1
|
Samiei-Abianeh H, Nazarian S, Kordbacheh E, Felegary A. Recombinant receptor-binding motif of spike COVID-19 vaccine candidate induces SARS-CoV-2 neutralizing antibody response. BIOIMPACTS : BI 2024; 15:30520. [PMID: 40256231 PMCID: PMC12008496 DOI: 10.34172/bi.30520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 04/22/2025]
Abstract
Introduction The SARS-CoV-2 pandemic necessitates effective therapeutic solutions. The receptor-binding motif (RBM) is a subdomain of the spike protein's receptor-binding domain (RBD) and is critical for facilitating the binding of SARS-CoV-2 to the human ACE2 receptor. This study investigates the use of the receptor-binding motif (RBM) domain as an immunogen to produce potent neutralizing antibodies against SARS-CoV-2. Methods The RBM gene was codon-optimized and cloned into the pET17b vector for expression in E. coli BL21 (DE3) cells, induced with 1 mM IPTG. The recombinant RBM protein was purified using Ni-NTA affinity chromatography. After validating the recombinant RBM by Western blotting with anti-His tag antibodies, BALB/c mice were immunized with 20 µg of the purified RBM protein. Anti-RBM IgG was subsequently purified using protein G resin, and its neutralizing capacity was assessed using the Pishtaz Teb Zaman Neutralization Assay Kit. Results The recombinant RBM protein, with a molecular weight of 10 kDa, was expressed as inclusion bodies. the typical yield of purification was 27 mg/L of bacterial culture. The neutralization test demonstrated a concentration of 36 µg/mL of neutralizing antibodies in the immunized serum, preventing the spike protein from binding to ACE2. Conclusion Our study demonstrated that anti-RBM antibodies exhibited neutralization effects on SARS-CoV-2. These findings provide evidence for the development of a vaccine candidate through the induction of antibodies against the RBM, necessitating further studies with adjuvants suitable for human use to evaluate its potential for human vaccination.
Collapse
Affiliation(s)
- Hossein Samiei-Abianeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Emad Kordbacheh
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | - Alireza Felegary
- Department of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| |
Collapse
|
2
|
Dwivedi M, Devi SS, Singh S, Trivedi M, Hussain N, Yadav S, Dubey KD. Phytocompounds as versatile drug-leads targeting mProtease in the SARS-CoV-2 virus: insights from a molecular dynamics study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2528-2548. [PMID: 39264734 DOI: 10.1080/09205063.2024.2385138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 09/14/2024]
Abstract
SARS-CoV-2 is one of the deadly outbreaks in the present era and still showing its presence around the globe. Researchers have produced various vaccines that offer protection against infection, but we have not yet found a cure for COVID-19. Currently, efforts are focused on identifying effective therapeutic approaches to treat this infectious disease. In the present work, we investigated the main protease (Mpro) protein, a crucial component in SARS-CoV-2 viral particle formation, as a drug target and proposed phytocompounds with therapeutic potential against SARS-CoV-2. Initially, several plant-based resources were exploited to screen around one thousand phytocompounds and further their physiochemical characterization and assessment of drug likeliness were performed using SwissADME. Eventually, we screened 95 compounds based on docking analysis using AutoDock Vina. Five compounds were selected having the highest affinity for Mpro for the analysis of ligand-receptor interaction using molecular dynamic (MD) simulation. Docking and MD simulation studies elucidated the promising stable interaction of selected 5 ligands with Mpro. During MD simulation of 100 ns, Abacopterin F showed the lowest binding energy (-37.13 kcal/mol) with the highest affinity towards Mpro and this compound may be proposed as a lead molecule for further investigation. This interaction may result in modulation of the Mpro activity, consequently leading to hindrance in viral particle formation. However, in-vitro and in-vivo experimental validation would be needed to process the selected phytomolecules as a therapeutic lead against SARS-CoV-2.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
- Research Cell, Amity University Uttar Pradesh, Lucknow, India
| | - Sreevidya S Devi
- Mar Athanasios College for Advanced Studies, Thiruvalla, Kerala, India
| | - Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Shalini Yadav
- Department of Chemistry, Shiv Nadar University, Greater Noida, India
| | | |
Collapse
|
3
|
Nimer NA, Nimer SN. Immunization against Medically Important Human Coronaviruses of Public Health Concern. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:9952803. [PMID: 38938549 PMCID: PMC11208815 DOI: 10.1155/2024/9952803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
SARS-CoV-2 is a virus that affects the human immune system. It was observed to be on the rise since the beginning of 2020 and turned into a life-threatening pandemic. Scientists have tried to develop a possible preventive and therapeutic drug against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and other related coronaviruses by assessing COVID-19-recovered persons' immunity. This study aims to review immunization against SARS-CoV-2, along with exploring the interventions that have been developed for the prevention of SARS-CoV-2. This study also highlighted the role of phototherapy in treating SARS-CoV infection. The study adopted a review approach to gathering the information available and the progress that has been made in the treatment and prevention of COVID-19. Various vaccinations, including nucleotide, subunit, and vector-based vaccines, as well as attenuated and inactivated forms that have already been shown to have prophylactic efficacy against the Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV, have been summarized. Neutralizing and non-neutralizing antibodies are all associated with viral infections. Because there is no specific antiviral vaccine or therapies for coronaviruses, the main treatment strategy is supportive care, which is reinforced by combining broad-spectrum antivirals, convalescent plasma, and corticosteroids. COVID-19 has been a challenge to keep reconsidering the usual approaches to regulatory evaluation as a result of getting mixed and complicated findings on the vaccines, as well as licensing procedures. However, it is observed that medicinal herbs also play an important role in treating infection of the upper respiratory tract, the principal symptom of SARS-CoV due to their natural bioactive composite. However, some Traditional Chinese Medicines contain mutagens and nephrotoxins and the toxicological properties of the majority of Chinese herbal remedies are unknown. Therefore, to treat the COVID-19 infection along with conventional treatment, it is recommended that herb-drug interaction be examined thoroughly.
Collapse
Affiliation(s)
- Nabil A. Nimer
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Seema N. Nimer
- School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Ghaedamini H, Khalaf K, Kim DS, Tang Y. A novel ACE2-Based electrochemical biosensor for sensitive detection of SARS-CoV-2. Anal Biochem 2024; 689:115504. [PMID: 38458306 DOI: 10.1016/j.ab.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 emerged in late 2019 and quickly spread globally, resulting in significant morbidity, mortality, and socio-economic disruptions. As of now, collaborative global efforts in vaccination and the advent of novel diagnostic tools have considerably curbed the spread and impact of the virus in many regions. Despite this progress, the demand remains for low-cost, accurate, rapid and scalable diagnostic tools to reduce the influence of SARS-CoV-2. Herein, the angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2, was immobilized on two types of electrodes, a screen-printed gold electrode (SPGE) and a screen-printed carbon electrode (SPCE), to develop electrochemical biosensors for detecting SARS-CoV-2 with high sensitivity and selectivity. This was achieved by using 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) and aryl diazonium salt serving as linkers for SPGEs and SPCEs, respectively. Once SARS-CoV-2 was anchored onto the ACE2, the interaction of the virus with the redox probe was analyzed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Aryl diazonium salt was observed as a superior linker compared to PFDT due to its consistent performance in the modification of the SPCEs and effective ACE2 enzyme immobilization. A distinct pair of redox peaks in the cyclic voltammogram of the biosensor modified with aryl diazonium salt highlighted the redox reaction between the functional groups of SARS-CoV-2 and the redox probe. The sensor presented a linear relationship between the redox response and the logarithm of SARS-CoV-2 concentration, with a detection limit of 1.02 × 106 TCID50/mL (50% tissue culture infectious dose). Furthermore, the biosensor showed remarkable selectivity towards SARS-CoV-2 over H1N1virus.
Collapse
Affiliation(s)
| | - Khalid Khalaf
- Department of Bioengineering, University of Toledo, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, USA
| | - Yuan Tang
- Department of Bioengineering, University of Toledo, USA.
| |
Collapse
|
5
|
Jiang Y, Wu Y, Wang J, Ma Y, Yu H, Wang Z. Fragment-based Drug Discovery Strategy and its Application to the Design of SARS-CoV-2 Main Protease Inhibitor. Curr Med Chem 2024; 31:6204-6226. [PMID: 38529602 DOI: 10.2174/0109298673294251240229070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (Mpro) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of Mpro inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Yu Jiang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yingnan Wu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Hui Yu
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
6
|
Najimi N, Kadi C, Elmtili N, Seghrouchni F, Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum Antibodies 2024; 32:85-106. [PMID: 38758995 DOI: 10.3233/hab-230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Following infection and vaccination against SARS-CoV-2, humoral components of the adaptive immune system play a key role in protecting the host. Specifically, B cells generate high-affinity antibodies against various antigens of the virus. In this review, we discuss the mechanisms of immunity initiation through both natural infection and vaccination, shedding light on the activation of B cell subsets in response to SARS-CoV-2 infection and vaccination. The innate immune system serves as the initial line of primary and nonspecific defence against viruses. However, within several days following infection or a vaccine dose, a virus-specific immune response is initiated, primarily by B cells that produce antibodies. These antibodies contribute to the resolution of the disease. Subsequently, these B cells transition into memory B cells, which play a crucial role in providing long-term immunity against the virus. CD4+ T helper cells initiate a cascade, leading to B cell somatic hypermutation, germinal center memory B cells, and the production of neutralizing antibodies. B-cell dysfunction can worsen disease severity and reduce vaccine efficacy. Notably, individuals with B cell immunodeficiency show lower IL-6 production. Furthermore, this review delves into several aspects of immune responses, such as hybrid immunity, which has shown promise in boosting broad-spectrum protection. Cross-reactive immunity is under scrutiny as well, as pre-existing antibodies can offer protection against the disease. We also decipher breakthrough infection mechanisms, especially with the novel variants of the virus. Finally, we discuss some potential therapeutic solutions regarding B cells including convalescent plasma therapy, B-1 cells, B regulatory cell (Breg) modulation, and the use of neutralizing monoclonal antibodies in combating the infection. Ongoing research is crucial to grasp population immunity trends and assess the potential need for booster doses in maintaining effective immune responses against potential viral threats.
Collapse
Affiliation(s)
- Nouhaila Najimi
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Chaimae Kadi
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Noureddine Elmtili
- Laboratory of Biology and Health, Faculty of Sciences of Tétouan, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Fouad Seghrouchni
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Youssef Bakri
- Laboratory of Human Pathologies Biology and Center of Genomic of Human Pathologies Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
7
|
Jiang H, Zhou Y, Zou X, Hu X, Wang J, Zeng P, Li W, Zeng X, Zhang J, Li J. Evaluation of the Inhibition Potency of Nirmatrelvir against Main Protease Mutants of SARS-CoV-2 Variants. Biochemistry 2023; 62:2055-2064. [PMID: 37222536 DOI: 10.1021/acs.biochem.3c00075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
SARS-CoV-2 continues to pose a threat to public health. Main protease (Mpro) is one of the most lucrative drug targets for developing specific antivirals against SARS-CoV-2 infection. By targeting Mpro, peptidomimetic nirmatrelvir is able to inhibit viral replication of SARS-CoV-2 and reduce the risk for progression to severe COVID-19. However, multiple mutations in the gene encoding Mpro of emerging SARS-CoV-2 variants raise a concern of drug resistance. In the present study, we expressed 16 previously reported SARS-CoV-2 Mpro mutants (G15S, T25I, T45I, S46F, S46P, D48N, M49I, L50F, L89F, K90R, P132H, N142S, V186F, R188K, T190I, and A191V). We evaluated the inhibition potency of nirmatrelvir against these Mpro mutants and solved the crystal structures of representative Mpro mutants of SARS-CoV-2 bound to nirmatrelvir. Enzymatic inhibition assays revealed that these Mpro variants remain susceptible to nirmatrelvir as the wildtype. Detailed analysis and structural comparison provided the inhibition mechanism of Mpro mutants by nirmatrelvir. These results informed the ongoing genomic surveillance of drug resistance of emerging SARS-CoV-2 variants to nirmatrelvir and facilitate the development of next-generation anticoronavirus drugs.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Yanru Zhou
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Xiaofang Zou
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen 518118, China
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou 341000, China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Jie Wang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen 518118, China
| | - Pei Zeng
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen 518118, China
| | - Wenwen Li
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen 518118, China
| | - Xiangyi Zeng
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen 518118, China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
8
|
Akintunde TY, Chen JK, Ibrahim E, Isangha SO, Sayibu M, Musa TH. Factors associated with COVID-19 vaccine uptake among foreign migrants in China. Heliyon 2023; 9:e17567. [PMID: 37533745 PMCID: PMC10292914 DOI: 10.1016/j.heliyon.2023.e17567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND/PURPOSE The COVID-19 outbreak created unique policy challenges for vaccinating special groups like migrants. As part of sustainable development goals, the equitable distribution of the COVID-19 vaccine can contribute to ensuring health for all. This study examined COVID-19 vaccine uptake among foreign migrants in China based on sociodemographics, cultural beliefs, past vaccine behaviors, and psychosocial factors. DESIGN An online cross-sectional survey was conducted among foreign migrants in mainland China via social media platforms from 21 November through 20 December 2021. Bivariate (unadjusted odd-ratio) and multivariate logistic regression analyses were performed to establish the correlates of COVID-19 vaccine uptake. RESULT Surveyed foreign migrants that are culture neutral (AOR: 2.5, CI: 95%, 1.02-5.90, p = 0.044), willing to pay for vaccination (AOR: 2.27, CI: 95%, 1.18-3.98, p = 0.012), believe in vaccine efficacy (AOR: 3.00, CI: 95%, 1.75-5.16, p < 0.000), have poor psychological health (AOR: 1.96, CI: 95%, 1.14-3.38, p = 0 0.014), and have higher perceived seriousness of COVID-19 (AOR: 2.12, CI: 95%, 1.26-3.57, p = 0.005) are more likely to receive COVID-19 vaccine. Those migrants with a history of declining vaccination (AOR: 0.34, CI: 95%, 0.18-0.65, p = 0.000) and middle-income earners $1701-3500 (AOR: 0.43, CI: 95%, 0.23-0.82, p = 0.010) are less likely to receive the COVID-19 vaccine. CONCLUSION This study brings a unique perspective to understanding vaccine behavior among international migrants in China. There is an urgent call from the World Health Organization and countries for complete vaccination and efforts to improve vaccine coverage. However, fewer studies have been conducted globally on the vaccination of migrant populations. The current study provides empirical information to increase the knowledge of the correlates of vaccine behavior among immigrants in countries around the globe. Future studies should conduct cross-country comparisons to understand the factors associated with increasing vaccination rates among immigrant populations to formulate a strong policy to increase vaccine coverage among immigrant populations across countries.
Collapse
Affiliation(s)
- Tosin Yinka Akintunde
- Department of Sociology, School of Public Administration, Hohai University, China
- Department of Social Work, Chinese University of Hong Kong, Hong Kong
| | - Ji-Kang Chen
- Department of Social Work, Chinese University of Hong Kong, Hong Kong
| | - Elhakim Ibrahim
- Department of Demography, College for Health, Community and Policy, The University of Texas, San Antonio, TX, United States
| | - Stanley Oloji Isangha
- Department of Social and Behavioral Sciences, College of Liberal Art and Social Sciences, City University of Hong Kong, Hong Kong
| | - Muhideen Sayibu
- Department of Sci-Tech Communication and Policy, University of Science and Technology of China, Anhui, Hefei, China
| | - Taha Hussein Musa
- Department of Epidemiology and Health Statistics, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Citta Nirmala E, Sudjarwo SA, Kuncorojakti S, Puspitasari H, A’la R, Yasmin Wijaya A, Susilowati H, Diyantoro D, Triakoso N, Setiawan B, Eru Wibowo A, Abdul Rantam F. The response of CD59 NK cell and IL-6 level in Cynomolgus macaque immunized with inactivated SARS-CoV-2 vaccine candidate. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2023:2847-2853. [DOI: 10.52711/0974-360x.2023.00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Vaccination is deemed the best approach against the COVID-19 pandemic. In regard of safety and protectivity, the whole inactivated vaccine platform is advantageous and widely used. Whole inactivated vaccine provides broader protection against various antigenic components of SARS-CoV-2. This study aims to analyze the immune response of cynomolgus macaques (Macaca fascicularis) following inactivated SARS-CoV-2 vaccine administration. The analysis utilized the flow cytometry and enzyme-linked immunosorbent assay to evaluate CD59 NK cell expression and serum IL-6 level. This research used 6 macaques which were divided into 2 groups: Adult and Adolescence. Each group was consisted of 3 macaques. The macaques received two doses of 3 µg of inactivated SARS-CoV-2 vaccine with 21 days interval between first and second dose. CD59 and IL-6 level were measured before the first vaccination (D0), 21 days post-vaccination but before second dose (D21), and 14 days after the second dose (D35). The result showed significant escalation (p ≤ 0.05) of CD59 NK cell expression between D0, D21, and D35 in both adult and adolescence macaques. Higher expression of CD59 NK cell was found in adult macaques compared to adolescence macaques. Meanwhile, the level of IL-6 remained constant (p > 0.05) throughout D0, D21, and D35 in both groups. In conclusion, the inactivated SARS-CoV-2 vaccine candidate can increase CD59 NK cell expression significantly, while IL-6 level was mildly elevated although the differences were insignificant.
Collapse
Affiliation(s)
- Eugenia Citta Nirmala
- Master’s Student, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Sri Agus Sudjarwo
- Pharmacology Laboratory, Division of Basic Veterinary Science, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Suryo Kuncorojakti
- Histology Laboratory, Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Heni Puspitasari
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Rofiqul A’la
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Andi Yasmin Wijaya
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Helen Susilowati
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Diyantoro Diyantoro
- Department of Health Science, Faculty of Vocational Studies, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Nusdianto Triakoso
- Internal Medicine Department, Airlangga University Animal Hospital, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Boedi Setiawan
- Clinical Surgery Department, Airlangga University Animal Hospital, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| | - Agung Eru Wibowo
- National Research and Innovation Agency, Central Jakarta, Jakarta, 10340, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology Laboratory, Division of Microbiology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, East Java, 60115, Indonesia
| |
Collapse
|
10
|
Hu L, Sun J, Wang Y, Tan D, Cao Z, Gao L, Guan Y, Jia X, Mao J. A Review of Inactivated COVID-19 Vaccine Development in China: Focusing on Safety and Efficacy in Special Populations. Vaccines (Basel) 2023; 11:1045. [PMID: 37376434 PMCID: PMC10302808 DOI: 10.3390/vaccines11061045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been widespread globally, and vaccination is critical for preventing further spread or resurgence of the outbreak. Inactivated vaccines made from whole inactivated SARS-CoV-2 virus particles generated in Vero cells are currently the most widely used COVID-19 vaccines, with China being the largest producer of inactivated vaccines. As a result, the focus of this review is on inactivated vaccines, with a multidimensional analysis of the development process, platforms, safety, and efficacy in special populations. Overall, inactivated vaccines are a safe option, and we hope that the review will serve as a foundation for further development of COVID-19 vaccines, thus strengthening the defense against the pandemic caused by SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310030, China; (L.H.); (J.S.); wangyan-@zju.edu.cn (Y.W.); (D.T.); (Z.C.); (L.G.); (Y.G.); (X.J.)
| |
Collapse
|
11
|
Gupta A, Singh AP, Singh VK, Sinha RP. Recent Developments and Future Perspectives of Vaccines and Therapeutic Agents against SARS-CoV2 Using the BCOV_S1_CTD of the S Protein. Viruses 2023; 15:1234. [PMID: 37376534 DOI: 10.3390/v15061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, the virus kept developing and mutating into different variants over time, which also gained increased transmissibility and spread in populations at a higher pace, culminating in successive waves of COVID-19 cases. The scientific community has developed vaccines and antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease. Realizing that growing SARS-CoV-2 variations significantly impact the efficacy of antiviral therapies and vaccines, we summarize the appearance and attributes of SARS-CoV-2 variants for future perspectives in drug design, providing up-to-date insights for developing therapeutic agents targeting the variants. The Omicron variant is among the most mutated form; its strong transmissibility and immune resistance capacity have prompted international worry. Most mutation sites currently being studied are in the BCOV_S1_CTD of the S protein. Despite this, several hurdles remain, such as developing vaccination and pharmacological treatment efficacies for emerging mutants of SARS-CoV-2 strains. In this review, we present an updated viewpoint on the current issues faced by the emergence of various SARS-CoV-2 variants. Furthermore, we discuss the clinical studies conducted to assist the development and dissemination of vaccines, small molecule therapeutics, and therapeutic antibodies having broad-spectrum action against SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinay K Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- University Center for Research & Development (UCRD), Chandigarh University, Chandigarh 140413, India
| |
Collapse
|
12
|
Kakavandi S, Zare I, VaezJalali M, Dadashi M, Azarian M, Akbari A, Ramezani Farani M, Zalpoor H, Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Commun Signal 2023; 21:110. [PMID: 37189112 PMCID: PMC10183699 DOI: 10.1186/s12964-023-01104-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.
Collapse
Affiliation(s)
- Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Maryam VaezJalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Azarian
- Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, Incheon, 22212, Republic of Korea
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Mahboob T, Ismail AA, Shah MR, Rahmatullah M, Paul AK, Pereira MDL, Wiart C, Wilairatana P, Rajagopal M, Dolma KG, Nissapatorn V. Development of SARS-CoV-2 Vaccine: Challenges and Prospects. Diseases 2023; 11:64. [PMID: 37092446 PMCID: PMC10123684 DOI: 10.3390/diseases11020064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/19/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
The WHO declared coronavirus disease 2019 (COVID-19) a pandemic in March 2020, which was caused by novel coronavirus severe acute respiratory coronavirus 2 (SARS-CoV-2). SARS-CoV-2 made its first entry into the world in November 2019, and the first case was detected in Wuhan, China. Mutations in the SARS-CoV-2 genome distressed life in almost every discipline by the extended production of novel viral variants. In this article, authorized SARS-CoV-2 vaccines including mRNA vaccines, DNA vaccines, subunit vaccines, inactivated virus vaccines, viral vector vaccine, live attenuated virus vaccines and mix and match vaccines will be discussed based on their mechanism, administration, storage, stability, safety and efficacy. The information was collected from various journals via electronic searches including PubMed, Science Direct, Google Scholar and the WHO platform. This review article includes a brief summary on the pathophysiology, epidemiology, mutant variants and management strategies related to COVID-19. Due to the continuous production and unsatisfactory understanding of novel variants of SARS-CoV-2, it is important to design an effective vaccine along with long-lasting protection against variant strains by eliminating the gaps through practical and theoretical knowledge. Consequently, it is mandatory to update the literature through previous and ongoing trials of vaccines tested among various ethnicities and age groups to gain a better insight into management strategies and combat complications associated with upcoming novel variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Tooba Mahboob
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1209, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia
| | - Maria de Lourdes Pereira
- CICECO—Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, University Malaysia, Sabah 88400, Malaysia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, Sikkim, India
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
14
|
Rosseto-Welter EA, Rodrigues SS, de Figueiredo AB, França CN, Oliveira DBL, Bachi ALL, do Amaral JB, Siqueira RA, Bento LC, da Silva AP, Bacal NS, Dos Santos Ferreira CE, Mangueira CLP, Pinho JRR. Cellular and Humoral Immune Responses to Vaccination for COVID-19 Are Negatively Impacted by Senescent T Cells: A Case Report. Vaccines (Basel) 2023; 11:vaccines11040840. [PMID: 37112752 PMCID: PMC10143893 DOI: 10.3390/vaccines11040840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Herein, we aimed to follow up on the cellular and humoral immune responses of a group of individuals who initially received the CoronaVac vaccine, followed by a booster with the Pfizer vaccine. METHODS Blood samples were collected: before and 30 days after the first CoronaVac dose; 30, 90, and 180 days after the second CoronaVac dose, and also 20 days after the booster with the Pfizer vaccine. RESULTS Whilst the positivity to gamma interferon-type cellular response increased after the first CoronaVac dose, neutralizing and IgG antibody levels only raised 30 days after the second dose, followed by a drop in these responses after 90 and 180 days. The booster with the Pfizer vaccine elicited a robust cellular and humoral response. A higher number of double-negative and senescent T cells, as well as increased pro-inflammatory cytokines levels were found in the participants with lower humoral immune responses. CONCLUSION CoronaVac elicited an early cellular response, followed by a humoral response, which dropped 90 days after the second dose. The booster with the Pfizer vaccine significantly enhanced these responses. Furthermore, a pro-inflammatory systemic status was found in volunteers who presented senescent T cells, which could putatively impair the immune response to vaccination.
Collapse
Affiliation(s)
| | | | | | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University, São Paulo 04829-300, Brazil
| | - Danielle Bruna Leal Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Departmento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | | | - Jônatas Bussador do Amaral
- ENT Research Lab., Department of Otorhinolaryngology Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | | | | | | | | | | | | | - João Renato Rebello Pinho
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- LIM 03/07, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
15
|
Triveri A, Casali E, Frasnetti E, Doria F, Frigerio F, Cinquini F, Pavoni S, Moroni E, Marchetti F, Serapian SA, Colombo G. Conformational Behavior of SARS-Cov-2 Spike Protein Variants: Evolutionary Jumps in Sequence Reverberate in Structural Dynamic Differences. J Chem Theory Comput 2023; 19:2120-2134. [PMID: 36926878 PMCID: PMC10029694 DOI: 10.1021/acs.jctc.3c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
SARS-CoV-2 has evolved rapidly in the first 3 years of pandemic diffusion. The initial evolution of the virus appeared to proceed through big jumps in sequence changes rather than through the stepwise accumulation of point mutations on already established variants. Here, we examine whether this nonlinear mutational process reverberates in variations of the conformational dynamics of the SARS-CoV-2 Spike protein (S-protein), the first point of contact between the virus and the human host. We run extensive microsecond-scale molecular dynamics simulations of seven distinct variants of the protein in their fully glycosylated state and set out to elucidate possible links between the mutational spectrum of the S-protein and the structural dynamics of the respective variant, at global and local levels. The results reveal that mutation-dependent structural and dynamic modulations mostly consist of increased coordinated motions in variants that acquire stability and in an increased internal flexibility in variants that are less stable. Importantly, a limited number of functionally important substructures (the receptor binding domain, in particular) share the same time of movements in all variants, indicating efficient preorganization for functional regions dedicated to host interactions. Our results support a model in which the internal dynamics of the S-proteins from different strains varies in a way that reflects the observed random and non-stepwise jumps in sequence evolution, while conserving the functionally oriented traits of conformational dynamics necessary to support productive interactions with host receptors.
Collapse
Affiliation(s)
- Alice Triveri
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Emanuele Casali
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Elena Frasnetti
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Filippo Doria
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D
Eni SpA, via Maritano 27, 20097 San Donato Milanese (Mi),
Italy
| | - Fabrizio Cinquini
- Upstream & Technical
Services—TECS/STES—Eni Spa, via Emilia 1, 20097 San Donato
Milanese (Mi), Italy
| | - Silvia Pavoni
- Department of Physical Chemistry, R&D
Eni SpA, via Maritano 27, 20097 San Donato Milanese (Mi),
Italy
| | | | - Filippo Marchetti
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Stefano A. Serapian
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| | - Giorgio Colombo
- Dipartimento di Chimica,
Università di Pavia, via Taramelli 12, 27100 Pavia,
Italy
| |
Collapse
|
16
|
de Andrade IA, Franca LV, Kauffmann CM, Maeda MHK, Koyama LHH, Hamann PRV, Lopes-Luz L, Fogaça MBT, de Camargo BR, Ribeiro BM, Bührer-Sékula S, Nagata T. Practical use of tobravirus-based vector to produce SARS-CoV-2 antigens in plants. J Virol Methods 2023; 315:114710. [PMID: 36914098 PMCID: PMC10008036 DOI: 10.1016/j.jviromet.2023.114710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
A plant-based heterologous expression system is an attractive option for recombinant protein production because it is based on a eukaryotic system of high feasibility, and low biological risks. Frequently, binary vector systems are used for transient gene-expression in plants. However, plant virus vector-based systems offer advantages for higher protein yields due to their self-replicating machinery. In the present study, we show an efficient protocol using a plant virus vector based on a tobravirus, pepper ringspot virus, that was employed for transient expression of severe acute respiratory syndrome coronavirus 2 partial gene fragments of the spike (named S1-N) and the nucleocapsid (named N) proteins in Nicotiana benthamiana plants. Purified proteins yield of 40~60µg/g of fresh leaves were obtained. Both proteins, S1-N and N, showed high and specific reactivities against convalescent patients' sera by the enzyme-linked immunosorbent assay format. The advantages and critical points in using this plant virus vector are discussed. DATA AVAILABILITY: All data generated and analyzed during this study are included in this published article and supporting materials.
Collapse
Affiliation(s)
- Ikaro Alves de Andrade
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Pós-graduação em Biologia Microbiana, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Luísa Valério Franca
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Caterynne Melo Kauffmann
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Pós-graduação em Fitopatologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Matheus Hideki Kihara Maeda
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Lucas Hideo Hataka Koyama
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Pedro Ricardo Vieira Hamann
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Leonardo Lopes-Luz
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Matheus Bernardes Torres Fogaça
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Brenda Rabello de Camargo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Bergmann Morais Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Samira Bührer-Sékula
- Laboratório de Desenvolvimento e Produção de Testes Rápidos, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Pós-graduação em Biologia Microbiana, Universidade de Brasília, Brasília, DF, 70910-900, Brazil; Pós-graduação em Fitopatologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
17
|
Systematic Guidelines for Effective Utilization of COVID-19 Databases in Genomic, Epidemiologic, and Clinical Research. Viruses 2023; 15:v15030692. [PMID: 36992400 PMCID: PMC10059256 DOI: 10.3390/v15030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
The pandemic has led to the production and accumulation of various types of data related to coronavirus disease 2019 (COVID-19). To understand the features and characteristics of COVID-19 data, we summarized representative databases and determined the data types, purpose, and utilization details of each database. In addition, we categorized COVID-19 associated databases into epidemiological data, genome and protein data, and drug and target data. We found that the data present in each of these databases have nine separate purposes (clade/variant/lineage, genome browser, protein structure, epidemiological data, visualization, data analysis tool, treatment, literature, and immunity) according to the types of data. Utilizing the databases we investigated, we created four queries as integrative analysis methods that aimed to answer important scientific questions related to COVID-19. Our queries can make effective use of multiple databases to produce valuable results that can reveal novel findings through comprehensive analysis. This allows clinical researchers, epidemiologists, and clinicians to have easy access to COVID-19 data without requiring expert knowledge in computing or data science. We expect that users will be able to reference our examples to construct their own integrative analysis methods, which will act as a basis for further scientific inquiry and data searching.
Collapse
|
18
|
Lim CP, Kok BH, Lim HT, Chuah C, Abdul Rahman B, Abdul Majeed AB, Wykes M, Leow CH, Leow CY. Recent trends in next generation immunoinformatics harnessed for universal coronavirus vaccine design. Pathog Glob Health 2023; 117:134-151. [PMID: 35550001 PMCID: PMC9970233 DOI: 10.1080/20477724.2022.2072456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has globally devastated public health, the economies of many countries and quality of life universally. The recent emergence of immune-escaped variants and scenario of vaccinated individuals being infected has raised the global concerns about the effectiveness of the current available vaccines in transmission control and disease prevention. Given the high rate mutation of SARS-CoV-2, an efficacious vaccine targeting against multiple variants that contains virus-specific epitopes is desperately needed. An immunoinformatics approach is gaining traction in vaccine design and development due to the significant reduction in time and cost of immunogenicity studies and increasing reliability of the generated results. It can underpin the development of novel therapeutic methods and accelerate the design and production of peptide vaccines for infectious diseases. Structural proteins, particularly spike protein (S), along with other proteins have been studied intensively as promising coronavirus vaccine targets. Numbers of promising online immunological databases, tools and web servers have widely been employed for the design and development of next generation COVID-19 vaccines. This review highlights the role of immunoinformatics in identifying immunogenic peptides as potential vaccine targets, involving databases, and prediction and characterization of epitopes which can be harnessed for designing future coronavirus vaccines.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia.,Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Health Sciences, Universiti Teknologi MARA, Penang, Malaysia
| | | | | | - Michelle Wykes
- Molecular Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
19
|
Dawood AA. The efficacy of Paxlovid against COVID-19 is the result of the tight molecular docking between M pro and antiviral drugs (nirmatrelvir and ritonavir). Adv Med Sci 2023; 68:1-9. [PMID: 36368287 PMCID: PMC9626444 DOI: 10.1016/j.advms.2022.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Purpose Currently, a number of medications for coronavirus disease 2019 (COVID-19) treatment are tested in clinical trials; however, credible clinical studies are becoming increasingly difficult to come by. Paxlovid is a ritonavir-boosted nirmatrelvir drug that the U.S. Food and Drug Administration (FDA) authorized for the treatment of COVID-19. This study aimed to demonstrate the interaction of nirmatrelvir and ritonavir on the active site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). Materials and methods To locate the optimal docking between Mpro and antiviral drugs, and to conduct dynamic simulations between atoms in the fusion areas, various bioinformatics and mathematical equations were applied. Results According to the docking data, nirmatrelvir has a stronger interaction with Mpro than ritonavir, which has more multiple bonds. Molecular docking of antiviral drugs such as Paxlovid has a significant impact on the treatment of COVID-19 virus. Conclusions According to this study, Paxlovid may work on new strains, including Omicron, because the Mpro mutation P132H in the Omicron variant has no direct effect on the protein.
Collapse
|
20
|
Silva BR, Monteiro FR, Cezário K, do Amaral JB, Paixão V, Almeida EB, dos Santos CAF, Amirato GR, Oliveira DBL, Durigon EL, Aguiar AS, Vieira RP, dos Santos JDMB, Furtado GE, França CN, Shio MT, Bachi ALL. Older Adults Who Maintained a Regular Physical Exercise Routine before the Pandemic Show Better Immune Response to Vaccination for COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1939. [PMID: 36767315 PMCID: PMC9915291 DOI: 10.3390/ijerph20031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In this study, we aimed to investigate the specific-antibody response to the COVID-19 vaccination and the immunophenotyping of T cells in older adults who were engaged or not in an exercise training program before the pandemic. METHODS Ninety-three aged individuals (aged between 60 and 85 years) were separated into 3 groups: practitioners of physical exercise vaccinated with CoronaVac (PE-Co, n = 46), or vaccinated with ChadOx-1 (PE-Ch, n = 23), and non-practitioners vaccinated with ChadOx-1 (NPE-Ch, n = 24). Blood samples were collected before (pre) and 30 days after vaccination with the second vaccine dose. RESULTS Higher IgG levels and immunogenicity were found in the PE-Ch and NPE-Ch groups, whereas increased IgA levels were found only in the PE-Ch group post-vaccination. The PE-Co group showed a positive correlation between the IgA and IgG values, and lower IgG levels post-vaccination were associated with age. Significant alterations in the percentage of naive (CD28+CD57-), double-positive (CD28+CD57+), and senescent (CD28-CD57+) CD4+ T and CD8+ T cells were found post-vaccination, particularly in the PE-Ch group. CONCLUSIONS The volunteers vaccinated with the ChadOx-1 presented not only a better antibody response but also a significant modulation in the percentage of T cell profiles, mainly in the previously exercised group.
Collapse
Affiliation(s)
- Brenda Rodrigues Silva
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | - Kizzy Cezário
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Vitória Paixão
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Ewin Barbosa Almeida
- ENT Research Lab., Department of Otorhinolaryngology—Head and Neck Surgery, Federal University of Sao Paulo (UNIFESP), São Paulo 04021-001, Brazil
| | - Carlos André Freitas dos Santos
- Discipline of Geriatrics and Gerontology, Department of Medicine, Paulista School of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo 04020-050, Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Gislene Rocha Amirato
- Mane Garrincha Sports Education Center, Sports Department of the Municipality of Sao Paulo (SEME), São Paulo 04039-034, Brazil
| | - Danielle Bruna Leal Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-060, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-060, Brazil
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-060, Brazil
| | - Andressa Simões Aguiar
- Scientific Platform Pasteur, University of São Paulo, São Paulo 05508-060, Brazil
- Infection Control Service, São Luiz Gonzaga Hospital of Santa Casa de Misericordia of São Paulo, São Paulo 02276-140, Brazil
| | - Rodolfo P. Vieira
- Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Universidade Evangélica de Goiás (Unievangelica), Av Universitária km 3,5, Anápolis-Go 75083-515, Brazil
| | | | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| | - Carolina Nunes França
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - Marina Tiemi Shio
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | - André Luis Lacerda Bachi
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| |
Collapse
|
21
|
Gurung AB, Ali MA, Aljowaie RM, Almutairi SM, Sami H, Lee J. Masitinib analogues with the N-methylpiperazine group replaced - A new hope for the development of anti-COVID-19 drugs. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2023; 35:102397. [PMID: 36406239 PMCID: PMC9651948 DOI: 10.1016/j.jksus.2022.102397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/30/2022] [Accepted: 10/22/2022] [Indexed: 05/15/2023]
Abstract
Masitinib is an orally acceptable tyrosine kinase inhibitor that is currently investigated under clinical trials against cancer, asthma, Alzheimer's disease, multiple sclerosis and amyotrophic lateral sclerosis. A recent study confirmed the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity of masitinib through inhibition of the main protease (Mpro) enzyme, an important pharmacological drug target to block the replication of the coronavirus. However, due to the adverse effects and lower potency of the drug, there are opportunities to design better analogues of masitinib. Herein, we substituted the N-methylpiperazine group of Masitinib with different chemical moieties and evaluated their drug-likeness and toxicities. The filtered analogues were subjected to molecular docking studies which revealed that the analogues with substituents methylamine in M10 (CID10409602), morpholine in M23 (CID59789397) and 4-methylmorpholine in M32 (CID143003625) have a stronger affinity to the drug receptor compared to masitinib. The molecular dynamics (MD) simulation analysis reveals that the identified analogues alter the mobility, structural compactness, accessibility to solvent molecules, and the number of hydrogen bonds in the native target enzyme. These structural alterations can help explain the inhibitory mechanisms of these analogues against the target enzyme. Thus, our studies provide avenues for the design of new masitinib analogues as the SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saeedah M Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hiba Sami
- Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, India
| | - Joongku Lee
- Department of Environment and Forest Resources, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
22
|
Karimi S, Nazarian S, Sotoodehnejadnematalahi F, Dorostkar R, Amani J. Designing and Expression of Recombinant Chimeric Spike Protein from SARS-CoV-2 in Escherichia coli and Its Immunogenicity Assessment. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e137751. [PMID: 38116554 PMCID: PMC10728857 DOI: 10.5812/ijpr-137751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 12/21/2023]
Abstract
Since December 2019, the world has been grappling with an ongoing global COVID-19 pandemic. Various virus variants have emerged over the past two years, each posing a greater threat than its predecessors. The recent appearance of the omicron variant (B.1.1.529) has raised significant alarm within the field of epidemiology due to its highly contagious nature and rapid transmission rate. The omicron variant possessed mutations in the key receptor-binding domain (RBD) region, the S region, and these modifications have shown a notable impact on the strain's susceptibility to neutralizing antibodies. Developing safe and efficient vaccines to prevent a future severe acute respiratory outbreak of coronavirus syndrome 2 (SARS-CoV-2) is significant. Viral surface spike proteins are ideal targets for vaccines. This study aimed to find a multi-subunit chimeric vaccine. After conducting bioinformatics analysis, the recombinant spike (RS) protein of SARS-CoV-2 was deliberately designed and subsequently produced using E. coli expression systems. The immunogenicity of RS and neutralizing antibody responses were evaluated on immunized BALB/c mice. There was a significant difference in antibody titers between RS-immunized mice and control groups. The endpoint of the serum antibody titer of mice immunized with our chimeric protein was 2.5 times higher than that of the negative control. The chimeric construct could present multiple antigens simultaneously, influentially affecting immunization. Sera from mice vaccinated by RS could recognize the SARS-CoV-2 virus and neutralize antibodies. Our chimeric peptide could bind to antibodies in the serum of patients infected with different serotypes of the SARS-CoV-2 virus, such as alpha, delta, and omicron variants. The results indicated that the RS protein would be a potential novel antigenic candidate for subunit vaccine development and could be used as a useful alternative to generate diagnostic serological tests for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sahar Karimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Roohollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Adeyemi OO, Ndodo ND, Sulaiman MK, Ayansola OT, Buhari OIN, Akanbi OA, Bolarinwa OA, Chukwu C, Joel IY, Omoare AA, Wahab KW, Obiekea C, Buhari MO, Ahumibe A, Kolawole CF, Okoi C, Omotesho OB, Mba N, Adeniyi O, Babatunde O, Akintunde N, Ayinla G, Akande OW, Odunola RA, Saka MJ, Musa OI, Durotoye IA, Ihekweazu C, Adetifa IM, Fadeyi A. SARS-CoV-2 variants-associated outbreaks of COVID-19 in a tertiary institution, North-Central Nigeria: Implications for epidemic control. PLoS One 2023; 18:e0280756. [PMID: 36696405 PMCID: PMC9876355 DOI: 10.1371/journal.pone.0280756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The COVID-19 global pandemic is being driven by evolving SARS-CoV-2 variants with consequential implications on virus transmissibility, host immunity, and disease severity. Continuous molecular and genomic surveillance of the SARS-CoV-2 variants is therefore necessary for public health interventions toward the management of the pandemic. This study is a retrospective analysis of COVID-19 cases reported in a Nigerian tertiary institution from July to December 2021. In total, 705 suspected COVID-19 cases that comprised 547 students and 158 non-students were investigated by real time PCR (RT-PCR); of which 372 (~52.8%) tested positive for COVID-19. Using a set of selection criteria, 74 (~19.9%) COVID-19 positive samples were selected for next generation sequencing. Data showed that there were two outbreaks of COVID-19 within the university community over the study period, during which more females (56.8%) tested positive than males (47.8%) (p<0.05). Clinical data together with phylogenetic analysis suggested community transmission of SARS-CoV-2 through mostly asymptomatic and/or pre-symptomatic individuals. Confirmed COVID-19 cases were mostly mild, however, SARS-CoV-2 delta (77%) and omicron (4.1%) variants were implicated as major drivers of respective waves of infections during the study period. This study highlights the importance of integrated surveillance of communicable disease during outbreaks.
Collapse
Affiliation(s)
- Oluwapelumi Olufemi Adeyemi
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Molecular Diagnostic and Research Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Mariam Kehinde Sulaiman
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Molecular Diagnostic and Research Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Oluwabunmi Idera Nimat Buhari
- Department of Behavioural Sciences, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Oladimeji Akeem Bolarinwa
- Department of Epidemiology and Community Health, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Chimaobi Chukwu
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Ireoluwa Yinka Joel
- Molecular Diagnostic and Research Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Kolawole Wasiu Wahab
- Department of Medicine, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Celestina Obiekea
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Mikhail Olayinka Buhari
- Department of Pathology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Anthony Ahumibe
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Catherine Okoi
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Nwando Mba
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Olajumoke Babatunde
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
| | | | - Ganiu Ayinla
- Health Services, University of Ilorin, Ilorin, Nigeria
| | | | | | - Mohammed Jimoh Saka
- Department of Epidemiology and Community Health, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Omotosho Ibrahim Musa
- Department of Epidemiology and Community Health, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Idayat Adenike Durotoye
- Department of Haematology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Chikwe Ihekweazu
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
- Office of the Director General, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Ifedayo Morayo Adetifa
- National Reference Laboratory, Nigeria Centre for Disease Control, Abuja, Nigeria
- Office of the Director General, Nigeria Centre for Disease Control, Abuja, Nigeria
| | - Abayomi Fadeyi
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Molecular Diagnostic and Research Laboratory, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- * E-mail:
| |
Collapse
|
24
|
Verma KC. Assessment of squalene variability and its enhancement in Amaranthus (Amaranthus caudatus L.) populations: With application to vaccine development. Biotechnol Appl Biochem 2022; 69:2745-2752. [PMID: 35032134 DOI: 10.1002/bab.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/01/2022] [Indexed: 12/27/2022]
Abstract
Amaranthus (Amaranthus caudatus L.) is the richest source of squalene among all plants. Squalene is used as a component of some adjuvants in vaccines for enhancement of the host immune response. Squalene content was estimated by high-performance liquid chromatography and amino acids profiling was performed using an amino acid analyzer. Squalene content, up to 7.66%, was found in the raw seeds of amaranthus, which was further enhanced to 8.13% by popping. The results revealed that amaranthus populations have wide significant variations (p < 0.05) in 1000 seed weight (0.61-1.13 g), protein content (11.50-19.80%), total phenols (4.36-7.82 μg GAE/mg sample), total flavonoid (0.70-2.32 mg QE/g dw), and squalene (3.23-7.66% in raw seeds and 3.38-8.12% in popped seeds). Genotypic variability in amino acids composition, viz. lysine (4.96-5.90%), arginine (8.48-8.80%), leucine (5.20-6.70%), valine (3.60-4.60%), phenylalanine (5.30-8.00%), methionine (3.08-4.97%), tyrosine (5.92-7.96), threonine (3.20-4.32%), and glycine (6.60-8.20%), was also observed. Wide genetic variability in amaranthus grains may be used for improved varietal development breeding programs. It can be further concluded that an increase of squalene content in amaranthus grains by heat treatment could be helpful to fulfil the demands of cosmetic and pharmaceutical industries, especially with respect to vaccine production against virus-generated pandemics.
Collapse
Affiliation(s)
- Kuldip Chandra Verma
- Department of Biochemistry, Lovely Professional University, Phagwara, Punjab, India.,Department of Biochemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar (U. S. Nagar), Uttarakhand, India
| |
Collapse
|
25
|
Gemmati D, Longo G, Gallo I, Silva JA, Secchiero P, Zauli G, Hanau S, Passaro A, Pellegatti P, Pizzicotti S, Serino ML, Singh AV, Tisato V. Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: The role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes. Front Genet 2022; 13:1028081. [PMID: 36531241 PMCID: PMC9748098 DOI: 10.3389/fgene.2022.1028081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 08/26/2023] Open
Abstract
Background: Development and worldwide availability of safe and effective vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to fight severe symptoms of coronavirus disease 2019 (COVID-19) and block the pandemic have been a great achievement and stimulated researchers on understanding the efficacy and duration of different vaccine types. Methods: We investigated the levels of anti-SARS-CoV-2 antibodies (IgG) and neutralizing antibodies (NAbs) in 195 healthy adult subjects belonging to the staff of the University-Hospital of Ferrara (Italy) starting from 15 days up to 190 days (about 6 months) after the second dose of the BNT162b2 (Pfizer-BioNTech) mRNA-based vaccine (n = 128) or ChAdOx1 (AstraZeneca) adenovirus-based vaccine (n = 67) using a combined approach of serological and genomics investigations. Results: A strong correlation between IgG and NAb levels was detected during the 190 days of follow-up (r 2 = 0.807; p < 0.0001) and was confirmed during the first 90 days (T1) after vaccination (r 2 = 0.789; p = 0.0001) and 91-190 days (T2) after vaccination (r 2 = 0.764; p = 0.0001) for both vaccine types (r 2 = 0.842; p = 0.0001 and r 2 = 0.780; p = 0.0001 for mRNA- and adenovirus-based vaccine, respectively). In addition to age (p < 0.01), sex (p = 0.03), and type of vaccine (p < 0.0001), which partially accounted for the remarkable individual differences observed in the antibody levels and dynamics, interesting genetic determinants appeared as significant modifiers of both IgG and NAb responses among the selected genes investigated (TP53, rs1042522; APOE, rs7412/rs429358; ABO, rs657152; ACE2, rs2285666; HLA-A rs2571381/rs2499; CRP, rs2808635/rs876538; LZTFL1, rs35044562; OAS3, rs10735079; SLC6A20, rs11385942; CFH, rs1061170; and ACE1, ins/del, rs4646994). In detail, regression analysis and mean antibody level comparison yielded appreciable differences after genotype stratification (P1 and P2, respectively, for IgG and NAb distribution) in the whole cohort and/or in the mRNA-based vaccine in the following genes: TP53, rs1042522 (P1 = 0.03; P2 = 0.04); ABO, rs657152 (P1 = 0.01; P2 = 0.03); APOE, rs7412/rs429358 (P1 = 0.0018; P2 = 0.0002); ACE2, rs2285666 (P1 = 0.014; P2 = 0.009); HLA-A, rs2571381/rs2499 (P1 = 0.02; P2 = 0.03); and CRP, rs2808635/rs876538 (P1 = 0.01 and P2 = 0.09). Conclusion: High- or low-responsive subjects can be identified among healthy adult vaccinated subjects after targeted genetic screening. This suggests that favorable genetic backgrounds may support the progression of an effective vaccine-induced immune response, though no definite conclusions can be drawn on the real effectiveness ascribed to a specific vaccine or to the different extent of a genotype-driven humoral response. The interplay between data from the polygenic predictive markers and serological screening stratified by demogeographic information can help to recognize the individual humoral response, accounting for ethnic and geographical differences, in both COVID-19 and anti-SARS-CoV-2 vaccinations.
Collapse
Affiliation(s)
- Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
- University Centre for Gender Medicine Studies, University of Ferrara, Ferrara, Italy
| | - Giovanna Longo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Ines Gallo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Juliana Araujo Silva
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis & Thrombosis, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Stefania Hanau
- Department of Neuroscience & Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | - Ajay Vikram Singh
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- University Centre for Gender Medicine Studies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
26
|
Chen J, Li K, Zhang Z, Li K, Yu PS. A Survey on Applications of Artificial Intelligence in Fighting Against COVID-19. ACM COMPUTING SURVEYS 2022; 54:1-32. [DOI: 10.1145/3465398] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/01/2021] [Indexed: 01/05/2025]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak. Most governments, enterprises, and scientific research institutions are participating in the COVID-19 struggle to curb the spread of the pandemic. As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic. In this survey, we investigate the main scope and contributions of AI in combating COVID-19 from the aspects of disease detection and diagnosis, virology and pathogenesis, drug and vaccine development, and epidemic and transmission prediction. In addition, we summarize the available data and resources that can be used for AI-based COVID-19 research. Finally, the main challenges and potential directions of AI in fighting against COVID-19 are discussed. Currently, AI mainly focuses on medical image inspection, genomics, drug development, and transmission prediction, and thus AI still has great potential in this field. This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19 with the goal of inspiring researchers to continue to maximize the advantages of AI and big data to fight COVID-19.
Collapse
Affiliation(s)
- Jianguo Chen
- Hunan University, China and University of Toronto, Toronto, ON, Canada
| | - Kenli Li
- Hunan University, Changsha, Hunan, China
| | | | - Keqin Li
- State University of New York, USA and Hunan University, Changsha, Hunan, China
| | - Philip S. Yu
- University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Szuster E, Pawlikowska-Gorzelańczyk A, Kostrzewska P, Mandera-Grygierzec A, Rusiecka A, Biernikiewicz M, Brawańska K, Sobieszczańska M, Rożek-Piechura K, Kałka D. Mental and Sexual Health of Men in Times of COVID-19 Lockdown. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15327. [PMID: 36430046 PMCID: PMC9690699 DOI: 10.3390/ijerph192215327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Due to the worldwide spread of COVID-19, some restrictions were introduced which could lead to the development of distress and somatic symptoms. This survey aimed to study the mental and sexual health of men during the COVID-19 outbreak. An online questionnaire was conducted to collect data on contact with people suspected of infection/infected with the SARS-CoV-2 virus, use of stimulants, and perceived mental and sexual health during isolation among Polish men. They were also asked to answer the Beck Depression Inventory (BDI) and the International Index of Erectile Function (IIEF-15) questionnaire. In total, 606 men with a mean age of 28.46 ± 9.17 years took part in the survey. Fear of contracting the COVID-19 infection had a negative impact on the mental health of 132 men (21.8%). Fear of the health condition of loved ones caused stress and a depressed mood in 253 men (41.7%), and media reports worsened the mental health of 185 men (30.2%). In the BDI, 71.95% of the respondents did not suffer from depressive symptoms, 17.33% were diagnosed with mild depression, 6.11% with moderate depression, and 4.62% had severe depression. The mean score in the IIEF-15 questionnaire in the erectile function domain was 22.27, orgasm-7.63, desire-8.25, satisfaction-10.17, and general satisfaction-6.84. Depressive symptoms indicated more severe sexual functioning disorders (p < 0.001). Fear, following the media, and loneliness were associated with more severe depressive and sexual disorders (p < 0.001). The libido level (p = 0.002) and frequency of sexual activity (p < 0.001) were also lower during the pandemic than before the lockdown. These data showed that the COVID-19 pandemic had a significant impact on male mental and sexual health.
Collapse
Affiliation(s)
- Ewa Szuster
- Cardiosexology Students Club, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Paulina Kostrzewska
- Cardiosexology Students Club, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Agnieszka Rusiecka
- Statistical Analysis Centre, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | | | - Kinga Brawańska
- Cardiosexology Students Club, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | | | - Krystyna Rożek-Piechura
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Dariusz Kałka
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
- Men’s Health Centre in Wrocław, 53-151 Wroclaw, Poland
| |
Collapse
|
28
|
Covarrubias CE, Rivera TA, Soto CA, Deeks T, Kalergis AM. Current GMP standards for the production of vaccines and antibodies: An overview. Front Public Health 2022; 10:1021905. [PMID: 36743162 PMCID: PMC9891391 DOI: 10.3389/fpubh.2022.1021905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
The manufacture of pharmaceutical products made under good manufacturing practices (GMP) must comply with the guidelines of national regulatory bodies based on international or regional compendia. The existence of this type of regulation allows pharmaceutical laboratories to count on the standardization of high-quality production processes, obtaining a safe product for human use, with a positive impact on public health. In addition, the COVID-19 pandemic highlights the importance of having more and better-distributed manufacturing plants, emphasizing regions such as Latin America. This review shows the most important GMP standards in the world and, in particular, their relevance in the production of vaccines and antibodies.
Collapse
Affiliation(s)
- Consuelo E. Covarrubias
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas A. Rivera
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A. Soto
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Trevor Deeks
- Deeks Pharmaceutical Consulting Services, Rockville, MD, United States
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
29
|
Samaranayake LP, Seneviratne CJ, Fakhruddin KS. Coronavirus disease 2019 (COVID-19) vaccines: A concise review. Oral Dis 2022; 28 Suppl 2:2326-2336. [PMID: 33991381 PMCID: PMC8242875 DOI: 10.1111/odi.13916] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/05/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
The development of a successful vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), in an unmatched period of ten months, is a tribute to human ingenuity in the face of a vicious pandemic. A return to pre-pandemic "normalcy" depends on the successful delivery of the vaccine to a majority (~70%) so as to develop herd immunity critical to arrest the community spread of infection. Vaccination against COVID-19 is particularly important for dentistry as the dental team works in an environment replete with aerosol-generating procedures (AGP) that facilitate virus spread. Hence, a COVID-19 vaccine is likely to be an obligatory requirement for the dental practice, and the latest addition to the extensive list of vaccines required for dental professionals for the safe delivery of dental care. Here, we review the currently available major candidate vaccines against SARS-CoV-2 and their benefits and risks. These include the vaccines developed on next-generation platforms (mRNA, DNA, and viral vector vaccines), and the classic platforms (the live-attenuated virus, and the protein subunit vaccines) The review concludes with a summary of impending issues and challenges facing the provision of COVID-19 vaccines for all stakeholders in dentistry.
Collapse
Affiliation(s)
| | | | - Kausar Sadia Fakhruddin
- Department of Preventive and Restorative DentistryCollege of Dental MedicineUniversity of SharjahSharjahUAE
| |
Collapse
|
30
|
Tran KTM, Gavitt TD, Le TT, Graichen A, Lin F, Liu Y, Tulman ER, Szczepanek SM, Nguyen TD. A Single-Administration Microneedle Skin Patch for Multi-Burst Release of Vaccine against SARS-CoV-2. ADVANCED MATERIALS TECHNOLOGIES 2022; 8:2200905. [PMID: 36714215 PMCID: PMC9874724 DOI: 10.1002/admt.202200905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/25/2022] [Indexed: 06/18/2023]
Abstract
The necessity for multiple injections and cold-chain storage has contributed to suboptimal vaccine utilization, especially in pandemic situations. Thermally-stable and single-administration vaccines hold a great potential to revolutionize the global immunization process. Here, a new approach to thermally stabilize protein-based antigens is presented and a new high-throughput antigen-loading process is devised to create a single-administration, pulsatile-release microneedle (MN) patch which can deliver a recombinant SARS-CoV-2 S1-RBD protein-a model for the COVID-19 vaccine. Nearly 100% of the protein antigen could be stabilized at temperatures up to 100 °C for at least 1 h and at an average human body temperature (37 °C) for up to 4 months. Arrays of the stabilized S1-RBD formulations can be loaded into the MN shells via a single-alignment assembly step. The fabricated MNs are administered at a single time into the skin of rats and induce antibody response which could neutralize authentic SARS-CoV-2 viruses, providing similar immunogenic effect to that induced by multiple bolus injections of the same antigen stored in conventional cold-chain conditions. The MN system presented herein could offer the key solution to global immunization campaigns by avoiding low patient compliance, the requirement for cold-chain storage, and the need for multiple booster injections.
Collapse
Affiliation(s)
- Khanh T. M. Tran
- Department of Biomedical EngineeringUniversity of Connecticut181 Auditorium RoadStorrs06269USA
| | - Tyler D. Gavitt
- Department of Pathobiology and Veterinary ScienceCenter of Excellence for Vaccine ResearchUniversity of Connecticut61 North Eagleville RoadStorrs06269USA
| | - Thinh T. Le
- Department of Mechanical EngineeringUniversity of Connecticut191 Auditorium RoadStorrs06269USA
| | - Adam Graichen
- Department of ChemistryUniversity of Connecticut55 North Eagleville RoadStorrs06269USA
| | - Feng Lin
- Department of Mechanical EngineeringUniversity of Connecticut191 Auditorium RoadStorrs06269USA
| | - Yang Liu
- Department of Mechanical EngineeringUniversity of Connecticut191 Auditorium RoadStorrs06269USA
| | - Edan R. Tulman
- Department of Pathobiology and Veterinary ScienceCenter of Excellence for Vaccine ResearchUniversity of Connecticut61 North Eagleville RoadStorrs06269USA
| | - Steven M. Szczepanek
- Department of Pathobiology and Veterinary ScienceCenter of Excellence for Vaccine ResearchUniversity of Connecticut61 North Eagleville RoadStorrs06269USA
| | - Thanh D. Nguyen
- Department of Biomedical EngineeringUniversity of Connecticut181 Auditorium RoadStorrs06269USA
- Department of Mechanical EngineeringUniversity of Connecticut191 Auditorium RoadStorrs06269USA
| |
Collapse
|
31
|
Kumari M, Lu RM, Li MC, Huang JL, Hsu FF, Ko SH, Ke FY, Su SC, Liang KH, Yuan JPY, Chiang HL, Sun CP, Lee IJ, Li WS, Hsieh HP, Tao MH, Wu HC. A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. J Biomed Sci 2022; 29:68. [PMID: 36096815 PMCID: PMC9465653 DOI: 10.1186/s12929-022-00852-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/01/2022] [Indexed: 12/12/2022] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic remains a global public health crisis, presenting a broad range of challenges. To help address some of the main problems, the scientific community has designed vaccines, diagnostic tools and therapeutics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The rapid pace of technology development, especially with regard to vaccines, represents a stunning and historic scientific achievement. Nevertheless, many challenges remain to be overcome, such as improving vaccine and drug treatment efficacies for emergent mutant strains of SARS-CoV-2. Outbreaks of more infectious variants continue to diminish the utility of available vaccines and drugs. Thus, the effectiveness of vaccines and drugs against the most current variants is a primary consideration in the continual analyses of clinical data that supports updated regulatory decisions. The first two vaccines granted Emergency Use Authorizations (EUAs), BNT162b2 and mRNA-1273, still show more than 60% protection efficacy against the most widespread current SARS-CoV-2 variant, Omicron. This variant carries more than 30 mutations in the spike protein, which has largely abrogated the neutralizing effects of therapeutic antibodies. Fortunately, some neutralizing antibodies and antiviral COVID-19 drugs treatments have shown continued clinical benefits. In this review, we provide a framework for understanding the ongoing development efforts for different types of vaccines and therapeutics, including small molecule and antibody drugs. The ripple effects of newly emergent variants, including updates to vaccines and drug repurposing efforts, are summarized. In addition, we summarize the clinical trials supporting the development and distribution of vaccines, small molecule drugs, and therapeutic antibodies with broad-spectrum activity against SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Monika Kumari
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Mu-Chun Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Jhih-Liang Huang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Fu-Fei Hsu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Joyce Pei-Yi Yuan
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiao-Ling Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
| | - Cheng-Pu Sun
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Jung Lee
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsing-Pang Hsieh
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Mi-Hua Tao
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang District, Taipei, 11529, Taiwan.
| |
Collapse
|
32
|
Wei Z, He J, Wang C, Bao J, Leng T, Chen F. The importance of booster vaccination in the context of Omicron wave. Front Immunol 2022; 13:977972. [PMID: 36159796 PMCID: PMC9498215 DOI: 10.3389/fimmu.2022.977972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Omicron (B.1.1.529) was first detected in a sample collected in Botswana on November 11, 2021, and has rapidly replaced Delta as the dominant global variant given the robust transmissibility. Moreover, it displays a lower virulence than other variants. However, the pathogenicity of Omicron appears to be underestimated in view of the increasing levels of herd immunity through natural infection or vaccination. Additionally, the volume of hospitalizations and deaths increase in proportion to the number of cases due to the high transmissibility of Omicron. Therefore, vaccination remains an important public health priority. Notably, a series of important mutations in the Omicron spike protein, especially in the receptor-binding domain and N-terminal domain, appears to be associated with immune escape capacity, reducing the willingness of people to receive vaccines. Herein, we provide an in-depth discussion to assess the effectiveness of the second and third vaccination against Omicron variant. On the one hand, the two-dose vaccination program adopted by many countries is insufficient to prevent Omicron infection given the mutations correlated with immune escape and the decline in vaccine efficacy over time. On the other hand, booster dose significantly increases the protective efficacy against Omicron infection. Most importantly, heterologous third dose vaccination induces a more robust immune response than homologous booster dose. Therefore, under the special background of this pandemic, there is an urgent need to accelerate the third dose of vaccination, especially providing better booster vaccination strategies, to combat emerging Omicron variant.
Collapse
|
33
|
Sun Q, Huang Z, Yang S, Li Y, Ma Y, Yang F, Zhang Y, Xu F. Bioinformatics-based SARS-CoV-2 epitopes design and the impact of Spike protein mutants on epitope humoral immunities. Immunobiology 2022; 227:152287. [PMID: 36244092 PMCID: PMC9516880 DOI: 10.1016/j.imbio.2022.152287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/10/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Background Epitope selection is the key to peptide vaccines development. Bioinformatics tools can efficiently improve the screening of antigenic epitopes and help to choose the right ones. Objective To predict, synthesize and testify peptide epitopes at spike protein, assess the effect of mutations on epitope humoral immunity, thus provide clues for the design and development of epitope peptide vaccines against SARS-CoV-2. Methods Bioinformatics servers and immunological tools were used to identify the helper T lymphocyte, cytotoxic T lymphocyte, and linear B lymphocyte epitopes on the S protein of SARS-CoV-2. Physicochemical properties of candidate epitopes were analyzed using IEDB, VaxiJen, and AllerTOP online software. Three candidate epitopes were synthesized and their antigenic responses were evaluated by binding antibody detection. Results A total of 20 antigenic, non-toxic and non-allergenic candidate epitopes were identified from 1502 epitopes, including 6 helper T-cell epitopes, 13 cytotoxic T-cell epitopes, and 1 linear B cell epitope. After immunization with antigen containing candidate epitopes S206-221, S403-425, and S1157-1170 in rabbits, the binding titers of serum antibody to the corresponding peptide, S protein, receptor-binding domain protein were (415044, 2582, 209.3), (852819, 45238, 457767) and (357897, 10528, 13.79), respectively. The binding titers to Omicron S protein were 642, 12,878 and 7750, respectively, showing that N211L, DEL212 and K417N mutations cause the reduction of the antibody binding activity. Conclusions Bioinformatic methods are effective in peptide epitopes design. Certain mutations of the Omicron would lead to the loss of antibody affinity to Omicron S protein.
Collapse
Affiliation(s)
- Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Zhuanqing Huang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Sen Yang
- Medical School of Chinese PLA, Beijing, China; Chinese People's Armed Police Force Hospital of Beijing, Beijing, China
| | - Yuanyuan Li
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Yue Ma
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Fei Yang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, Beijing, China; Medical School of Chinese PLA, Beijing, China
| | - Ying Zhang
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, Beijing, China
| | - Fenghua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Pidiyar V, Kumraj G, Ahmed K, Ahmed S, Shah S, Majumder P, Verma B, Pathak S, Mukherjee S. COVID-19 management landscape: A need for an affordable platform to manufacture safe and efficacious biotherapeutics and prophylactics for the developing countries. Vaccine 2022; 40:5302-5312. [PMID: 35914959 PMCID: PMC9148927 DOI: 10.1016/j.vaccine.2022.05.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/19/2022] [Indexed: 12/23/2022]
Abstract
To gain world-wide control over COVID-19 pandemic, it is necessary to have affordable and accessible vaccine and monoclonal antibody technologies across the globe. In comparison to the western countries, Asian and African countries have less percentage of vaccination done which warrants urgent attention. Global manufacturer production capacities, dependency on advanced nations for the supply of vaccines or the raw material, national economy, limited research facilities, and logistics could be the factors. This review article elaborates the existing therapeutic and prophylactic strategies available for COVID-19, currently adopted vaccine and monoclonal antibody platforms for SARS-CoV-2 along with the approaches to bridge the gap prevailing in the challenges faced by low- and middle-income countries. We believe adoption of yeast-derived P. pastoris technology can help in developing safe, proven, easy to scale-up, and affordable recombinant vaccine or monoclonal antibodies against SARS-CoV-2. This platform has the advantage of not requiring a dedicated or specialized facility making it an affordable option using existing manufacturing facilities, without significant additional capital investments. Besides, the technology platform of multiantigen vaccine approach and monoclonal antibody cocktail will serve as effective weapons to combat the threat posed by the SARS-CoV-2 variants. Successful development of vaccines and monoclonal antibodies using such a technology will lead to self-sufficiency of these nations in terms of availability of vaccines and monoclonal antibodies.
Collapse
Affiliation(s)
- Vyankatesh Pidiyar
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Ganesh Kumraj
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Kafil Ahmed
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Syed Ahmed
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India.
| | - Sanket Shah
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Piyali Majumder
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Bhawna Verma
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Sarang Pathak
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| | - Sushmita Mukherjee
- Techinvention Lifecare Pvt. Ltd. #1004, The Summit Business Park, Off WEH Metro Station, Andheri Kurla Road, Andheri East, Mumbai 400093. India
| |
Collapse
|
35
|
Vaccines platforms and COVID-19: what you need to know. Trop Dis Travel Med Vaccines 2022; 8:20. [PMID: 35965345 PMCID: PMC9537331 DOI: 10.1186/s40794-022-00176-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/22/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The novel SARS-CoV-2, responsible for the COVID-19 pandemic, is the third zoonotic coronavirus since the beginning of the 21 first century, and it has taken more than 6 million human lives because of the lack of immunity causing global economic losses. Consequently, developing a vaccine against the virus represents the fastest way to finish the threat and regain some "normality." OBJECTIVE Here, we provide information about the main features of the most important vaccine platforms, some of them already approved, to clear common doubts fostered by widespread misinformation and to reassure the public of the safety of the vaccination process and the different alternatives presented. METHODS Articles published in open access databases until January 2022 were identified using the search terms "SARS-CoV-2," "COVID-19," "Coronavirus," "COVID-19 Vaccines," "Pandemic," COVID-19, and LMICs or their combinations. DISCUSSION Traditional first-generation vaccine platforms, such as whole virus vaccines (live attenuated and inactivated virus vaccines), as well as second-generation vaccines, like protein-based vaccines (subunit and viral vector vaccines), and third-generation vaccines, such as nanoparticle and genetic vaccines (mRNA vaccines), are described. CONCLUSIONS SARS-CoV-2 sequence information obtained in a record time provided the basis for the fast development of a COVID-19 vaccine. The adaptability characteristic of the new generation of vaccines is changing our capability to react to emerging threats to future pandemics. Nevertheless, the slow and unfair distribution of vaccines to low- and middle-income countries and the spread of misinformation are a menace to global health since the unvaccinated will increase the chances for resurgences and the surge of new variants that can escape the current vaccines.
Collapse
|
36
|
Hassanzadeh P, Atyabi F, Dinarvand R. Nanobionics: From plant empowering to the infectious disease treatment. J Control Release 2022; 349:890-901. [PMID: 35901860 DOI: 10.1016/j.jconrel.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Infectious diseases (ID) are serious threats against the global health and socio-economic conditions. Vaccination usually plays a key role in disease prevention, however, insufficient efficiency or immunogenicity may be quite challenging. Using the advanced vectors for delivery of vaccines with suitable efficiency, safety, and immune-modulatory activity, and tunable characteristics could be helpful, but there are no systematic reviews confirming the capabilities of the vaccine delivery systems for covering various types of pathogens. Furthermore, high rates of the infections, transmission, and fatal ratio and diversity of the pathogens and infection mechanisms may negatively influence vaccine effectiveness. The absence of highly-effective antibiotics against the resistant strains of bacteria and longevity of antibiotic testing have provoked increasing needs towards the application of more accurate and specific theranostic strategies including the nanotechnology-based ones. Nanobionics which is based on the charge storage and transport in the molecular structures, could be of key value in the molecular diagnostic tests and highly-specific electro-analytical methods or devices. Such devices based on the early disease diagnostics might be of critical significance against various types of diseases. This article highlights the significance of nanobionics against ID.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran; Sasan Hospital, Tehran 14159-83391, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
37
|
Kumar A, Ladha A, Choudhury A, Ikbal AMA, Bhattacharjee B, Das T, Gupta G, Sharma C, Sarbajna A, Mandal SC, Choudhury MD, Ali N, Slama P, Rezaei N, Palit P, Tiwari ON. The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19? Expert Rev Vaccines 2022; 21:1071-1086. [PMID: 35604776 DOI: 10.1080/14760584.2022.2081156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.
Collapse
Affiliation(s)
- Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | - Amit Ladha
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Ankita Choudhury
- Department of Pharmaceutical Sciences, Allama TR College of Pharmacy, Hospital Rd, Srigouri, India
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Tripura (W), India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tanmay Das
- Department of Business Administration, Assam University Silchar, India
| | - Gaurav Gupta
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chhavi Sharma
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Adity Sarbajna
- Department of Zoology, Surendranath College, Kolkata, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Nahid Ali
- Division of Immunology, Department of Infectious Diseases, INDIAN INSTITUTE OF CHEMICAL BIOLOGY, Kolkata, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Partha Palit
- Department of Pharmaceutical Sciences Drug Discovery research Laboratory, Assam University, Silchar, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
38
|
Paoletti AM, Melilli MG, Vecchio I. Experimental Models of SARS-COV-2 Infection in the Central Nervous System. J Cent Nerv Syst Dis 2022; 14:11795735221102231. [PMID: 35783991 PMCID: PMC9247991 DOI: 10.1177/11795735221102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/05/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has raised serious concerns worldwide due to
its great impact on human health and forced scientists racing to find effective
therapies to control the infection and a vaccine for the virus. To this end,
intense research efforts have focused on understanding the viral biology of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for
COVID-19. The ever-expanding list of cases, reporting clinical neurological
complications in COVID-19 patients, strongly suggests the possibility of the
virus invading the nervous system. The pathophysiological processes responsible
for the neurological impact of COVID-19 are not fully understood. Some
neurodegenerative disorders sometimes take more than a decade to manifest, so
the long-term pathophysiological outcomes of SARS-CoV-2 neurotropism should be
regarded as a challenge for researchers in this field. There is no documentation
on the long-term impact of SARS-CoV-2 on the human central nervous system (CNS).
Most of the data relating to neurological damage during SARS-CoV-2 infection
have yet to be established experimentally. The purpose of this review is to
describe the knowledge gained, from experimental models, to date, on the
mechanisms of neuronal invasion and the effects produced by infection. The hope
is that, once the processes are understood, therapies can be implemented to
limit the damage produced. Long-term monitoring and the use of appropriate and
effective therapies could reduce the severity of symptoms and improve quality of
life of the most severely affected patients, with a special focus on those have
required hospital care and assisted respiration.
Collapse
Affiliation(s)
- Anna Maria Paoletti
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| | | | - Immacolata Vecchio
- Institute for Biomedical Research and Innovation (IRIB), National Council of Research (CNR), Catanzaro, Italy
| |
Collapse
|
39
|
Xu C, Lei C, Hosseinpour S, Ivanovski S, Walsh LJ, Khademhosseini A. Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. Natl Sci Rev 2022; 9:nwac124. [PMID: 36196115 PMCID: PMC9522393 DOI: 10.1093/nsr/nwac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022] Open
Abstract
Following the global COVID-19 pandemic, nanotechnology has been at the forefront of research efforts and enables the fast development of diagnostic tools, vaccines and antiviral treatment for this novel virus (SARS-CoV-2). In this review, we first summarize nanotechnology with regard to the detection of SARS-CoV-2, including nanoparticle-based techniques such as rapid antigen testing, and nanopore-based sequencing and sensing techniques. Then we investigate nanotechnology as it applies to the development of COVID-19 vaccines and anti-SARS-CoV-2 nanomaterials. We also highlight nanotechnology for the post-pandemic era, by providing tools for the battle with SARS-CoV-2 variants and for enhancing the global distribution of vaccines. Nanotechnology not only contributes to the management of the ongoing COVID-19 pandemic but also provides platforms for the prevention, rapid diagnosis, vaccines and antiviral drugs of possible future virus outbreaks.
Collapse
Affiliation(s)
- Chun Xu
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia, QLD 4072 , Australia
| | - Sepanta Hosseinpour
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Saso Ivanovski
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Laurence J Walsh
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation , Los Angeles , CA 90064 , USA
| |
Collapse
|
40
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
41
|
Martínez L, Malaina I, Salcines-Cuevas D, Terán-Navarro H, Zeoli A, Alonso S, M De la Fuente I, Gonzalez-Lopez E, Ocejo-Vinyals JG, Gozalo-Margüello M, Calvo-Montes J, Alvarez-Dominguez C. First computational design using lambda-superstrings and in vivo validation of SARS-CoV-2 vaccine. Sci Rep 2022; 12:6410. [PMID: 35440789 PMCID: PMC9016385 DOI: 10.1038/s41598-022-09615-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the greatest threat to global health at the present time, and considerable public and private effort is being devoted to fighting this recently emerged disease. Despite the undoubted advances in the development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, uncertainty remains about their future efficacy and the duration of the immunity induced. It is therefore prudent to continue designing and testing vaccines against this pathogen. In this article we computationally designed two candidate vaccines, one monopeptide and one multipeptide, using a technique involving optimizing lambda-superstrings, which was introduced and developed by our research group. We tested the monopeptide vaccine, thus establishing a proof of concept for the validity of the technique. We synthesized a peptide of 22 amino acids in length, corresponding to one of the candidate vaccines, and prepared a dendritic cell (DC) vaccine vector loaded with the 22 amino acids SARS-CoV-2 peptide (positions 50-71) contained in the NTD domain (DC-CoVPSA) of the Spike protein. Next, we tested the immunogenicity, the type of immune response elicited, and the cytokine profile induced by the vaccine, using a non-related bacterial peptide as negative control. Our results indicated that the CoVPSA peptide of the Spike protein elicits noticeable immunogenicity in vivo using a DC vaccine vector and remarkable cellular and humoral immune responses. This DC vaccine vector loaded with the NTD peptide of the Spike protein elicited a predominant Th1-Th17 cytokine profile, indicative of an effective anti-viral response. Finally, we performed a proof of concept experiment in humans that included the following groups: asymptomatic non-active COVID-19 patients, vaccinated volunteers, and control donors that tested negative for SARS-CoV-2. The positive control was the current receptor binding domain epitope of COVID-19 RNA-vaccines. We successfully developed a vaccine candidate technique involving optimizing lambda-superstrings and provided proof of concept in human subjects. We conclude that it is a valid method to decipher the best epitopes of the Spike protein of SARS-CoV-2 to prepare peptide-based vaccines for different vector platforms, including DC vaccines.
Collapse
Affiliation(s)
- Luis Martínez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain. .,BCAM, Basque Center for Applied Mathematics, 48009, Bilbao, Spain.
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,BioCruces Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain
| | | | - Héctor Terán-Navarro
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Andrea Zeoli
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,María Goyri Building. Animal Biotechnology Center, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain
| | - Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940, Leioa, Spain.,Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, 30100, Murcia, Spain
| | - Elena Gonzalez-Lopez
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - J Gonzalo Ocejo-Vinyals
- Servicio de Inmunología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Mónica Gozalo-Margüello
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Jorge Calvo-Montes
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain.,Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain.,CIBER Enfermedades Infecciosas, ISCIII, Madrid, Spain
| | - Carmen Alvarez-Dominguez
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain. .,Universidad Internacional de La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
42
|
Mir I, Aamir S, Shah SRH, Shahid M, Amin I, Afzal S, Nawaz A, Khan MU, Idrees M. Immune-related therapeutics: an update on antiviral drugs and vaccines to tackle the COVID-19 pandemic. Osong Public Health Res Perspect 2022; 13:84-100. [PMID: 35538681 PMCID: PMC9091641 DOI: 10.24171/j.phrp.2022.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic rapidly spread globally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19, is a positive-sense single-stranded RNA virus with a reported fatality rate ranging from 1% to 7%, and people with immune-compromised conditions, children, and older adults are particularly vulnerable. Respiratory failure and cytokine storm-induced multiple organ failure are the major causes of death. This article highlights the innate and adaptive immune mechanisms of host cells activated in response to SARS-CoV-2 infection and possible therapeutic approaches against COVID-19. Some potential drugs proven to be effective for other viral diseases are under clinical trials now for use against COVID-19. Examples include inhibitors of RNA-dependent RNA polymerase (remdesivir, favipiravir, ribavirin), viral protein synthesis (ivermectin, lopinavir/ ritonavir), and fusion of the viral membrane with host cells (chloroquine, hydroxychloroquine, nitazoxanide, and umifenovir). This article also presents the intellectual groundwork for the ongoing development of vaccines in preclinical and clinical trials, explaining potential candidates (live attenuated-whole virus vaccines, inactivated vaccines, subunit vaccines, DNAbased vaccines, protein-based vaccines, nanoparticle-based vaccines, virus-like particles and mRNA-based vaccines). Designing and developing an effective vaccine (both prophylactic and therapeutic) would be a long-term solution and the most effective way to eliminate the COVID-19 pandemic.
Collapse
Affiliation(s)
- Iqra Mir
- Division of Molecular Virology and Infectious Diseases, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sania Aamir
- Division of Molecular Virology and Infectious Diseases, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Syed Rizwan Hussain Shah
- Division of Molecular Virology and Infectious Diseases, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Division of Molecular Virology and Infectious Diseases, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology and Infectious Diseases, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Amjad Nawaz
- Division of Molecular Virology and Infectious Diseases, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- University Institute of Medical lab Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology and Infectious Diseases, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
43
|
Biotechnological Perspectives to Combat the COVID-19 Pandemic: Precise Diagnostics and Inevitable Vaccine Paradigms. Cells 2022; 11:cells11071182. [PMID: 35406746 PMCID: PMC8997755 DOI: 10.3390/cells11071182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause for the ongoing global public health emergency. It is more commonly known as coronavirus disease 2019 (COVID-19); the pandemic threat continues to spread aroundthe world with the fluctuating emergence of its new variants. The severity of COVID-19 ranges from asymptomatic to serious acute respiratory distress syndrome (ARDS), which has led to a high human mortality rate and disruption of socioeconomic well-being. For the restoration of pre-pandemic normalcy, the international scientific community has been conducting research on a war footing to limit extremely pathogenic COVID-19 through diagnosis, treatment, and immunization. Since the first report of COVID-19 viral infection, an array of laboratory-based and point-of-care (POC) approaches have emerged for diagnosing and understanding its status of outbreak. The RT-PCR-based viral nucleic acid test (NAT) is one of the rapidly developed and most used COVID-19 detection approaches. Notably, the current forbidding status of COVID-19 requires the development of safe, targeted vaccines/vaccine injections (shots) that can reduce its associated morbidity and mortality. Massive and accelerated vaccination campaigns would be the most effective and ultimate hope to end the COVID-19 pandemic. Since the SARS-CoV-2 virus outbreak, emerging biotechnologies and their multidisciplinary approaches have accelerated the understanding of molecular details as well as the development of a wide range of diagnostics and potential vaccine candidates, which are indispensable to combating the highly contagious COVID-19. Several vaccine candidates have completed phase III clinical studies and are reported to be effective in immunizing against COVID-19 after their rollout via emergency use authorization (EUA). However, optimizing the type of vaccine candidates and its route of delivery that works best to control viral spread is crucial to face the threatening variants expected to emerge over time. In conclusion, the insights of this review would facilitate the development of more likely diagnostics and ideal vaccines for the global control of COVID-19.
Collapse
|
44
|
Wambani J, Okoth P. Scope of SARS-CoV-2 variants, mutations, and vaccine technologies. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2022; 34:34. [PMID: 35368846 PMCID: PMC8962228 DOI: 10.1186/s43162-022-00121-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is disseminated by respiratory aerosols. The virus uses the spike protein to target epithelial cells by binding to the ACE2 receptor on the host cells. As a result, effective vaccines must target the viral spike glycoprotein. However, the appearance of an Omicron variant with 32 mutations in its spike protein raises questions about the vaccine's efficacy. Vaccines are critical in boosting immunity, lowering COVID-19-related illnesses, reducing the infectious burden on the healthcare system, and reducing economic loss, according to current data. An efficient vaccination campaign is projected to increase innate and adaptive immune responses, offering better protection against SARS-CoV-2 variants. Main body The presence of altered SARS-CoV-2 variants circulating around the world puts the effectiveness of vaccines already on the market at risk. The problem is made even worse by the Omicron variant, which has 32 mutations in its spike protein. Experts are currently examining the potential consequences of commercial vaccines on variants. However, there are worries about the vaccines' safety, the protection they provide, and whether future structural changes are required for these vaccines to be more effective. As a result of these concerns, new vaccines based on modern technology should be developed to guard against the growing SARS-CoV-2 variations. Conclusion The choice of a particular vaccine is influenced by several factors including mode of action, storage conditions, group of the vaccinee, immune response mounted, cost, dosage protocol, age, and side effects. Currently, seven SARS-CoV-2 vaccine platforms have been developed. This comprises of inactivated viruses, messenger RNA (mRNA), DNA vaccines, protein subunits, nonreplicating and replicating vector viral-like particles (VLP), and live attenuated vaccines. This review focuses on the SARS-CoV-2 mutations, variants of concern (VOCs), and advances in vaccine technologies.
Collapse
Affiliation(s)
- Josephine Wambani
- Kenya Medical Research Institute (KEMRI) HIV Laboratory-Alupe, P.O Box 3-50400, Busia, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100 Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural Sciences, Masinde Muliro University of Science and Technology, P. O Box 190, Kakamega, 50100 Kenya
| |
Collapse
|
45
|
Akintunde TY, Tassang AE, Okeke M, Isangha SO, Musa TH. Perceived Vaccine Efficacy, Willingness to Pay for COVID-19 Vaccine and Associated Determinants among Foreign Migrants in China. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2022; 19:em376. [DOI: 10.29333/ejgm/11920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Ghaznavi H, Shirvaliloo M, Sargazi S, Mohammadghasemipour Z, Shams Z, Hesari Z, Shahraki O, Nazarlou Z, Sheervalilou R, Shirvalilou S. SARS-CoV-2 and Influenza Viruses: Strategies to Cope with Co-infection and Bioinformatics Perspective. Cell Biol Int 2022; 46:1009-1020. [PMID: 35322909 PMCID: PMC9083817 DOI: 10.1002/cbin.11800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022]
Abstract
Almost a century after the devastating pandemic of the Spanish flu, humankind is facing the relatively comparable global outbreak of COVID‐19. COVID‐19 is an infectious disease caused by SARS‐CoV‐2 with an unprecedented transmission pattern. In the face of the recent repercussions of COVID‐19, many have argued that the clinical experience with influenza through the last century may have tremendous implications in the containment of this newly emerged viral disease. During the last 2 years, from the emergence of COVID‐19, tremendous advances have been made in diagnosing and treating coinfections. Several approved vaccines are available now for the primary prevention of COVID‐19 and specific treatments exist to alleviate symptoms. The present review article aims to discuss the pathophysiology, diagnosis, and treatment of SARS‐CoV‐2 and influenza A virus coinfection while delivering a bioinformatics‐based insight into this subject matter.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Mohammadghasemipour
- Department of Infectious Disease, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zinat Shams
- Department of Biological Science, Kharazmi University, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science Koç University, Istanbul, 34450, Turkey
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Piplani S, Singh P, Petrovsky N, Winkler DA. Computational Repurposing of Drugs and Natural Products Against SARS-CoV-2 Main Protease (Mpro) as Potential COVID-19 Therapies. Front Mol Biosci 2022; 9:781039. [PMID: 35359601 PMCID: PMC8964187 DOI: 10.3389/fmolb.2022.781039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
We urgently need to identify drugs to treat patients suffering from COVID-19 infection. Drugs rarely act at single molecular targets. Off-target effects are responsible for undesirable side effects and beneficial synergy between targets for specific illnesses. They have provided blockbuster drugs, e.g., Viagra for erectile dysfunction and Minoxidil for male pattern baldness. Existing drugs, those in clinical trials, and approved natural products constitute a rich resource of therapeutic agents that can be quickly repurposed, as they have already been assessed for safety in man. A key question is how to screen such compounds rapidly and efficiently for activity against new pandemic pathogens such as SARS-CoV-2. Here, we show how a fast and robust computational process can be used to screen large libraries of drugs and natural compounds to identify those that may inhibit the main protease of SARS-CoV-2. We show that the shortlist of 84 candidates with the strongest predicted binding affinities is highly enriched (≥25%) in compounds experimentally validated in vivo or in vitro to have activity in SARS-CoV-2. The top candidates also include drugs and natural products not previously identified as having COVID-19 activity, thereby providing leads for experimental validation. This predictive in silico screening pipeline will be valuable for repurposing existing drugs and discovering new drug candidates against other medically important pathogens relevant to future pandemics.
Collapse
Affiliation(s)
- Sakshi Piplani
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Puneet Singh
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
| | - Nikolai Petrovsky
- College of Medicine and Public Health, Flinders University, Bedford, SA, Australia
- Vaxine Pty Ltd., Warradale, SA, Australia
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| | - David A. Winkler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Nikolai Petrovsky, ; David A. Winkler,
| |
Collapse
|
48
|
Savina K, Sreekumar R, Soonu VK, Variyar EJ. Various vaccine platforms in the field of COVID-19. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:35. [PMID: 35284578 PMCID: PMC8899459 DOI: 10.1186/s43088-022-00215-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Background With the emergence of Corona virus Disease-2019, a novel worldwide health disaster is threatening the population. The WHO declared COVID-19 as a pandemic in December 2019, when it first surfaced in Hunan seafood market in Wuhan, South China, and quickly spread far and wide. Different corona virus variants are currently causing concern all across the world. Main body It has become critical for our scientists to develop a viable method to prevent infection or the pandemic from spreading globally. Antiviral medicines, oxygen therapy, and immune system stimulation are all used to treat the condition. SARS-CoV-2 undergoes mutation and due to evolutionary pressures, different mutant strains caused various symptoms in different geographical regions and the epidemic is spreading and becoming more fragile, posing a greater risk of mortality. Vaccines are tools to increase our immunity as a precaution, and increasing the global immunization rate can help improve the situation. Recent developments in the field of vaccine platforms are discussed here. Short conclusion Vaccines are of highest priority to control and eradicate the viral infectious disease COVID-19 more than any other protective solutions. A number of mutations have occurred and some variants such as alpha, beta, gamma, and delta, and it has now progressed to the new version Omicron, which is a variant of concern. Booster doses are anticipated to function as a barrier to the capacity of the most recent known variety, and more research is needed to determine how effective they will be. This page discusses various technologies employed in the field of COVID-19 vaccine, as well as potential barriers and recent developments in this field.
Collapse
|
49
|
Aghamirza Moghim Aliabadi H, Eivazzadeh‐Keihan R, Beig Parikhani A, Fattahi Mehraban S, Maleki A, Fereshteh S, Bazaz M, Zolriasatein A, Bozorgnia B, Rahmati S, Saberi F, Yousefi Najafabadi Z, Damough S, Mohseni S, Salehzadeh H, Khakyzadeh V, Madanchi H, Kardar GA, Zarrintaj P, Saeb MR, Mozafari M. COVID-19: A systematic review and update on prevention, diagnosis, and treatment. MedComm (Beijing) 2022; 3:e115. [PMID: 35281790 PMCID: PMC8906461 DOI: 10.1002/mco2.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023] Open
Abstract
Since the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions in assessments from the other side necessitates instantaneous updates on the progress of clinical investigations. There is also growing public anxiety from time to time mutation of COVID-19, as reflected in considerable mortality and transmission, respectively, from delta and Omicron variants. We comprehensively review and summarize different aspects of prevention, diagnosis, and treatment of COVID-19. First, biological characteristics of COVID-19 were explained from diagnosis standpoint. Thereafter, the preclinical animal models of COVID-19 were discussed to frame the symptoms and clinical effects of COVID-19 from patient to patient with treatment strategies and in-silico/computational biology. Finally, the opportunities and challenges of nanoscience/nanotechnology in identification, diagnosis, and treatment of COVID-19 were discussed. This review covers almost all SARS-CoV-2-related topics extensively to deepen the understanding of the latest achievements (last updated on January 11, 2022).
Collapse
Affiliation(s)
- Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry LaboratoryDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
- Advance Chemical Studies LaboratoryFaculty of ChemistryK. N. Toosi UniversityTehranIran
| | | | - Arezoo Beig Parikhani
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | - Ali Maleki
- Department of ChemistryIran University of Science and TechnologyTehranIran
| | | | - Masoume Bazaz
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | | | - Saman Rahmati
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Fatemeh Saberi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Yousefi Najafabadi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Shadi Damough
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Sara Mohseni
- Non‐metallic Materials Research GroupNiroo Research InstituteTehranIran
| | | | - Vahid Khakyzadeh
- Department of ChemistryK. N. Toosi University of TechnologyTehranIran
| | - Hamid Madanchi
- School of MedicineSemnan University of Medical SciencesSemnanIran
- Drug Design and Bioinformatics UnitDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
| | - Gholam Ali Kardar
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Mohammad Reza Saeb
- Department of Polymer TechnologyFaculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
50
|
Patient Perceptions on Receiving Vaccination Services through Community Pharmacies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052538. [PMID: 35270231 PMCID: PMC8909877 DOI: 10.3390/ijerph19052538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
Abstract
(1) Introduction: Pharmacists are medical professionals who play an active role in the protection of public health. Since 2021, pharmacists with an appropriate certification have been authorised to administer vaccines against COVID-19. (2) Objective: The objective of this study was to ascertain the perceptions of patients about receiving vaccinations through community pharmacies. (3) Material and methods: This study was conducted in 2021. The research tool was an anonymous questionnaire published on the websites of patient organisations. Ultimately, 1062 patients participated in this study. (4) Results: This study shows that most of the respondents find community pharmacies more accessible than outpatient clinics (85.3%). Sixty-one percent of the respondents stated that getting vaccinated at pharmacies would be less time consuming than at outpatient clinics. Nearly every third respondent (29.5%) declared that they would get vaccinated if they received such a recommendation from a pharmacist. Fifty-six percent of the respondents were of the opinion that the administration of vaccines by pharmacists would relieve the burden on medical staff and the healthcare system. (5) Conclusions: Polish patients participating in the study have a positive attitude towards the implementation of vaccination services in community pharmacies as an effective way of combating infectious diseases.
Collapse
|