential to develop diverse immunization strategies against pathogens. Mechanistic studies with standard correlates of vaccine efficacy will be important to compare innovative intracutaneous drug delivery strategies to each other and to existing clinical approaches. Cost-benefit analyses will be necessary for developing effective commercialization strategies. Significant involvement of industry and/or government will be imperative for successfully bringing novel skin-targeted vaccine delivery methods to market for their widespread use.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen C. Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D. Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA,UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA,The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Amani H, Shahbazi MA, D'Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic applications. J Control Release 2020; 330:185-217. [PMID: 33340568 DOI: 10.1016/j.jconrel.2020.12.019] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Immunotherapy has recently garnered plenty of attention to improve the clinical outcomes in the treatment of various diseases. However, owing to the dynamic nature of the immune system, this approach has often been challenged by concerns regarding the lack of adequate long-term responses in patients. The development of microneedles (MNs) has resulted in the improvement and expansion of immuno-reprogramming strategies due to the housing of high accumulation of dendritic cells, macrophages, lymphocytes, and mast cells in the dermis layer of the skin. In addition, MNs possess many outstanding properties, such as the ability for the painless traverse of the stratum corneum, minimal invasiveness, facile fabrication, excellent biocompatibility, convenient administration, and bypassing the first pass metabolism that allows direct translocation of therapeutics into the systematic circulation. These advantages make MNs excellent candidates for the delivery of immunological biomolecules to the dermal antigen-presenting cells in the skin with the aim of vaccinating or treating different diseases, such as cancer and autoimmune disorders, with minimal invasiveness and side effects. This review discusses the recent advances in engineered MNs and tackles limitations relevant to traditional immunotherapy of various hard-to-treat diseases.
Collapse
Affiliation(s)
- Hamed Amani
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Carmine D'Amico
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Samin Abbaszadeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
13
|
Hettinga J, Carlisle R. Vaccination into the Dermal Compartment: Techniques, Challenges, and Prospects. Vaccines (Basel) 2020; 8:E534. [PMID: 32947966 PMCID: PMC7564253 DOI: 10.3390/vaccines8030534] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
In 2019, an 'influenza pandemic' and 'vaccine hesitancy' were listed as two of the top 10 challenges to global health by the WHO. The skin is a unique vaccination site, due to its immune-rich milieu, which is evolutionarily primed to respond to challenge, and its ability to induce both humoral and cellular immunity. Vaccination into this dermal compartment offers a way of addressing both of the challenges presented by the WHO, as well as opening up avenues for novel vaccine formulation and dose-sparing strategies to enter the clinic. This review will provide an overview of the diverse range of vaccination techniques available to target the dermal compartment, as well as their current state, challenges, and prospects, and touch upon the formulations that have been developed to maximally benefit from these new techniques. These include needle and syringe techniques, microneedles, DNA tattooing, jet and ballistic delivery, and skin permeabilization techniques, including thermal ablation, chemical enhancers, ablation, electroporation, iontophoresis, and sonophoresis.
Collapse
Affiliation(s)
| | - Robert Carlisle
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
14
|
Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, Vecchione R, Netti PA. Progress in Microneedle-Mediated Protein Delivery. J Clin Med 2020; 9:E542. [PMID: 32079212 PMCID: PMC7073601 DOI: 10.3390/jcm9020542] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for patient-compliance therapies in recent years has led to the development of transdermal drug delivery, which possesses several advantages compared with conventional methods. Delivering protein through the skin by transdermal patches is extremely difficult due to the presence of the stratum corneum which restricts the application to lipophilic drugs with relatively low molecular weight. To overcome these limitations, microneedle (MN) patches, consisting of micro/miniature-sized needles, are a promising tool to perforate the stratum corneum and to release drugs and proteins into the dermis following a non-invasive route. This review investigates the fabrication methods, protein delivery, and translational considerations for the industrial scaling-up of polymeric MNs for dermal protein delivery.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Zahra Baghban Taraghdari
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | | | - Pooyan Makvandi
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
- Institute for polymers, Composites and biomaterials (IPCB), National research council (CNR), 80125 Naples, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, P.O. Box: 61537-53843, Ahvaz, Iran
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| |
Collapse
|