1
|
Shuba A, Umarkhanov R, Bogdanova E, Anokhina E, Burakova I. Possibilities of an Electronic Nose on Piezoelectric Sensors with Polycomposite Coatings to Investigate the Microbiological Indicators of Milk. SENSORS (BASEL, SWITZERLAND) 2024; 24:3634. [PMID: 38894425 PMCID: PMC11175303 DOI: 10.3390/s24113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Milk and dairy products are included in the list of the Food Security Doctrine and are of paramount importance in the diet of the human population. At the same time, the presence of many macro- and microcomponents in milk, as available sources of carbon and energy, as well as the high activity of water, cause the rapid development of native and pathogen microorganisms in it. The goal of the work was to assess the possibility of using an array of gas chemical sensors based on piezoquartz microbalances with polycomposite coatings to assess the microbiological indicators of milk quality and to compare the microflora of milk samples. Piezosensors with polycomposite coatings with high sensitivity to volatile compounds were obtained. The gas phase of raw milk was analyzed using the sensors; in parallel, the physicochemical and microbiological parameters were determined for these samples, and species identification of the microorganisms was carried out for the isolated microorganisms in milk. The most informative output data of the sensor array for the assessment of microbiological indicators were established. Regression models were constructed to predict the quantity of microorganisms in milk samples based on the informative sensors' data with an error of no more than 17%. The limit of determination of QMAFAnM in milk was 243 ± 174 CFU/cm3. Ways to improve the accuracy and specificity of the determination of microorganisms in milk samples were proposed.
Collapse
Affiliation(s)
- Anastasiia Shuba
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, Revolution Avenue 19, 394000 Voronezh, Russia;
| | - Ruslan Umarkhanov
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, Revolution Avenue 19, 394000 Voronezh, Russia;
| | - Ekaterina Bogdanova
- Department of Technology of Animal Products, Voronezh State University of Engineering Technologies, Revolution Avenue 19, 394036 Voronezh, Russia;
| | - Ekaterina Anokhina
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (E.A.); (I.B.)
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (E.A.); (I.B.)
| |
Collapse
|
2
|
Yang M, Li L. Remimazolam attenuates inflammation in bronchopneumonia through the inhibition of NLRP3 activity by PDPK1 ubiquitination. Chem Biol Drug Des 2024; 103:e14438. [PMID: 38230783 DOI: 10.1111/cbdd.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
Bronchopneumonia is the most common pneumonia in childhood. Therefore, we tested the effects of Remimazolam presented Bronchopneumonia and its possible mechanisms. Phillygenin increased survival rate, reduced W/D ratio, and lung injury score, and inhibited IL-1β, IL-6, TNF-α, and INF-γ levels in mice model of bronchopneumonia. Remimazolam induced PDPK1 and p-AKT protein expressions, and suppressed NLRP3 protein expression in lung tissue of mice model. In vitro model, Remimazolam also induced PDPK1 and p-AKT protein expressions, and suppressed NLRP3 protein expression. Remimazolam also inhibited inflammation levels in vitro model. PDPK1 inhibitor, PHT-427 (100 mg/kg) reduced survival rate, increased W/D ratio and lung injury score, and promoted inflammation levels in mice model of bronchopneumonia by treated with Remimazolam. PHT-427 suppressed PDPK1 and p-AKT protein expressions and induced NLRP3 protein expression in mice model of bronchopneumonia by treated with Remimazolam. Remimazolam interlinked PDPK1 protein. Remimazolam increased the expressions of PDPK1 and p-AKT in vitro model. Remimazolam reduced PDPK1 ubiquitination in vitro model.
Collapse
Affiliation(s)
- Min Yang
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, China
| | - Ling Li
- Department of Pediatrics, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, China
| |
Collapse
|
3
|
Borowik P, Grzywacz T, Tarakowski R, Tkaczyk M, Ślusarski S, Dyshko V, Oszako T. Development of a Low-Cost Electronic Nose with an Open Sensor Chamber: Application to Detection of Ciboria batschiana. SENSORS (BASEL, SWITZERLAND) 2023; 23:627. [PMID: 36679425 PMCID: PMC9866758 DOI: 10.3390/s23020627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
In the construction of electronic nose devices, two groups of measurement setups could be distinguished when we take into account the design of electronic nose chambers. The simpler one consists of placing the sensors directly in the environment of the measured gas, which has an important advantage, in that the composition of the gas is not changed as the gas is not diluted. However, that has an important drawback in that it is difficult to clean sensors between measurement cycles. The second, more advanced construction, contains a pneumatic system transporting the gas inside a specially designed sensor chamber. A new design of an electronic nose gas sensor chamber is proposed, which consists of a sensor chamber with a sliding chamber shutter, equipped with a simple pneumatic system for cleaning the air. The proposal combines the advantages of both approaches to the sensor chamber designs. The sensors can be effectively cleared by the flow of clean air, while the measurements are performed in the open state when the sensors are directly exposed to the measured gas. Airflow simulations were performed to confirm the efficiency of clean air transport used for sensors' cleaning. The demonstrated electronic nose applies eight Figaro Co. MOS TGS series sensors, in which a transient response caused by a change of the exposition to measured gas, and change of heater voltage, was collected. The new electronic nose was tested as applied to the differentiation between the samples of Ciboria batschiana fungi, which is one of the most harmful pathogens of stored acorns. The samples with various coverage, thus various concentrations of the studied odor, were measured. The tested device demonstrated low noise and a good level of repetition of the measurements, with stable results during several hours of repetitive measurements during an experiment lasting five consecutive days. The obtained data allowed complete differentiation between healthy and infected samples.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Tomasz Grzywacz
- Institute of Theory of Electrical Engineering, Measurement and Information Systems, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland
| | - Sławomir Ślusarski
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland
| | - Valentyna Dyshko
- Ukrainian Research Institute of Forestry and Forest Melioration Named after G. M. Vysotsky, 61024 Kharkiv, Ukraine
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland
| |
Collapse
|
4
|
Shuba A, Kuchmenko T, Umarkhanov R. Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application. SENSORS (BASEL, SWITZERLAND) 2022; 22:8529. [PMID: 36366226 PMCID: PMC9654775 DOI: 10.3390/s22218529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
When developing methods for diagnosing pathologies and diseases in humans and animals using electronic noses, one of the important trends is the miniaturization of devices, while maintaining significant information for diagnostic purposes. A combination of several sorbents that have unique sorption features of volatile organic compounds (VOCs) on one transducer is a possible option for the miniaturization of sensors for gas analysis. This paper considers the principles of creating polycomposite coatings on the electrodes of piezoelectric quartz resonators, including the choice of sorbents for the formation of sensitive layers, determining the mass and geometry of the formation of sensitive layers in a polycomposite coating, as well as an algorithm for processing the output data of sensors to obtain maximum information about the qualitative and quantitative composition of the gas phase. A comparative analysis of the efficiency and kinetics of VOC vapor sorption by sensors with polycomposite coatings and a set of sensors with relevant single coatings has been carried out. Regression equations have been obtained to predict the molar-specific sensitivity of the microbalance of VOC vapors by a sensor with a polycomposite coating of three sorbents with an error of 5-15% based on the results of the microbalance of VOC vapors on single coatings. A method for creating "visual prints" of sensor signals with polycomposite coatings is shown, with results comparable to those from an array of sensors. The parameters Aij∑ are proposed for obtaining information on the qualitative composition of the gas phase when processing the output data of sensors with polycomposite coatings. A biochemical study of exhaled breath condensate (EBC) samples, a microbiological investigation of calf tracheal washes, and a clinical examination were conducted to assess the presence of bovine respiratory disease (BRD). An analysis of the gas phase over EBC samples with an array of sensors with polycomposite coatings was also carried out. The "visual prints" of the responses of sensors with polycomposite coatings and the results of the identification of VOCs in the gas phase over EBC samples were compared to the results of bacteriological studies of tracheal washes of the studied calves. A connection was found between the parameters Aij∑ of a group of sensors with polycomposite coatings and the biochemical parameters of biosamples. The adequacy of replacing an array of piezoelectric sensors with single coatings by the sensors with polycomposite coatings is shown.
Collapse
Affiliation(s)
- Anastasiia Shuba
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
| | - Tatiana Kuchmenko
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
- Laboratory of Sensors and Determination of Gas-Forming Impurities, Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ruslan Umarkhanov
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, 394000 Voronezh, Russia
| |
Collapse
|
5
|
Kuchmenko T, Menzhulina D, Shuba A. Noninvasive Detection of Bacterial Infection in Children Using Piezoelectric E-Nose. SENSORS (BASEL, SWITZERLAND) 2022; 22:8496. [PMID: 36366200 PMCID: PMC9658202 DOI: 10.3390/s22218496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Currently, antibiotics are often prescribed to children without reason due to the inability to quickly establish the presence of a bacterial etiology of the disease. One way to obtain additional diagnostic information quickly is to study the volatile metabolome of biosamples using arrays of sensors. The goal of this work was to assess the possibility of using an array of chemical sensors with various sensitive coatings to determine the presence of a bacterial infection in children by analyzing the equilibrium gas phase (EGP) of urine samples. The EGP of 90 urine samples from children with and without a bacterial infection (urinary tract infection, soft tissue infection) was studied on the "MAG-8" device with seven piezoelectric sensors in a hospital. General urine analysis with sediment microscopy was performed using a Uriscan Pro analyzer and using an Olympus CX31 microscope. After surgical removal of the source of inflammation, the microbiological studies of the biomaterial were performed to determine the presence and type of the pathogen. The most informative output data of an array of sensors have been established for diagnosing bacterial pathology. Regression models were built to predict the presence of a bacterial infection in children with an error of no more than 15%. An indicator of infection is proposed to predict the presence of a bacterial infection in children with a high sensitivity of 96%.
Collapse
Affiliation(s)
- Tatiana Kuchmenko
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, Voronezh 394000, Russia
| | - Daria Menzhulina
- Propaedeutics of Childhood Diseases and Polyclinic Pediatrics, Voronezh State Medical University Named after N. N. Burdenko, Voronezh 394000, Russia
| | - Anastasiia Shuba
- Department of Physical and Analytical Chemistry, Voronezh State University of Engineering Technologies, Voronezh 394000, Russia
| |
Collapse
|
6
|
Ali AS, Jacinto JGP, Mϋnchemyer W, Walte A, Kuhla B, Gentile A, Abdu MS, Kamel MM, Ghallab AM. Study on the Discrimination of Possible Error Sources That Might Affect the Quality of Volatile Organic Compounds Signature in Dairy Cattle Using an Electronic Nose. Vet Sci 2022; 9:vetsci9090461. [PMID: 36136677 PMCID: PMC9502780 DOI: 10.3390/vetsci9090461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In recent decades, remarkable progress in the development of electronic nose (EN) technologies, particularly for disease detection, has been accomplished through the disclosure of novel methods and associated devices, mainly for the detection of volatile organic compounds (VOCs). Herein, we assessed the ability of a novel EN technology (MENT-EGAS prototype) to respond to direct sampling and to evaluate the influence of possible error sources that might affect the quality of VOC signatures. Principal Component Analyses (PCA) evidenced the presence in the analyzed samples of sufficient information to consent the discrimination of different environmental backgrounds, feed headspaces and exhalated breath between two groups of cows fed with two different types of feed. Moreover, discrimination was also observed within the same group between exhalated breaths sampled before and after feed intake. Based on these findings, we provided evidence that the MENT-EGAS prototype can identify error sources with accuracy. Livestock precision farming technologies are powerful tools for monitoring animal health and welfare parameters in a continuous and automated way. Abstract Electronic nose devices (EN) have been developed for detecting volatile organic compounds (VOCs). This study aimed to assess the ability of the MENT-EGAS prototype-based EN to respond to direct sampling and to evaluate the influence of possible error sources that might affect the quality of VOC signatures. This study was performed on a dairy farm using 11 (n = 11) multiparous Holstein-Friesian cows. The cows were divided into two groups housed in two different barns: group I included six lactating cows fed with a lactating diet (LD), and group II included 5 non-lactating late pregnant cows fed with a far-off diet (FD). Each group was offered 250 g of their respective diet; 10 min later, exhalated breath was collected for VOC determination. After this sampling, 4 cows from each group were offered 250 g of pellet concentrates. Ten minutes later, the exhalated breath was collected once more. VOCs were also measured directly from the feed’s headspace, as well as from the environmental backgrounds of each. Principal component analyses (PCA) were performed and revealed clear discrimination between the two different environmental backgrounds, the two different feed headspaces, the exhalated breath of groups I and II cows, and the exhalated breath within the same group of cows before and after the feed intake. Based on these findings, we concluded that the MENT-EGAS prototype can recognize several error sources with accuracy, providing a novel EN technology that could be used in the future in precision livestock farming.
Collapse
Affiliation(s)
- Asmaa S. Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
- Correspondence:
| | - Joana G. P. Jacinto
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| | | | | | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology ‘Oskar Kellner’, 18196 Dummerstorf, Germany
| | - Arcangelo Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy
| | - Mohamed S. Abdu
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Mervat M. Kamel
- Department of Animal Management and Behavior, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| | - Abdelrauf Morsy Ghallab
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza P.O. Box 12211, Egypt
| |
Collapse
|
7
|
Juge AE, Hall NJ, Richeson JT, Daigle CL. Using Canine Olfaction to Detect Bovine Respiratory Disease: A Pilot Study. Front Vet Sci 2022; 9:902151. [PMID: 35847637 PMCID: PMC9284318 DOI: 10.3389/fvets.2022.902151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle and is a major welfare and economic concern. Identification of BRD-affected cattle using clinical illness scores is problematic, and speed and cost constraints limit the feasibility of many diagnostic approaches. Dogs can rapidly identify humans and animals affected by a variety of diseases based on scent. Canines' olfactory systems can distinguish between patterns of volatile organic compounds produced by diseased and healthy tissue. In this pilot study, two dogs (“Runnels” and “Cheaps”) were trained for 7 months to discriminate between nasal swabs from cattle that developed signs of BRD within 20 days of feedlot arrival and swabs from cattle that did not develop BRD signs within 3 months at the feedlot. Nasal swabs were collected during cattle processing upon arrival to the feedlot and were stored at −80°C. Dogs were presented with sets of one positive and two negative samples and were trained using positive reinforcement to hold their noses over the positive sample. The dogs performed moderately well in the final stage of training, with accuracy for Runnels of 0.817 and Cheaps of 0.647, both greater than the 0.333 expected by chance. During a double-blind detection test, dogs evaluated 123 unique and unfamiliar samples that were presented as 41 sets (3 samples per set), with both the dog handler and data recorder blinded to the positive sample location. Each dog was tested twice on each set of samples. Detection test accuracy was slightly better than chance for Cheaps at 0.451 (95% CI: 0.344–0.559) and was no better than chance for Runnels at 0.390 (95% CI: 0.285–0.496. Overall accuracy was 0.421 (95% CI: 0.345–0.496). When dogs' consensus response on each sample set was considered, accuracy was 0.537 (95% CI: 0.384–0.689). Detection accuracy also varied by sample lot. While dogs showed some ability to discriminate between BRD-affected and healthy cattle using nasal swabs, the complexity of this task suggests that more testing is needed before determining whether dogs could be effective as a screening method for BRD.
Collapse
Affiliation(s)
- Aiden E. Juge
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Nathaniel J. Hall
- Department of Animal Science, Texas Tech University, Lubbock, TX, United States
| | - John T. Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, United States
| | - Courtney L. Daigle
- Department of Animal Science, Texas A&M University, College Station, TX, United States
- *Correspondence: Courtney L. Daigle
| |
Collapse
|
8
|
Santos-Rivera M, Woolums AR, Thoresen M, Meyer F, Vance CK. Bovine Respiratory Syncytial Virus (BRSV) Infection Detected in Exhaled Breath Condensate of Dairy Calves by Near-Infrared Aquaphotomics. Molecules 2022; 27:549. [PMID: 35056864 PMCID: PMC8779643 DOI: 10.3390/molecules27020549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is a major contributor to respiratory disease in cattle worldwide. Traditionally, BRSV infection is detected based on non-specific clinical signs, followed by reverse transcriptase-polymerase chain reaction (RT-PCR), the results of which can take days to obtain. Near-infrared aquaphotomics evaluation based on biochemical information from biofluids has the potential to support the rapid identification of BRSV infection in the field. This study evaluated NIR spectra (n = 240) of exhaled breath condensate (EBC) from dairy calves (n = 5) undergoing a controlled infection with BRSV. Changes in the organization of the aqueous phase of EBC during the baseline (pre-infection) and infected (post-infection and clinically abnormal) stages were found in the WAMACS (water matrix coordinates) C1, C5, C9, and C11, likely associated with volatile and non-volatile compounds in EBC. The discrimination of these chemical profiles by PCA-LDA models differentiated samples collected during the baseline and infected stages with an accuracy, sensitivity, and specificity >93% in both the calibration and validation. Thus, biochemical changes occurring during BRSV infection can be detected and evaluated with NIR-aquaphotomics in EBC. These findings form the foundation for developing an innovative, non-invasive, and in-field diagnostic tool to identify BRSV infection in cattle.
Collapse
Affiliation(s)
- Mariana Santos-Rivera
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA; (M.S.-R.); (F.M.)
| | - Amelia R. Woolums
- College of Veterinary Medicine, Pathobiology & Population Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.R.W.); (M.T.)
| | - Merrilee Thoresen
- College of Veterinary Medicine, Pathobiology & Population Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.R.W.); (M.T.)
| | - Florencia Meyer
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA; (M.S.-R.); (F.M.)
| | - Carrie K. Vance
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA; (M.S.-R.); (F.M.)
| |
Collapse
|