1
|
Valdez-Cruz NA, Rosiles-Becerril D, Martínez-Olivares CE, García-Hernández E, Cobos-Marín L, Garzón D, López-Salas FE, Zavala G, Luviano A, Olvera A, Alagón A, Ramírez OT, Trujillo-Roldán MA. Oral administration of a recombinant modified RBD antigen of SARS-CoV-2 as a possible immunostimulant for the care of COVID-19. Microb Cell Fact 2024; 23:41. [PMID: 38321489 PMCID: PMC10848483 DOI: 10.1186/s12934-024-02320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Developing effective vaccines against SARS-CoV-2 that consider manufacturing limitations, equitable access, and acceptance is necessary for developing platforms to produce antigens that can be efficiently presented for generating neutralizing antibodies and as a model for new vaccines. RESULTS This work presents the development of an applicable technology through the oral administration of the SARS-CoV-2 RBD antigen fused with a peptide to improve its antigenic presentation. We focused on the development and production of the recombinant receptor binding domain (RBD) produced in E. coli modified with the addition of amino acids extension designed to improve antigen presentation. The production was carried out in shake flask and bioreactor cultures, obtaining around 200 mg/L of the antigen. The peptide-fused RBD and peptide-free RBD proteins were characterized and compared using SDS-PAGE gel, high-performance chromatography, and circular dichroism. The peptide-fused RBD was formulated in an oil-in-water emulsion for oral mice immunization. The peptide-fused RBD, compared to RBD, induced robust IgG production in mice, capable of recognizing the recombinant RBD in Enzyme-linked immunosorbent assays. In addition, the peptide-fused RBD generated neutralizing antibodies in the sera of the dosed mice. The formulation showed no reactive episodes and no changes in temperature or vomiting. CONCLUSIONS Our study demonstrated the effectiveness of the designed peptide added to the RBD to improve antigen immunostimulation by oral administration.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, 22860, Tijuana-Ensenada, Baja California, Mexico.
| | - Diego Rosiles-Becerril
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Constanza E Martínez-Olivares
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Laura Cobos-Marín
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Daniel Garzón
- Unidad de Modelos Biológicos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, Mexico. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Francisco E López-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Guadalupe Zavala
- Unidad de Microscopia Electrónica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Axel Luviano
- Departamento de Genética del Desarrollo y Fisiologia Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Alejandro Olvera
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Alejandro Alagón
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Octavio T Ramírez
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, 22860, Tijuana-Ensenada, Baja California, Mexico.
| |
Collapse
|
2
|
Mosqueda J, Hernández-Silva DJ, Vega-López MA, Vega-Rojas LJ, Beltrán R, Velasco-Elizondo A, Ramírez-Estudillo MDC, Fragoso-Saavedra M, Pérez-Almeida C, Hernández J, Melgoza-González EA, Hinojosa-Trujillo D, Mercado-Uriostegui MÁ, Mejía-López AS, Rivera-Ballesteros C, García-Gasca T. Evaluation of the humoral and mucosal immune response of a multiepitope vaccine against COVID-19 in pigs. Front Immunol 2023; 14:1276950. [PMID: 38179057 PMCID: PMC10765521 DOI: 10.3389/fimmu.2023.1276950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction This study evaluated the immune response to a multiepitope recombinant chimeric protein (CHIVAX) containing B- and T-cell epitopes of the SARS-CoV-2 spike's receptor binding domain (RBD) in a translational porcine model for pre-clinical studies. Methods We generated a multiepitope recombinant protein engineered to include six coding conserved epitopes from the RBD domain of the SARS-CoV-2 S protein. Pigs were divided into groups and immunized with different doses of the protein, with serum samples collected over time to determine antibody responses by indirect ELISA and antibody titration. Peptide recognition was also analyzed by Western blotting. A surrogate neutralization assay with recombinant ACE2 and RBDs was performed. Intranasal doses of the immunogen were also prepared and tested on Vietnamese minipigs. Results When the immunogen was administered subcutaneously, it induced specific IgG antibodies in pigs, and higher doses correlated with higher antibody levels. Antibodies from immunized pigs recognized individual peptides in the multiepitope vaccine and inhibited RBD-ACE2 binding for five variants of concern (VOC). Comparative antigen delivery methods showed that both, subcutaneous and combined subcutaneous/intranasal approaches, induced specific IgG and IgA antibodies, with the subcutaneous approach having superior neutralizing activity. CHIVAX elicited systemic immunity, evidenced by specific IgG antibodies in the serum, and local mucosal immunity, indicated by IgA antibodies in saliva, nasal, and bronchoalveolar lavage secretions. Importantly, these antibodies demonstrated neutralizing activity against SARS-CoV-2 in vitro. Discussion The elicited antibodies recognized individual epitopes on the chimeric protein and demonstrated the capacity to block RBD-ACE2 binding of the ancestral SARS-CoV-2 strain and four VOCs. The findings provide proof of concept for using multiepitope recombinant antigens and a combined immunization protocol to induce a neutralizing immune response against SARS-CoV-2 in the pig translational model for preclinical studies.
Collapse
Affiliation(s)
- Juan Mosqueda
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Diego Josimar Hernández-Silva
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Marco Antonio Vega-López
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Lineth J. Vega-Rojas
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Rolando Beltrán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Andrés Velasco-Elizondo
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - María del Carmen Ramírez-Estudillo
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Mario Fragoso-Saavedra
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) del Instituto Politécnico Nacional, Departamento de Infectómica y Patogénesis Molecular, Laboratorio de Inmunobiología de las Mucosas, Ciudad de México, Mexico
| | - Chyntia Pérez-Almeida
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Jesús Hernández
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Edgar A. Melgoza-González
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Diana Hinojosa-Trujillo
- Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C, Hermosillo, Mexico
| | - Miguel Ángel Mercado-Uriostegui
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Alma Susana Mejía-López
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Carlos Rivera-Ballesteros
- Immunology and Vaccines Laboratory, Facultad de Ciencias Naturales, Universidad Autonoma de Queretaro, Carretera a Chichimequillas, Santiago de Querétaro, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
3
|
Gromova MS, Gromov AV, Grunina TM, Lyashchuk AM, Galushkina ZM, Subbotina ME, Esmagambetov IB, Ryabova EI, Prokofiev VV, Kovyrshina AV, Ilyukhina AA, Shelkov AY, Karyagina AS, Lunin VG. Recombinant RBD of the SARS-CoV-2 Spike Protein: Production in Escherichia coli Cells, Binding to Antibodies, and Antiviral Activity. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2023; 38:86-94. [DOI: 10.3103/s0891416823020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
|
4
|
Subramoney K, Mtileni N, Davis A, Giandhari J, Tegally H, Wilkinson E, Naidoo Y, Ramphal Y, Pillay S, Ramphal U, Simane A, Reddy B, Mashishi B, Mbenenge N, de Oliveira T, Fielding BC, Treurnicht FK. SARS-CoV-2 spike protein diversity at an intra-host level, among SARS-CoV-2 infected individuals in South Africa, 2020 to 2022. PLoS One 2023; 18:e0286373. [PMID: 37253027 PMCID: PMC10228762 DOI: 10.1371/journal.pone.0286373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
Intra-host diversity studies are used to characterise the mutational heterogeneity of SARS-CoV-2 infections in order to understand the impact of virus-host adaptations. This study investigated the frequency and diversity of the spike (S) protein mutations within SARS-CoV-2 infected South African individuals. The study included SARS-CoV-2 respiratory samples, from individuals of all ages, received at the National Health Laboratory Service at Charlotte Maxeke Johannesburg Academic hospital, Gauteng, South Africa, from June 2020 to May 2022. Single nucleotide polymorphism (SNP) assays and whole genome sequencing were performed on a random selection of SARS-CoV-2 positive samples. The allele frequency (AF) was determined using TaqMan Genotyper software for SNP PCR analysis and galaxy.eu for analysis of FASTQ reads from sequencing. The SNP assays identified 5.3% (50/948) of Delta cases with heterogeneity at delY144 (4%; 2/50), E484Q (6%; 3/50), N501Y (2%; 1/50) and P681H (88%; 44/50), however only heterogeneity for E484Q and delY144 were confirmed by sequencing. From sequencing we identified 9% (210/2381) of cases with Beta, Delta, Omicron BA.1, BA.2.15, and BA.4 lineages that had heterogeneity in the S protein. Heterogeneity was primarily identified at positions 19 (1.4%) with T19IR (AF 0.2-0.7), 371 (92.3%) with S371FP (AF 0.1-1.0), and 484 (1.9%) with E484AK (0.2-0.7), E484AQ (AF 0.4-0.5) and E484KQ (AF 0.1-0.4). Mutations at heterozygous amino acid positions 19, 371 and 484 are known antibody escape mutations, however the impact of the combination of multiple substitutions identified at the same position is unknown. Therefore, we hypothesise that intra-host SARS-CoV-2 quasispecies with heterogeneity in the S protein facilitate competitive advantage of variants that can completely/partially evade host's natural and vaccine-induced immune responses.
Collapse
Affiliation(s)
- Kathleen Subramoney
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Nkhensani Mtileni
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Ashlyn Davis
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Yeshnee Naidoo
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Yajna Ramphal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andiswa Simane
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Bhaveshan Reddy
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Bonolo Mashishi
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Nonhlanhla Mbenenge
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical BioSciences, University of the Western Cape, Cape Town, South Africa
| | - Florette K. Treurnicht
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| |
Collapse
|
5
|
Balasubramaniyam A, Ryan E, Brown D, Hamza T, Harrison W, Gan M, Sankhala RS, Chen WH, Martinez EJ, Jensen JL, Dussupt V, Mendez-Rivera L, Mayer S, King J, Michael NL, Regules J, Krebs S, Rao M, Matyas GR, Joyce MG, Batchelor AH, Gromowski GD, Dutta S. Unglycosylated Soluble SARS-CoV-2 Receptor Binding Domain (RBD) Produced in E. coli Combined with the Army Liposomal Formulation Containing QS21 (ALFQ) Elicits Neutralizing Antibodies against Mismatched Variants. Vaccines (Basel) 2022; 11:vaccines11010042. [PMID: 36679887 PMCID: PMC9864931 DOI: 10.3390/vaccines11010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of novel potentially pandemic pathogens necessitates the rapid manufacture and deployment of effective, stable, and locally manufacturable vaccines on a global scale. In this study, the ability of the Escherichia coli expression system to produce the receptor binding domain (RBD) of the SARS-CoV-2 spike protein was evaluated. The RBD of the original Wuhan-Hu1 variant and of the Alpha and Beta variants of concern (VoC) were expressed in E. coli, and their biochemical and immunological profiles were compared to RBD produced in mammalian cells. The E. coli-produced RBD variants recapitulated the structural character of mammalian-expressed RBD and bound to human angiotensin converting enzyme (ACE2) receptor and a panel of neutralizing SARS-CoV-2 monoclonal antibodies. A pilot vaccination in mice with bacterial RBDs formulated with a novel liposomal adjuvant, Army Liposomal Formulation containing QS21 (ALFQ), induced polyclonal antibodies that inhibited RBD association to ACE2 in vitro and potently neutralized homologous and heterologous SARS-CoV-2 pseudoviruses. Although all vaccines induced neutralization of the non-vaccine Delta variant, only the Beta RBD vaccine produced in E. coli and mammalian cells effectively neutralized the Omicron BA.1 pseudovirus. These outcomes warrant further exploration of E. coli as an expression platform for non-glycosylated, soluble immunogens for future rapid response to emerging pandemic pathogens.
Collapse
Affiliation(s)
- Arasu Balasubramaniyam
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Emma Ryan
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dallas Brown
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Therwa Hamza
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - William Harrison
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Michael Gan
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rajeshwer S. Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Elizabeth J. Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jaime L. Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Letzibeth Mendez-Rivera
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sandra Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jocelyn King
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jason Regules
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Shelly Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- U.S. Military HIV Research Program, B-cell Biology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gary R. Matyas
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Adrian H. Batchelor
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D. Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sheetij Dutta
- Biologics Research and Development Branch, Structural Vaccinology Laboratory, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Correspondence: ; Tel.: +1-301-319-9154
| |
Collapse
|
6
|
Wo J, Lv ZY, Sun JN, Tang H, Qi N, Ye BC. Engineering probiotic-derived outer membrane vesicles as functional vaccine carriers to enhance immunity against SARS-CoV-2. iScience 2022; 26:105772. [PMID: 36510593 PMCID: PMC9729586 DOI: 10.1016/j.isci.2022.105772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Because of the continued emergence of SARS-CoV-2 variants, there has been considerable interest in how to display multivalent antigens efficiently. Bacterial outer membrane vesicles (OMVs) can serve as an attractive vaccine delivery system because of their self-adjuvant properties and the ability to be decorated with antigens. Here we set up a bivalent antigen display platform based on engineered OMVs using mCherry and GFP and demonstrated that two different antigens of SARS-CoV-2 could be presented simultaneously in the lumen and on the surface of OMVs. Comparing immunogenicity, ClyA-NG06 fusion and the receptor-binding domain (RBD) of the spike protein in the OMV lumen elicited a stronger humoral response in mice than OMVs presenting either the ClyA-NG06 fusion or RBD alone. Taken together, we provided an efficient approach to display SARS-CoV-2 antigens in the lumen and on the surface of the same OMV and highlighted the potential of OMVs as general multi-antigen carriers.
Collapse
Affiliation(s)
- Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, China
| | - Zhao-Yong Lv
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, China
| | - Jia-Nan Sun
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, China
| | - Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, China
| | - Nan Qi
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014 Zhejiang, China,Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China,Corresponding author
| |
Collapse
|
7
|
The Occluded Epitope Residing in Spike Receptor-Binding Motif Is Essential for Cross-Neutralization of SARS-CoV-2 Delta Variant. Curr Issues Mol Biol 2022; 44:2842-2855. [PMID: 35877419 PMCID: PMC9320864 DOI: 10.3390/cimb44070195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Concerns over vaccine efficacy after the emergence of the SARS-CoV-2 Delta variant prompted revisiting the vaccine design concepts. Monoclonal antibodies (mAbs) have been developed to identify the neutralizing epitopes on spike protein. It has been confirmed that the key amino acid residues in epitopes that induce the formation of neutralizing antibodies do not have to be on the receptor-binding domain (RBD)- angiotensin-converting enzyme 2 (ACE2) contact surface, and may be conformationally hidden. In addition, this epitope is tolerant to amino acid mutations of the Delta variant. The antibody titers against RBD in health care workers in Thailand receiving two doses of CoronaVac, followed by a booster dose of BNT162b2, were significantly increased. The neutralizing antibodies against the Delta variant suggest that the overall neutralizing antibody level against the Wuhan strain, using the NeutraLISA, was consistent with the levels of anti-RBD antibodies. However, individuals with moderate anti-RBD antibody responses have different levels of a unique antibody population competing with a cross-neutralizing mAb clone, 40591-MM43, determined by in-house competitive ELISA. Since 40591-MM43 mAb indicates cross-neutralizing activity against the Delta variant, this evidence implies that the efficiency of the vaccination regimen should be improved to facilitate cross-protective antibodies against Delta variant infections. The RBD epitope recognized by 40591-MM43 mAb is hidden in the close state.
Collapse
|
8
|
Fragoso-Saavedra M, Ramírez-Estudillo C, Peláez-González DL, Ramos-Flores JO, Torres-Franco G, Núñez-Muñoz L, Marcelino-Pérez G, Segura-Covarrubias MG, González-González R, Ruiz-Medrano R, Xoconostle-Cázares B, Gayosso-Vázquez A, Reyes-Maya S, Ramírez-Andoney V, Alonso-Morales RA, Vega-López MA. Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2. Front Immunol 2022; 13:848054. [PMID: 35432364 PMCID: PMC9008747 DOI: 10.3389/fimmu.2022.848054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
New vaccine design approaches, platforms, and immunization strategies might foster antiviral mucosal effector and memory responses to reduce asymptomatic infection and transmission in vaccinated individuals. Here, we investigated a combined parenteral and mucosal immunization scheme to induce local and serum antibody responses, employing the epitope-based antigens 3BT and NG19m. These antigens target the important emerging and re-emerging viruses PRRSV-2 and SARS-CoV-2, respectively. We assessed two versions of the 3BT protein, which contains conserved epitopes from the GP5 envelope protein of PRRSV-2: soluble and expressed by the recombinant baculovirus BacDual-3BT. On the other hand, NG19m, comprising the receptor-binding motif of the S protein of SARS-CoV-2, was evaluated as a soluble recombinant protein only. Vietnamese mini-pigs were immunized employing different inoculation routes: subcutaneous, intranasal, or a combination of both (s.c.-i.n.). Animals produced antigen-binding and neut1ralizing antibodies in serum and mucosal fluids, with varying patterns of concentration and activity, depending on the antigen and the immunization schedule. Soluble 3BT was a potent immunogen to elicit binding and neutralizing antibodies in serum, nasal mucus, and vaginal swabs. The vectored immunogen BacDual-3BT induced binding antibodies in serum and mucosae, but PRRSV-2 neutralizing activity was found in nasal mucus exclusively when administered intranasally. NG19m promoted serum and mucosal binding antibodies, which showed differing neutralizing activity. Only serum samples from subcutaneously immunized animals inhibited RBD-ACE2 interaction, while mini-pigs inoculated intranasally or via the combined s.c.-i.n. scheme produced subtle neutralizing humoral responses in the upper and lower respiratory mucosae. Our results show that intranasal immunization, alone or combined with subcutaneous delivery of epitope-based antigens, generates local and systemic binding and neutralizing antibodies. Further investigation is needed to evaluate the capability of the induced responses to prevent infection and reduce transmission.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carmen Ramírez-Estudillo
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Diana L. Peláez-González
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge O. Ramos-Flores
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gustavo Torres-Franco
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leandro Núñez-Muñoz
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Marcelino-Pérez
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María G. Segura-Covarrubias
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rogelio González-González
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amanda Gayosso-Vázquez
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Silvia Reyes-Maya
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vianey Ramírez-Andoney
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio A. Alonso-Morales
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|