1
|
Bai L, Xu J, Zeng L, Zhang L, Zhou F. A review of HSV pathogenesis, vaccine development, and advanced applications. MOLECULAR BIOMEDICINE 2024; 5:35. [PMID: 39207577 PMCID: PMC11362470 DOI: 10.1186/s43556-024-00199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Herpes simplex virus (HSV), an epidemic human pathogen threatening global public health, gains notoriety for its complex pathogenesis that encompasses lytic infection of mucosal cells, latent infection within neurons, and periodic reactivation. This intricate interplay, coupled with HSV's sophisticated immune evasion strategies, gives rise to various diseases, including genital lesions, neonatal encephalitis, and cancer. Despite more than 70 years of relentless research, an effective preventive or therapeutic vaccine against HSV has yet to emerge, primarily due to the limited understanding of virus-host interactions, which in turn impedes the identification of effective vaccine targets. However, HSV's unique pathological features, including its substantial genetic load capacity, high replicability, transmissibility, and neurotropism, render it a promising candidate for various applications, spanning oncolytic virotherapy, gene and immune therapies, and even as an imaging tracer in neuroscience. In this review, we comprehensively update recent breakthroughs in HSV pathogenesis and immune evasion, critically summarize the progress made in vaccine candidate development, and discuss the multifaceted applications of HSV as a biological tool. Importantly, we highlight both success and challenges, emphasizing the critical need for intensified research into HSV, with the aim of providing deeper insights that can not only advance HSV treatment strategies but also broaden its application horizons.
Collapse
Affiliation(s)
- Lan Bai
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiuzhi Xu
- Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Long Zhang
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Fangfang Zhou
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
2
|
Dass D, Banerjee A, Dhotre K, Sonawane V, More A, Mukherjee A. HSV-2 Manipulates Autophagy through Interferon Pathway: A Strategy for Viral Survival. Viruses 2024; 16:1383. [PMID: 39339859 PMCID: PMC11437441 DOI: 10.3390/v16091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Autophagy, an evolutionarily conserved cellular process, influences the regulation of viral infections. While the existing understanding indicates that Herpes Simplex Virus type 2 (HSV-2) maintains a basal level of autophagy to support its viral yield, the precise pathways governing the induction of autophagy during HSV-2 infection remain unknown. Therefore, this study aims to explore the role of type I interferons (IFN-I) in modulating autophagy during HSV-2 infection and to decode the associated signaling pathways. Our findings revealed an interplay wherein IFN-I regulates the autophagic response during HSV-2 infection. Additionally, we investigated the cellular pathways modulated during this complex process. Exploring the intricate network of signaling events involved in autophagy induction during HSV-2 infection holds promising therapeutic implications. Identifying these pathways advances our understanding of host-virus interactions and holds the foundation for developing targeted therapeutic strategies against HSV-2. The insight gained from this study provides a platform for exploring potential therapeutic targets to restrict HSV-2 infections, addressing a crucial need in antiviral research.
Collapse
Affiliation(s)
| | | | | | | | | | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, India; (D.D.); (A.B.); (K.D.); (V.S.); (A.M.)
| |
Collapse
|
3
|
Avitabile E, Menotti L, Croatti V, Giordani B, Parolin C, Vitali B. Protective Mechanisms of Vaginal Lactobacilli against Sexually Transmitted Viral Infections. Int J Mol Sci 2024; 25:9168. [PMID: 39273118 PMCID: PMC11395631 DOI: 10.3390/ijms25179168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The healthy cervicovaginal microbiota is dominated by various Lactobacillus species, which support a condition of eubiosis. Among their many functions, vaginal lactobacilli contribute to the maintenance of an acidic pH, produce antimicrobial compounds, and modulate the host immune response to protect against vaginal bacterial and fungal infections. Increasing evidence suggests that these beneficial bacteria may also confer protection against sexually transmitted infections (STIs) caused by viruses such as human papillomavirus (HPV), human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Viral STIs pose a substantial public health burden globally, causing a range of infectious diseases with potentially severe consequences. Understanding the molecular mechanisms by which lactobacilli exert their protective effects against viral STIs is paramount for the development of novel preventive and therapeutic strategies. This review aims to provide more recent insights into the intricate interactions between lactobacilli and viral STIs, exploring their impact on the vaginal microenvironment, host immune response, viral infectivity and pathogenesis, and highlighting their potential implications for public health interventions and clinical management strategies.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
4
|
Bloom DC, Lilly C, Canty W, Vilaboa N, Voellmy R. Very Broadly Effective Hemagglutinin-Directed Influenza Vaccines with Anti-Herpetic Activity. Vaccines (Basel) 2024; 12:537. [PMID: 38793788 PMCID: PMC11125745 DOI: 10.3390/vaccines12050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
A universal vaccine that generally prevents influenza virus infection and/or illness remains elusive. We have been exploring a novel approach to vaccination involving replication-competent controlled herpesviruses (RCCVs) that can be deliberately activated to replicate efficiently but only transiently in an administration site in the skin of a subject. The RCCVs are derived from a virulent wild-type herpesvirus strain that has been engineered to contain a heat shock promoter-based gene switch that controls the expression of, typically, two replication-essential viral genes. Additional safety against inadvertent replication is provided by an appropriate secondary mechanism. Our first-generation RCCVs can be activated at the administration site by a mild local heat treatment in the presence of an antiprogestin. Here, we report that epidermal vaccination with such RCCVs expressing a hemagglutinin or neuraminidase of an H1N1 influenza virus strain protected mice against lethal challenges by H1N1 virus strains representing 75 years of evolution. Moreover, immunization with an RCCV expressing a subtype H1 hemagglutinin afforded full protection against a lethal challenge by an H3N2 influenza strain, and an RCCV expressing a subtype H3 hemagglutinin protected against a lethal challenge by an H1N1 strain. Vaccinated animals continued to gain weight normally after the challenge. Protective effects were even observed in a lethal influenza B virus challenge. The RCCV-based vaccines induced robust titers of in-group, cross-group and even cross-type neutralizing antibodies. Passive immunization suggested that observed vaccine effects were at least partially antibody-mediated. In summary, RCCVs expressing a hemagglutinin induce robust and very broad cross-protective immunity against influenza.
Collapse
Affiliation(s)
- David C. Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - Cameron Lilly
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - William Canty
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA; (D.C.B.); (C.L.); (W.C.)
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER de Bioingenieria, Biomateriales y Nanomedicina, 28046 Madrid, Spain
| | | |
Collapse
|
5
|
Hussain MS, Gupta G, Samuel VP, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Khan R, Altwaijry N, Patel S, Patel A, Singh SK, Dua K. Immunopathology of herpes simplex virus-associated neuroinflammation: Unveiling the mysteries. Rev Med Virol 2024; 34:e2491. [PMID: 37985599 DOI: 10.1002/rmv.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
The immunopathology of herpes simplex virus (HSV)-associated neuroinflammation is a captivating and intricate field of study within the scientific community. HSV, renowned for its latent infection capability, gives rise to a spectrum of neurological expressions, ranging from mild symptoms to severe encephalitis. The enigmatic interplay between the virus and the host's immune responses profoundly shapes the outcome of these infections. This review delves into the multifaceted immune reactions triggered by HSV within neural tissues, intricately encompassing the interplay between innate and adaptive immunity. Furthermore, this analysis delves into the delicate equilibrium between immune defence and the potential for immunopathology-induced neural damage. It meticulously dissects the roles of diverse immune cells, cytokines, and chemokines, unravelling the intricacies of neuroinflammation modulation and its subsequent effects. By exploring HSV's immune manipulation and exploitation mechanisms, this review endeavours to unveil the enigmas surrounding the immunopathology of HSV-associated neuroinflammation. This comprehensive understanding enhances our grasp of viral pathogenesis and holds promise for pioneering therapeutic strategies designed to mitigate the neurological ramifications of HSV infections.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samir Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Archita Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, New South Wales, Australia
| |
Collapse
|
6
|
STOKES CALEB, J. MELVIN ANN. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2024:450-486.e24. [DOI: 10.1016/b978-0-323-82823-9.00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Smith JB, Herbert JJ, Truong NR, Cunningham AL. Cytokines and chemokines: The vital role they play in herpes simplex virus mucosal immunology. Front Immunol 2022; 13:936235. [PMID: 36211447 PMCID: PMC9538770 DOI: 10.3389/fimmu.2022.936235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous infections in humans. They cause orofacial and genital herpes with occasional severe complications. HSV2 also predisposes individuals to infection with HIV. There is currently no vaccine or immunotherapy for these diseases. Understanding the immunopathogenesis of HSV infections is essential to progress towards these goals. Both HSV viruses result in initial infections in two major sites - in the skin or mucosa, either after initial infection or recurrence, and in the dorsal root or trigeminal ganglia where the viruses establish latency. HSV1 can also cause recurrent infection in the eye. At all of these sites immune cells respond to control infection. T cells and resident dendritic cells (DCs) in the skin/mucosa and around reactivating neurones in the ganglia, as well as keratinocytes in the skin and mucosa, are major sources of cytokines and chemokines. Cytokines such as the Type I and II interferons synergise in their local antiviral effects. Chemokines such as CCL2, 3 and 4 are found in lesion vesicle fluid, but their exact role in determining the interactions between epidermal and dermal DCs and with resident memory and infiltrating CD4 and CD8 T cells in the skin/mucosa is unclear. Even less is known about these mechanisms in the ganglia. Here we review the data on known sources and actions of these cytokines and chemokines at cellular and tissue level and indicate their potential for preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Anthony L. Cunningham,
| |
Collapse
|
8
|
Van Gerwen OT, Muzny CA, Marrazzo JM. Sexually transmitted infections and female reproductive health. Nat Microbiol 2022; 7:1116-1126. [PMID: 35918418 PMCID: PMC9362696 DOI: 10.1038/s41564-022-01177-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
Abstract
Women are disproportionately affected by sexually transmitted infections (STIs) throughout life. In addition to their high prevalence in women, STIs have debilitating effects on female reproductive health due to female urogenital anatomy, socio-cultural and economic factors. In this Review, we discuss the prevalence and impact of non-HIV bacterial, viral and parasitic STIs on the reproductive and sexual health of cisgender women worldwide. We analyse factors affecting STI prevalence among transgender women and women in low-income settings, and describe the specific challenges and barriers to improved sexual health faced by these population groups. We also synthesize the latest advances in diagnosis, treatment and prevention of STIs. Women are more affected by sexually transmitted infections than men. This Review examines the impact of non-HIV STIs on women’s health, and discusses recent advances and current challenges in the treatment and prevention of STIs.
Collapse
Affiliation(s)
- Olivia T Van Gerwen
- Division of Infectious Diseases, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Jeanne M Marrazzo
- Division of Infectious Diseases, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
9
|
Fraternal Twins: The Enigmatic Role of the Immune System in Alphaherpesvirus Pathogenesis and Latency and Its Impacts on Vaccine Efficacy. Viruses 2022; 14:v14050862. [PMID: 35632603 PMCID: PMC9147900 DOI: 10.3390/v14050862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Although the establishment, maintenance and reactivation from alphaherpesvirus latency is far from fully understood, some things are now manifestly clear: Alphaherpesvirus latency occurs in neurons of the peripheral nervous system and control of the process is multifactorial and complex. This includes components of the immune system, contributions from non-neuronal cells surrounding neurons in ganglia, specialized nucleic acids and modifications to the viral DNA to name some of the most important. Efficacious vaccines have been developed to control both acute varicella and zoster, the outcome of reactivation, but despite considerable effort vaccines for acute herpes simplex virus (HSV) infection or reactivated lesions have thus far failed to materialize despite considerable effort. Given the relevance of the immune system to establish and maintain HSV latency, a vaccine designed to tailor the HSV response to maximize the activity of components most critical for controlling reactivated infection might limit the severity of recurrences and hence reduce viral transmission. In this review, we discuss the current understanding of immunological factors that contribute to HSV and VZV latency, identify differences between varicella-zoster virus (VZV) and HSV that could explain why vaccines have been valuable at controlling VZV disease but not HSV, and finish by outlining possible strategies for developing effective HSV vaccines.
Collapse
|
10
|
Novel strategies for prevention and treatment of antimicrobial resistance in sexually-transmitted infections. Curr Opin Infect Dis 2021; 34:591-598. [PMID: 34545855 DOI: 10.1097/qco.0000000000000793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance in sexually acquired infection (STI) pathogens is an important global public health threat. There is an urgent need for novel STI treatment and prevention strategies to tackle the rising incidence of STIs in high-income settings and the static progress in low- and middle-income settings over the past decade. The purpose of this review was to describe the research outlining the emergence of resistance in common STI pathogens and new strategies for their treatment and prevention. RECENT FINDINGS Rates of STIs have dramatically increased over the past decade. Further, antimicrobial resistance to first-line agents among key STI pathogens continues to emerge globally. Recent findings demonstrate promising results regarding the efficacy of novel antimicrobial treatment strategies for these pathogens, including several new, repurposed and unique combinations of antimicrobials. In addition, a number of new biomedical prevention strategies, such as antibacterial mouthwash and doxycycline chemoprophylaxis, are being investigated as novel prevention strategies for bacterial STIs. SUMMARY Significant progress has been made in the development of novel antimicrobials for the treatment of antimicrobial-resistant sexually acquired pathogens. However, due to the rapid development of resistance to antimicrobials demonstrated by these pathogens in the past, further research and development of effective prevention strategies should be prioritized.
Collapse
|
11
|
Shao Q, Wu F, Liu T, Wang W, Liu T, Jin X, Xu L, Ma Y, Huang G, Chen Z. JieZe-1 Alleviates HSV-2 Infection-Induced Genital Herpes in Balb/c Mice by Inhibiting Cell Apoptosis via Inducing Autophagy. Front Pharmacol 2021; 12:775521. [PMID: 34803718 PMCID: PMC8595469 DOI: 10.3389/fphar.2021.775521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Genital herpes (GH) is a common sexually transmitted disease mainly caused by herpes simplex virus 2 (HSV-2). JieZe-1 (JZ-1) is an in-hospital prescription that has been used in Tongji Hospital for many years to treat various lower female genital tract infectious diseases. Our previous study showed that JZ-1 can protect against HSV-2 infection in vitro by inducing autophagy. However, whether JZ-1 can protect against HSV-2 infection in vivo, and the underlying mechanisms involved still remain unclear. Therefore, this study was designed to address above questions. Methods: 8-week-old female balb/c mice were injected intravaginally with HSV-2 to establish GH model. The symptom score, body weight, and histological examination were recorded to assess the animal model of HSV-2 infected and the therapeutic effect of JZ-1. Inflammatory response was determined by detecting inflammatory cells infiltration and local cytokines levels. After then, under autophagy inhibitor chloroquine application, we measured the levels of cell apoptosis and autophagy and investigated the relationship between enhanced autophagy and cell apoptosis. Next, the classic PI3K/Akt/mTOR axis was examined, and in vitro experiment was carried out for further verification. Results: Our results showed that JZ-1 administration significantly reduces symptom score, increases weight gain and alleviates histological damage in HSV-2 infection-induced GH in balb/c mice. JZ-1 administration obviously ameliorates inflammatory responses with reduced T-lymphocytes, T helper cells, macrophages and neutrophils infiltration, and local IL-1β, IL-6, TNF-α and CCL2 levels. HSV-2 infection leads to massive cell apoptosis, which was also restored by JZ-1. Meanwhile, we found that HSV-2 infection blocks autophagic flux in vivo and JZ-1 administration induces autophagy. After chloroquine application, it was observed that the inhibition of autophagy is strongly associated with increased cell apoptosis, whereas the promotion of autophagy remarkedly decreases apoptosis. These results suggested that JZ-1 inhibits cell apoptosis in GH by inducing autophagy, which was further supported in later in vitro experiment. Additionally, PI3K/Akt/mTOR signaling pathway was also downregulated by JZ-1 administration. Conclusion: Our data demonstrated that JZ-1 can alleviate HSV-2 infection-induced GH in balb/c mice by inhibiting cell apoptosis via inducing autophagy, and the underlying mechanisms may be associated with the inhibition of PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Qingqing Shao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianli Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ximing Jin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggui Ma
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Görander S, Honda-Okubo Y, Bäckström M, Baldwin J, Bergström T, Petrovsky N, Liljeqvist JÅ. A truncated glycoprotein G vaccine formulated with Advax-CpG adjuvant provides protection of mice against genital herpes simplex virus 2 infection. Vaccine 2021; 39:5866-5875. [PMID: 34456075 DOI: 10.1016/j.vaccine.2021.08.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is a common sexually transmitted disease that affects approximately 500 million individuals globally. There is currently no approved vaccine to prevent HSV-2 infection. EXCT4 is a truncated form of the mature glycoprotein G-2 (mgG-2) that unlike full mature form is secreted by expressing cells enabling it to be rapidly scaled up for production. The current study examined whether EXCT4 immunity in mice could be further enhanced through use of adjuvants. EXCT4 formulated with Advax-CpG adjuvant induced a strong Th1-type immune response characterized by interferon gamma (IFN-γ) and protected animals against a lethal genital challenge with HSV-2. This response was associated with reduced viral load in vaginal washes, spinal cord, and dorsal root ganglia. Together the results provide proof of concept that EXCT4 formulated with Advax-CpG adjuvant is a promising HSV-2 vaccine candidate warranting further investigation.
Collapse
Affiliation(s)
- Staffan Görander
- Section of Virology, Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Malin Bäckström
- Mammalian Protein Expression Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremy Baldwin
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia
| | - Tomas Bergström
- Section of Virology, Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Adelaide 5046, Australia; College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| | - Jan-Åke Liljeqvist
- Section of Virology, Department of Infectious Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Obisesan O, Katata-Seru L, Mufamadi S, Mufhandu H. Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment. J Biomed Nanotechnol 2021; 17:793-808. [PMID: 34082867 DOI: 10.1166/jbn.2021.3074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the growing studies focused on the immunotherapy of hepatocellular carcinoma and proved the preclinical and clinical promises of host antitumor immune response. However, there were still various obstacles in meeting satisfactory clinic need, such as low response rate, primary resistance and secondary resistance to immunotherapy. Tackling these barriers required a deeper understanding of immune underpinnings and a broader understanding of advanced technology. This review described immune microenvironment of liver and HCC which naturally decided the complexity of immunotherapy, and summarized recent immunotherapy focusing on different points. The ever-growing clues indicated that the instant killing of tumor cell and the subsequent relive of immunosuppressive microenvironment were both indis- pensables. The nanotechnology applied in immunotherapy and the combination with intervention technology was also discussed.
Collapse
Affiliation(s)
- Oluwafemi Obisesan
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Lebogang Katata-Seru
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Steven Mufamadi
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Hazel Mufhandu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|