1
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2025; 21:260-282. [PMID: 39291740 PMCID: PMC11759520 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Yang Y, Hong J, Zhang Z, Zheng M, Zhao J, Fang X, Liang X, Liu J, Yang Y, Tian G, Fang C. Oral supplementation with lactic acid bacteria improve the intestinal epithelial barrier and gut microbiota of broiler chicks to alleviate Salmonella Enteritidis infection. Poult Sci 2024; 103:104385. [PMID: 39442198 PMCID: PMC11538865 DOI: 10.1016/j.psj.2024.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Lactic acid bacteria (LAB) play a key role in regulating the balance of gut microbiota and serve as a suitable alternative to antibiotics. This study aims to evaluate the characteristics of 2 LAB isolates Lactiplantibacillus plantarum Lp71 (L. plantarum Lp71) and Enterococcus faecium Ef72 (E. faecium Ef72), and their roles in alleviating Salmonella Enteritidis infection. Sixty 1-day-old chicks were randomly divided into 4 groups which treated with or without L. plantarum Lp71 and E. faecium Ef72 mixture for 21 d, and then intestinal samples were collected for gut microbiota analysis, pathological and immunohistochemical analysis at 24 h post infection with or without Salmonella Enteritidis on the 22nd d. The results showed that L. plantarum Lp71 and E. faecium Ef72 had the ability to anti-acid and anti-bile salt. Salmonella Enteritidis infection damaged the intestinal epithelial barrier and reduced the expression level of tight junction proteins (ZO-1, Claudin-1, Occludin). Oral supplementation with L. plantarum Lp71 and E. faecium Ef72 mixture could alleviated the damages to intestinal epithelial barrier by Salmonella Enteritidis infection. Salmonella Enteritidis could cause abnormal Akkermansia muciniphila proliferation and decrease the diversity of cecal microbiota in chicks. These conditions could have further led to reduce gut microbiota health index (GMHI), and improve microbial dysbiosis index (MDI). Moreover, oral supplementation with L. plantarum Lp71 and E. faecium Ef72 mixture could effectively prevent the aforementioned infection outcomes and increase the abundance proportions of the several key functions in metabolic pathways metabolic pathways such as transcription and signal transduction mechanisms. In summary, L. plantarum Lp71 and E. faecium Ef72 could be the probiotics candidates that used to prevent the damage from enteric pathogens such as Salmonella Enteritidis in broiler chicks.
Collapse
Affiliation(s)
- Yuting Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Jiajun Hong
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Zheng Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Minghao Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Jingang Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xiaowei Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Jing Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China.
| | - Yuying Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China
| | - Guangming Tian
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
3
|
Dekham K, Jones SM, Jitrakorn S, Charoonnart P, Thadtapong N, Intuy R, Dubbs P, Siripattanapipong S, Saksmerprome V, Chaturongakul S. Functional and genomic characterization of a novel probiotic Lactobacillus johnsonii KD1 against shrimp WSSV infection. Sci Rep 2023; 13:21610. [PMID: 38062111 PMCID: PMC10703779 DOI: 10.1038/s41598-023-47897-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
White Spot syndrome virus (WSSV) causes rapid shrimp mortality and production loss worldwide. This study demonstrates potential use of Lactobacillus johnsonii KD1 as an anti-WSSV agent for post larva shrimp cultivation and explores some potential mechanisms behind the anti-WSSV properties. Treatment of Penaeus vannamei shrimps with L. johnsonii KD1 prior to oral challenge with WSSV-infected tissues showed a significantly reduced mortality. In addition, WSSV copy numbers were not detected and shrimp immune genes were upregulated. Genomic analysis of L. johnsonii KD1 based on Illumina and Nanopore platforms revealed a 1.87 Mb chromosome and one 15.4 Kb plasmid. Only one antimicrobial resistance gene (ermB) in the chromosome was identified. Phylogenetic analysis comparing L. johnsonii KD1 to other L. johnsonii isolates revealed that L. johnsonii KD1 is closely related to L. johnsonii GHZ10a isolated from wild pigs. Interestingly, L. johnsonii KD1 contains isolate-specific genes such as genes involved in a type I restriction-modification system and CAZymes belonging to the GT8 family. Furthermore, genes coding for probiotic survival and potential antimicrobial/anti-viral metabolites such as a homolog of the bacteriocin helveticin-J were found. Protein-protein docking modelling suggests the helveticin-J homolog may be able to block VP28-PmRab7 interactions and interrupt WSSV infection.
Collapse
Affiliation(s)
- Kanokwan Dekham
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Samuel Merryn Jones
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, CT2 7NZ, UK
| | - Sarocha Jitrakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Patai Charoonnart
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nalumon Thadtapong
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Rattanaporn Intuy
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Padungsri Dubbs
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Vanvimon Saksmerprome
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Soraya Chaturongakul
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Wu Y, Hu A, Shu X, Huang W, Zhang R, Xu Y, Yang C. Lactobacillus plantarum postbiotics trigger AMPK-dependent autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome activation. J Cell Physiol 2023; 238:1336-1353. [PMID: 37052047 DOI: 10.1002/jcp.31016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
We previously found that Lactobacillus plantarum (LP)-derived postbiotics protected animals against Salmonella infection, but the molecular mechanism remains obscure. This study clarified the mechanisms from the perspective of autophagy. Intestinal porcine epithelial cells (IPEC-J2) were pretreated with LP-derived postbiotics (the culture supernatant, LPC; or heat-killed bacteria, LPB), and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics markedly triggered autophagy under ST infection, as indicated by the increased LC3 and Beclin1 and the decreased p62 levels. Meanwhile, LP postbiotics (particularly LPC) exhibited a strong capacity of inhibiting ST adhesion, invasion and replication. Pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) led to a significant decrease of autophagy and the aggravated infection, indicating the importance of autophagy in LP postbiotics-mediated Salmonella elimination. LP postbiotics (especially LPB) significantly suppressed ST-induced inflammation by modulating inflammatory cytokines (the increased interleukin (IL)-4 and IL-10, and decreased tumor necrosis factor-α (TNF), IL-1β, IL-6 and IL-18). Furthermore, LP postbiotics inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation, as evidenced by the decreased levels of NLRP3, Caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Deficits in autophagy resulted in an increase of inflammatory response and inflammasome activation. Finally, we found that both LPC and LPB triggered AMP-activated protein kinase (AMPK) signaling pathway to induce autophagy, and this was further confirmed by AMPK RNA interference. The intracellular infection and NLRP3 inflammasome were aggravated after AMPK knockdown. In summary, LP postbiotics trigger AMPK-mediated autophagy to suppress Salmonella intracellular infection and NLRP3 inflammasome in IPEC-J2 cells. Our findings highlight the effectiveness of postbiotics, and provide a new strategy for preventing Salmonella infection.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Aixin Hu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xin Shu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wenxia Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
5
|
Han S, Zheng H, Han F, Zhang X, Zhang G, Ma S, Liu K, Qin W, Wu G. Lactobacillus johnsonii 6084 alleviated sepsis-induced organ injury by modulating gut microbiota. Food Sci Nutr 2022; 10:3931-3941. [PMID: 36348793 PMCID: PMC9632218 DOI: 10.1002/fsn3.2989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/18/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is a public cause of death in intensive care unit patients. Probiotics were widely used to increase the survival rate of sepsis by a series of clinical research. The purpose of this research was to investigate the therapeutic effects of Lactobacillus johnsonii 6084 in septic mice. Sepsis mouse model was induced by LPS treatment. The influence of L. johnsonii 6084 on the protection of organ injury induced by sepsis was explored. Moreover, the composition of gut microbiota was studied to clarify the mechanism of L. johnsonii 6084 therapeutic effect on sepsis. L. johnsonii 6084 treatment could conspicuously decrease the mortality and organ injury of sepsis. The reduction of gut microbial diversity and richness in septic mice were moderated by the administration of 6084. The abundance of Bacteroidetes and Proteobacteria were change by LPS treatment while restored by L. johnsonii 6084. To conclude, probiotic 6084 may has optimistic result on reducing mortality of sepsis through rebalancing gut microbiota.
Collapse
Affiliation(s)
- Shichao Han
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Haotian Zheng
- BGI Education CenterUniversity of Chinese Academy of SciencesShenzhenChina
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Xiaowei Zhang
- Department of Obstetrics and GynecologyPeking University Shenzhen HospitalShenzhenChina
| | - Geng Zhang
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Shuaijun Ma
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Kepu Liu
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Weijun Qin
- Department of Urology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
6
|
Zou Y, Wang X, Xu J, Wang S, Li S, Zhu Y, Wang J. Z. morio Hemolymph Relieves E. coli-Induced Mastitis by Inhibiting Inflammatory Response and Repairing the Blood-Milk Barrier. Int J Mol Sci 2022; 23:13279. [PMID: 36362066 PMCID: PMC9657162 DOI: 10.3390/ijms232113279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2024] Open
Abstract
Escherichia coli (E. coli) is a major environmental pathogen causing coliform mastitis, characterized by cell death and mammary tissue damage. Our previous study has shown the antimicrobial effect of Zophobas morio (Z. morio) hemolymph against mastitis pathogens. In this study, we established E. coli-induced cellular and animal models for mastitis, aiming to evaluate the protective effect of Z. morio hemolymph against E. coli-induced mastitis in vivo and in vitro. In mice with E. coli, Z. morio hemolymph attenuated bacterial burden and histopathological impairment, reduced the production of interleukin (IL)-1β, IL-18, tumor necrosis factor-α (TNF-α) and the ratio of CD4+ T/CD8+ T, and increased the production of IL-2 triggered by E. coli. Z. morio hemolymph also enhanced the integrity of the blood-milk barrier in E. coli-induced mastitis. In E. coli-stimulated porcine mammary epithelial cells, Z. morio hemolymph inhibited E. coli-induced inflammatory responses and upregulated tight junction proteins (ZO-1, Claudin-3 and Occludin). Moreover, we found that the anti-inflammatory effect of Z. morio hemolymph was mediated by inhibiting E. coli-induced NLRP3 inflammasome assembly, Caspase-1 activation, and reversing the inhibitory effect of E. coli on autophagy. Besides, Z. morio hemolymph augmented ATG5/ATG16L1-mediated autophagy activation, negatively regulated NLRP3 inflammasome activation. Our results reveal that Z. morio hemolymph alleviates E. coli-induced mastitis via lessening the inflammatory response by regulating the NLRP3 and ATG5/ATG16L1 signaling pathway, as well as repairing the blood-milk barrier.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Zhang Y, Qin S, Song Y, Yuan J, Hu S, Chen M, Li L. Alginate Oligosaccharide Alleviated Cisplatin-Induced Kidney Oxidative Stress via Lactobacillus Genus-FAHFAs-Nrf2 Axis in Mice. Front Immunol 2022; 13:857242. [PMID: 35432359 PMCID: PMC9010505 DOI: 10.3389/fimmu.2022.857242] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Alginate oligosaccharide is the depolymerized product of alginate, a natural extract of brown algae, which is associated with beneficial health effects. Here, we aimed to investigate the mechanism via which alginate oligosaccharides improve kidney oxidative damage and liver inflammation induced by cisplatin chemotherapy via the gut microbiota. C57BL/6J mice were treated with cisplatin were administered alginate oligosaccharide via gavage for 3 weeks. Compared to that observed in the cisplatin chemotherapy group without intragastric administration of alginate oligosaccharide, liver inflammation improved in the alginate oligosaccharide group, indicated by reduction in lipopolysaccharide and interleukin-1β (IL-1β) levels. This was accompanied by improvement in the oxidative stress of mice kidneys, indicated by the increase in the levels of superoxide dismutase (SOD), catalase (CAT) and nuclear NF-E2-related factor 2 (Nrf2) in renal tissue, and reduction in the levels of malondialdehyde (MDA) in renal tissue and serum creatinine (Cr) to the levels of the normal control group. Alginate oligosaccharide intervention increased the concentration of fatty acid esters of hydroxy fatty acids (FAHFAs). Alginate oligosaccharide regulated the composition of the intestinal microbial community and promoted Lactobacillus stains, such as Lactobacillus johnsonii and Lactobacillus reuteri. Spearman analysis showed that 5 members of FAHFAs concentrations were positively correlated with Lactobacillus johnsonii and Lactobacillus reuteri abundance. We observed that alginate oligosaccharide increased FAHFAs producing-related bacterial abundance and FAHFAs levels, enhanced the levels of SOD and CAT in kidney tissue, and reduced the levels of MDA via activating Nrf2, thereby ameliorating the renal redox injury caused by cisplatin chemotherapy.
Collapse
Affiliation(s)
- Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- College of Life Sciences, Yantai University, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Jingyi Yuan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Min Chen
- College of Life Sciences, Yantai University, Yantai, China
| | - Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Lili Li,
| |
Collapse
|
8
|
Zhao H, Lu Z, Lu Y. The potential of probiotics in the amelioration of hyperuricemia. Food Funct 2022; 13:2394-2414. [PMID: 35156670 DOI: 10.1039/d1fo03206b] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyperuricemia is a common disease caused by metabolic disorders or the excessive intake of high-purine foods. Persistent hyperuricemia in extreme cases induces gout, and asymptomatic hyperuricemia is probably linked to other metabolic diseases, such as hypertension. The typical damage caused by asymptomatic hyperuricemia includes inflammation, oxidative stress and gut dysbiosis. Probiotics have broad potential applications as food additives, not as drug therapies, in the amelioration of hyperuricemia. In this review, we describe novel methods for potential hyperuricemia amelioration with probiotics. The pathways through which probiotics may ameliorate hyperuricemia are discussed, including the decrease in uric acid production through purine assimilation and XOD (xanthine oxidase) inhibition as well as enhanced excretion of uric acid production by promoting ABCG2 (ATP binding cassette subfamily G member 2) activity, respectively. Three possible probiotic-related therapeutic pathways for alleviating the syndrome of hyperuricemia are also summarized. The first mechanism is to alleviate the oxidation and inflammation induced by hyperuricemia through the inhibition of NLRP3 inflammasome, the second is to restore damaged intestinal epithelium barriers and prevent gut microbiota dysbiosis, and the third is to enhance the innate immune system by increasing the secretion of immunoglobulin A (sIgA) to resist the stimulus by hyperuricemia. We propose that future research should focus on superior strain resource isolation and insight into the cause-effect mechanisms of probiotics for hyperuricemia amelioration. The safety and effects of the application of probiotics in clinical use also need verification.
Collapse
Affiliation(s)
- Hongyuan Zhao
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
9
|
Modulatory Properties of Food and Nutraceutical Components Targeting NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14030490. [PMID: 35276849 PMCID: PMC8840562 DOI: 10.3390/nu14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammasomes are key intracellular multimeric proteins able to initiate the cellular inflammatory signaling pathway. NLRP3 inflammasome represents one of the main protein complexes involved in the development of inflammatory events, and its activity has been largely demonstrated to be connected with inflammatory or autoinflammatory disorders, including diabetes, gouty arthritis, liver fibrosis, Alzheimer’s disease, respiratory syndromes, atherosclerosis, and cancer initiation. In recent years, it has been demonstrated how dietary intake and nutritional status represent important environmental elements that can modulate metabolic inflammation, since food matrices are an important source of several bioactive compounds. In this review, an updated status of knowledge regarding food bioactive compounds as NLRP3 inflammasome modulators is discussed. Several chemical classes, namely polyphenols, organosulfurs, terpenes, fatty acids, proteins, amino acids, saponins, sterols, polysaccharides, carotenoids, vitamins, and probiotics, have been shown to possess NLRP3 inflammasome-modulating activity through in vitro and in vivo assays, mainly demonstrating an anti-NLRP3 inflammasome activity. Plant foods are particularly rich in important bioactive compounds, each of them can have different effects on the pathway of inflammatory response, confirming the importance of the nutritional pattern (food model) as a whole rather than any single nutrient or functional compound.
Collapse
|
10
|
Native and Engineered Probiotics: Promising Agents against Related Systemic and Intestinal Diseases. Int J Mol Sci 2022; 23:ijms23020594. [PMID: 35054790 PMCID: PMC8775704 DOI: 10.3390/ijms23020594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal homeostasis is a dynamic balance involving the interaction between the host intestinal mucosa, immune barrier, intestinal microecology, nutrients, and metabolites. Once homeostasis is out of balance, it will increase the risk of intestinal diseases and is also closely associated with some systemic diseases. Probiotics (Escherichia coli Nissle 1917, Akkermansia muciniphila, Clostridium butyricum, lactic acid bacteria and Bifidobacterium spp.), maintaining the gut homeostasis through direct interaction with the intestine, can also exist as a specific agent to prevent, alleviate, or cure intestinal-related diseases. With genetic engineering technology advancing, probiotics can also show targeted therapeutic properties. The aims of this review are to summarize the roles of potential native and engineered probiotics in oncology, inflammatory bowel disease, and obesity, discussing the therapeutic applications of these probiotics.
Collapse
|
11
|
Anti- Staphylococcus aureus Single-Chain Fragment Variables Play a Protective Anti-Inflammatory Role In Vitro and In Vivo. Vaccines (Basel) 2021; 9:vaccines9111300. [PMID: 34835231 PMCID: PMC8618225 DOI: 10.3390/vaccines9111300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a causative agent of bovine mastitis, capable of causing significant economic losses to the dairy industry worldwide. This study focuses on obtaining single-chain fragment variables (scFvs) against the virulence factors of S. aureus and evaluates the protective effect of scFvs on bovine mammary epithelial (MAC-T) cells and mice mammary gland tissues infected by S. aureus. After five rounds of bio-panning, four scFvs targeting four virulence factors of S. aureus were obtained. The complementarity-determining regions (CDRs) of these scFvs exhibited significant diversities, especially CDR3 of the VH domain. In vitro, each of scFvs was capable of inhibiting S. aureus growth and reducing the damage of MAC-T cells infected by S. aureus. Preincubation of MAC-T cells with scFvs could significantly attenuate the effect of apoptosis and necrosis compared with the negative control group. In vivo, the qPCR and ELISA results demonstrated that scFvs reduced the transcription and expression of Tumor Necrosis Factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8, and IL-18. Histopathology and myeloperoxidase (MPO) results showed that scFvs ameliorated the histopathological damages and reduced the inflammatory cells infiltration. The overall results demonstrated the positive anti-inflammatory effect of scFvs, revealing the potential role of scFvs in the prevention and treatment of S. aureus infections.
Collapse
|
12
|
Hu Y, Zhao M, Lu Z, Lv F, Zhao H, Bie X. L. johnsonii, L. plantarum, and L. rhamnosus alleviated Enterohaemorrhagic Escherichia coli-induced diarrhoea in mice by regulating gut microbiota. Microb Pathog 2021; 154:104856. [PMID: 33766633 DOI: 10.1016/j.micpath.2021.104856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/04/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a prominent foodborne pathogen that causes infectious intestinal diarrhoea. Lactobacillus is a recognized probiotic that inhibits intestinal pathogens and maintains the balance of the intestinal flora. The purpose of this study was to investigate the regulatory effects of three Lactobacillus strains, L. johnsonii, L. plantarum, and L. rhamnosus, on the intestinal flora of EHEC-infected mice. The initial weight and diarrhoea index of the mice were recorded. After 21 days, the faeces of the mice were subjected to 16S rDNA high-throughput sequencing. The diarrhoea index of mice treated with Lactobacillus improved, their body weight continued to rise, and their liver index gradually decreased. The α diversity analysis showed that the intestinal flora diversity and abundance were lower in mice infected with EHEC than in healthy mice. L. plantarum, L. johnsonii, and L. rhamnosus significantly improved the diversity of the flora species. In terms of flora composition, the three main phyla present were Bacteroidetes, Firmicutes, and Proteobacteria. The abundance of these three phyla was reduced to 93.81% after infection and restored to over 96.30% after treatment. At the genus level, Lactobacillus reduced the abundance of Bacteroides, Helicobacter pylori, and Shigella, while increasing the abundance of butyric acid-producing bacteria and Lactobacillus. Finally, a heat map and non-metric multidimensional scaling analysis showed that the intestinal flora structures in the L. johnsonii, L. plantarum, and L. rhamnosus treatment groups were closest to those of healthy mice. In conclusion, L. johnsonii, L. plantarum, and L. rhamnosus regulated and improved the structure of intestinal flora and relieved diarrhoea caused by EHEC infection.
Collapse
Affiliation(s)
- Yafan Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mengna Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|