1
|
Zhang Y, Yang Z. A multidirectional pairwise coupling approach with spectral features unmixing to quantify total phosphorus, total nitrogen, and chlorophyll-a in urban rivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135174. [PMID: 39059295 DOI: 10.1016/j.jhazmat.2024.135174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Comprehensive and effective water quality monitoring is vital to water environment management and prevention of water quality from degradation. Unmanned aerial vehicle (UAV) remote sensing techniques have gradually matured and prevailed in monitoring water quality of urban rivers, posing great opportunity for more effective and flexible quantitative estimation of water quality parameter (WQP) than satellite remote sensing techniques. However, current UAV remote sensing methods often entail large quantities of cost-prohibitive in-situ collected training samples with corresponding chemical analysis in different monitoring watersheds, laying time and fiscal pressure on local environmental protection department. They suffer relatively low calculation accuracy and stability and their applicability in various watersheds is constrained. This study developed a unified two-stage method, multidirectional pairwise coupling (MDPC) with information sharing and delivery of different modeling stages to efficiently predict concentrations of WQPs including total phosphorus (TP), total nitrogen (TN), and chlorophyll-a (Chl-a) from hyperspectral data. MDPC incorporates exterior and interior feature interaction and gravity model variant to improve prediction accuracy and stability with consideration of mutual effect in the proximity. The structure design and workflow of MDPC ensure high robustness and application prospect due to achievement of good performance with less training samples, improving applicability and feasibility. The experiments show that MDPC has achieved good performance on retrieval of WQPs concentrations including TP, TN, and Chl-a, the results mean absolute percent error (MAPE) and coefficient of determination (R2) ranging from 6.34 % to 11.94 % and from 0.74 to 0.93. This study provides a systematic and scientific reference to formulate a feasible and efficient water environment management scheme.
Collapse
Affiliation(s)
- Yishan Zhang
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; Department of Mathematics and Statistics, Georgetown University, Washington, D.C. 20057, USA.
| | - Ziyao Yang
- Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Wang J, Wu W, Zhou Y, Han M, Zhou X, Sun Y, Zhang A. Design, synthesis and activity evaluation of pseudilin analogs against cyanobacteria as IspD inhibitors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105769. [PMID: 38458678 DOI: 10.1016/j.pestbp.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 03/10/2024]
Abstract
The discovery of safe, effective, and selective chemical algicides is the stringent need for the algicides development, and it is also one of the effective routes to control cyanobacteria harmful algal blooms and to meet the higher requirements of environmental and ecological. In this work, a series of novel bromo-N-phenyl-5-o-hydroxyphenylpyrazole-3-carboxyamides were rationally designed as pseudilin analogs by bioisosteric replacement and molecular hybridization strategies, in which the pyrrole unit of pseudilin was replaced with pyrazole and further combined with the dominant structural fragments of algicide diuron. The synthesis was carried out by a facile four-step routeincluding cyclization, amidation, transanulation, and halogenation. The biological activity evaluation on AtIspD, EcIspD, Synechocystis sp. PCC6803 and Microcystis aeruginosa FACHB905 revealed that most compounds had good EcIspD and excellent cyanobacteria inhibitory activity. In particular, compound 6bb exhibited potent algicidal activity against PCC6803 and FACHB905 with EC50 = 1.28 μM and 0.37 μM, respectively, 1.4-fold and 4.0-fold enhancement compared to copper sulfate (EC50 = 1.79 and 1.49 μM, respectively), and it also showed the best inhibitory activity of EcIspD. The binding of 6bb to EcIspD was explored by molecular docking, and it was confirmed that 6bb could bind to the EcIspD active site. Compound 6bb was proven to be a potential structure for the further development of novel algicides that targets IspD in the MEP pathway.
Collapse
Affiliation(s)
- Jili Wang
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Wenhai Wu
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Yaqing Zhou
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Mengying Han
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xin Zhou
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China
| | - Yong Sun
- College of Chemical and Environmental engineering, Hanjiang Normal University, Shiyan 442000, China.
| | - Aidong Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
3
|
Fan G, Lin Q, Lin J, Xia M, Chen S, Luo J, Zou J, Hong Z, Xu K. Effective photocatalytic inactivation of Microcystis aeruginosa by Ag 3VO 4/BiVO 4 heterojunction under visible light. CHEMOSPHERE 2024; 347:140710. [PMID: 37979804 DOI: 10.1016/j.chemosphere.2023.140710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
In recent years, photocatalytic technology has been increasingly used for the treatment of algal blooms in water bodies due to its high efficiency and environmental advantages. However, conventional semiconductor materials suffer from high electron-hole recombination rate, low carrier mobility and weak surface adsorption ability, which made their photocatalytic performance limited. Therefore, the photocatalytic performance of the composites can be improved by coupling another semiconductor material to form a heterojunction to accelerate electron transfer. In this study, a novel composite Ag3VO4/BiVO4 (ABV) photocatalyst was successfully prepared by in-situ deposition method for the photocatalytic inactivation of Microcystis aeruginosa (M. aeruginosa) under visible light. The photocatalyst showed excellent photocatalytic activity, and the degradation rate of M. aeruginosa chlorophyll a was up to 99.8% within 4 h under visible light. During the photocatalytic degradation, the morphology of algae cells, the permeability of cell membrane, the organic matter inside and outside the cells, the antioxidant system and the soluble protein were seriously damaged. Moreover, three cycle experiments showed that the prepared ABV photocatalyst had high reusability. Finally, a possible mechanism of M. aeruginosa inactivation was proposed. In general, the synthesized ABV photocatalyst can effectively inactivate cyanobacteria under visible light and provided a new method for M. aeruginosa removal in water.
Collapse
Affiliation(s)
- Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China
| | - Qiuan Lin
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Jiuhong Lin
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| | - Mingqian Xia
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China.
| | - Shoubin Chen
- Fuzhou City Construction Design & Research Institute Co. Ltd., 350001, Fujian, China
| | - Jing Luo
- Fujian Jinhuang Environmental Sci-Tech Co., Ltd., 350002 Fujian, China
| | - Jianyong Zou
- Anhui Urban Construction Design Institute Co. Ltd., 230051, Anhui, China
| | - Zhanglin Hong
- China Construction Third Bureau First Engineering Co. Ltd., 430040, Hubei, China
| | - Kaiqin Xu
- College of Civil Engineering, Fuzhou University, 350116 Fujian, China
| |
Collapse
|
4
|
Mehdizadeh Allaf M, Erratt KJ, Peerhossaini H. Comparative assessment of algaecide performance on freshwater phytoplankton: Understanding differential sensitivities to frame cyanobacteria management. WATER RESEARCH 2023; 234:119811. [PMID: 36889096 DOI: 10.1016/j.watres.2023.119811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacterial bloom represent a growing threat to global water security. With fast proliferation, they raise great concern due to potential health and socioeconomic concerns. Algaecides are commonly employed as a mitigative measure to suppress and manage cyanobacteria. However, recent research on algaecides has a limited phycological focus, concentrated predominately on cyanobacteria and chlorophytes. Without considering phycological diversity, generalizations crafted from these algaecide comparisons present a biased perpective. To limit the collateral impacts of algaecide interventions on phytoplankton communities it is critical to understand differential phycological sensitivities for establishing optimal dosage and tolerance thresholds. This research attempts to fill this knowledge gap and provide effective guidelines to frame cyanobacterial management. We investigate the effect of two common algaecides, copper sulfate (CuSO4) and hydrogen peroxide (H2O2), on four major phycological divisions (chlorophytes, cyanobacteria, diatoms, and mixotrophs). All phycological divisions exhibited greater sensitivity to copper sulfate, except chlorophytes. Mixotrophs and cyanobacteria displayed the highest sensitivity to both algaecides with the highest to lowest sensitivity being observed as follows: mixotrophs, cyanobacteria, diatoms, and chlorophytes. Our results suggest that H2O2 represents a comparable alternative to CuSO4 for cyanobacterial control. However, some eukaryotic divisions such as mixotrophs and diatoms mirrored cyanobacteria sensitivity, challenging the assumption that H2O2 is a selective cyanocide. Our findings suggest that optimizing algaecide treatments to suppress cyanobacteria while minimizing potential adverse effects on other phycological members is unattainable. An apparent trade-off between effective cyanobacterial management and conserving non-targeted phycological divisions is expected and should be a prime consideration of lake management.
Collapse
Affiliation(s)
- Malihe Mehdizadeh Allaf
- Department of Civil and Environmental Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9.
| | - Kevin J Erratt
- School of Environment & Sustainability, University of Saskatchewan, Collaborative Science Research Building, 112 Science Place, Saskatoon, SK, Canada, S7N5E2
| | - Hassan Peerhossaini
- Department of Civil and Environmental Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9; Department of Mechanical & Materials Engineering, Western University, Spencer Engineering Building, 1151 Richmond Street N., London, ON, Canada, N6A5B9; Energy Physics Research Group - AstroParticule and Cosmologie Lab. (APC) - CNRS - UMR 7164, Univ. Paris Cité, Paris, 75013 Paris, France
| |
Collapse
|
5
|
Lee B, Kang H, Oh HC, Ahn J, Park S, Yun SL, Kim S. Long-Term Examination of Water Chemistry Changes Following Treatment of Cyanobacterial Bloom with Coagulants and Minerals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13577. [PMID: 36294157 PMCID: PMC9603139 DOI: 10.3390/ijerph192013577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The abundant growth in cyanobacterial blooms poses severe ecological threats with a high risk to aquatic organisms and global public health. Control of cyanobacterial blooms involves spraying cyanobacteria removal materials, including coagulants. However, little is known about the fate of the coagulated-cyanobacteria-laden water. Here, we examined long-term changes in water quality following treatment with various coagulants and minerals for cyanobacterial removal when the coagulated cyanobacterial cells were not removed from the water. An experiment in a controlled water system tested the effects of six different compounds, one conventional coagulant, two natural inorganic coagulants, and three minerals. All tested coagulants and minerals exhibited >75% of cyanobacterial removal efficiency. However, compared to the control, higher concentrations of nitrogen were observed from some samples treated during the experimental period. After 20 months, the final total phosphorus concentration of the raw water increased 20-fold compared to the initial concentration to 11.82 mg/L, indicating significant nutrient release over time. Moreover, we observed that the decomposition of sedimented cyanobacterial cells caused the release of intracellular contents into the supernatant, increasing phosphorous concentration over time. Therefore, cyanobacterial cells should be removed from water after treatment to prevent eutrophication and maintain water quality.
Collapse
Affiliation(s)
- Bokjin Lee
- Civil and Environmental Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Korea
| | - Heejun Kang
- Civil and Environmental Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Korea
| | - Hye-cheol Oh
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Korea
| | - Jaehwan Ahn
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Korea
| | - Saerom Park
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Korea
| | - Sang-Leen Yun
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Korea
| | - Seogku Kim
- Civil and Environmental Engineering, University of Science and Technology (UST), Daejeon 34113, Korea
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Korea
| |
Collapse
|
6
|
Jalili F, Moradinejad S, Zamyadi A, Dorner S, Sauvé S, Prévost M. Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants. Toxins (Basel) 2022; 14:toxins14060410. [PMID: 35737071 PMCID: PMC9228313 DOI: 10.3390/toxins14060410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023] Open
Abstract
Freshwater bodies and, consequently, drinking water treatment plants (DWTPs) sources are increasingly facing toxic cyanobacterial blooms. Even though conventional treatment processes including coagulation, flocculation, sedimentation, and filtration can control cyanobacteria and cell-bound cyanotoxins, these processes may encounter challenges such as inefficient removal of dissolved metabolites and cyanobacterial cell breakthrough. Furthermore, conventional treatment processes may lead to the accumulation of cyanobacteria cells and cyanotoxins in sludge. Pre-oxidation can enhance coagulation efficiency as it provides the first barrier against cyanobacteria and cyanotoxins and it decreases cell accumulation in DWTP sludge. This critical review aims to: (i) evaluate the state of the science of cyanobacteria and cyanotoxin management throughout DWTPs, as well as their associated sludge, and (ii) develop a decision framework to manage cyanobacteria and cyanotoxins in DWTPs and sludge. The review identified that lab-cultured-based pre-oxidation studies may not represent the real bloom pre-oxidation efficacy. Moreover, the application of a common exposure unit CT (residual concentration × contact time) provides a proper understanding of cyanobacteria pre-oxidation efficiency. Recently, reported challenges on cyanobacterial survival and growth in sludge alongside the cell lysis and cyanotoxin release raised health and technical concerns with regards to sludge storage and sludge supernatant recycling to the head of DWTPs. According to the review, oxidation has not been identified as a feasible option to handle cyanobacterial-laden sludge due to low cell and cyanotoxin removal efficacy. Based on the reviewed literature, a decision framework is proposed to manage cyanobacteria and cyanotoxins and their associated sludge in DWTPs.
Collapse
Affiliation(s)
- Farhad Jalili
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| | - Saber Moradinejad
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
- Correspondence:
| | - Arash Zamyadi
- Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Sarah Dorner
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| | - Sébastien Sauvé
- Department of Chemistry, University of Montréal, Montréal, QC H3C 3J7, Canada;
| | - Michèle Prévost
- Department of Civil, Mineral and Mining Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (F.J.); (S.D.); (M.P.)
| |
Collapse
|
7
|
Chen H, Shen X, Ying Y, Li X, Chen L, Shen C, Wen Y. Effect of trace elements in the toxicity of copper to Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:576-585. [PMID: 35266473 DOI: 10.1039/d1em00521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Copper sulfate (CuSO4) is widely used in the control of algal blooms. Cu can promote or inhibit algal growth, while also affecting trace element uptake, therefore, the response mechanisms of algae cells under Cu2+ interference should be studied. In this study, wild-type Chlamydomonas reinhardtii (C. reinhardtii) and wall-less mutant C. reinhardtii were selected as the research objects. Except for the cell wall, these two algae were physiologically the same. While manipulating the concentration of Cu, the accumulation of Cu, Fe, Zn, and Mn by the two algal cell types was studied. The cell wall hindered the accumulation of Cu by cells and alleviated the toxicity of Cu to C. reinhardtii. The addition of Cu increased the accumulation of Fe by both cell types. In an environment with excess Cu, the total amount of Zn and Mn accumulated by cells also increased. On the one hand, this may be due to the synergistic and antagonistic effects of trace elements in the adsorption and uptake process, and on the other hand, it may be due to the changes in metal speciation in the culture medium. In addition, the difference in the total accumulation of various trace elements between wild-type and wall-less-type C. reinhardtii may be due to the structure and function differences between cell wall and cell membrane. At the same time, by measuring the changes in the levels of glutathione (GSH) in algal cells, the relevant mechanisms underlying the algae's uptake of trace elements by algae were further explored.
Collapse
Affiliation(s)
- Hui Chen
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Xin Shen
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Yiping Ying
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Xiang Li
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Lili Chen
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yuezhong Wen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
8
|
Bouaïcha N, Metcalf JS, Porzani SJ, Konur O. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. PHYTOCHEMISTRY 2021; 192:112959. [PMID: 34649057 DOI: 10.1016/j.phytochem.2021.112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Plant-cyanobacteria interactions occur in different ways and at many different levels, both beneficial and harmful. Plant-cyanobacteria interactions, as a beneficial symbiosis, have long been demonstrated in rice-growing areas (Poaceae) where the most efficient nitrogen-fixing cyanobacteria are present in paddies. Moreover, cyanobacteria may in turn produce and/or secrete numerous bioactive compounds that have plant growth-promoting abilities or that may make the plant more resistant to abiotic or biotic stress. In recent years, there has been a growing worldwide interest in the use of cyanobacterial biomass as biofertilizers to replace chemical fertilizers, in part to overcome increasing organic-farming demands. However, the potential presence of harmful cyanotoxins has delayed the use of such cyanobacterial biomass, which can be found in large quantities in freshwater ecosystems around the world. In this review, we describe the existing evidence for the positive benefit of plant-cyanobacteria interactions and discuss the use of cyanobacterial biomass as biofertilizers and its growing worldwide interest. Although mass cyanobacterial blooms and scums are a current and emerging threat to the degradation of ecosystems and to animal and human health, they may serve as a source of numerous bioactive compounds with multiple positive effects that could be of use as an alternative to chemical fertilizers in the context of sustainable development.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Laboratory Ecology, Systematic and Evolution, UMR 8079 Univ. Paris-Sud, CNRS, AgroParisTech, University Paris-Saclay, 91405, Orsay, France
| | | | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ozcan Konur
- Formerly, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
9
|
Yoon H, Kim HC, Kim S. Long-term seasonal and temporal changes of hydrogen peroxide from cyanobacterial blooms in fresh waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113515. [PMID: 34403920 DOI: 10.1016/j.jenvman.2021.113515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In water, hydrogen peroxide (H2O2) is produced through abiotic and biotic reactions with organic matter, including algal cells. The production of H2O2 is influenced by harmful algal cell communities and toxicity. However, only a few studies have been conducted on H2O2 concentrations in natural water. Particularly, the seasonal and temporal patterns of H2O2 concentration suggest that H2O2 generation from aquatic microorganisms could be identified to compare of photochemical production from dissolved organic matter. Study area is a source of raw water and is a large artificial lake located near a metropolitan city. Due to various environmental conditions, harmful algal blooms frequently occur in summer. The purpose of this study was to trace the H2O2 concentration and water quality parameters of study area where algal bloom occurs and what factors directly affect the H2O2 concentration. Experiments were performed on the influencing factors via water samples from study area and lab-scale culture tank. The lake produces an average of 553 nM H2O2, which increases by more than three times (1460 nM) in summer compared the winter. The lake (18.6-23.8 nMh-1) produced more H2O2 than streams (7.4-9.0 nMh-1) during daylight hours. All water sites presented the lowest production rates in dark conditions (1.1-1.5 nMh-1). Daytime environment increased the generation rate more than the nighttime. The trend of H2O2 produced by algal cells was similar to that of the growth of algal cells. The exposure to external substances (heavy metals and antibiotics) increased the incidence by approximately five times; antibiotics were more influential than heavy metals.
Collapse
Affiliation(s)
- Hyojik Yoon
- Program in Environmental Technology and Policy, Korea University, Sejong 30019, Republic of Korea; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Hyun-Chul Kim
- Research Institute for Advanced Industrial Technology, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Sungpyo Kim
- Program in Environmental Technology and Policy, Korea University, Sejong 30019, Republic of Korea; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
10
|
Abdallah MF, Van Hassel WHR, Andjelkovic M, Wilmotte A, Rajkovic A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins (Basel) 2021; 13:786. [PMID: 34822570 PMCID: PMC8619289 DOI: 10.3390/toxins13110786] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Cyanotoxins have gained global public interest due to their potential to bioaccumulate in food, which threatens human health. Bloom formation is usually enhanced under Mediterranean, subtropical and tropical climates which are the dominant climate types in developing countries. In this context, we present an up-to-date overview of cyanotoxins (types, toxic effects, analysis, occurrence, and mitigation) with a special focus on their contamination in (sea)food from all the developing countries in Africa, Asia, and Latin America as this has received less attention. A total of 65 publications have been found (from 2000 until October 2021) reporting the contamination by one or more cyanotoxins in seafood and edible plants (five papers). Only Brazil and China conducted more research on cyanotoxin contamination in food in comparison to other countries. The majority of research focused on the detection of microcystins using different analytical methods. The detected levels mostly surpassed the provisional tolerable daily intake limit set by the World Health Organization, indicating a real risk to the exposed population. Assessment of cyanotoxin contamination in foods from developing countries still requires further investigations by conducting more survey studies, especially the simultaneous detection of multiple categories of cyanotoxins in food.
Collapse
Affiliation(s)
- Mohamed F. Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Wannes H. R. Van Hassel
- Sciensano, Chemical and Physical Health Risks, Organic Contaminants and Additives, Leuvensesteenweg 17, 3080 Tervuren, Belgium;
| | - Mirjana Andjelkovic
- Sciensano Research Institute, Chemical and Physical Health Risks, Risk and Health Impact Assessment, Ju-liette Wytsmanstreet 14, 1050 Brussels, Belgium;
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBios-Centre for Protein Engineering, Université de Liège, 4000 Liège, Belgium;
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
11
|
Comparative Assessment of Physical and Chemical Cyanobacteria Cell Lysis Methods for Total Microcystin-LR Analysis. Toxins (Basel) 2021; 13:toxins13090596. [PMID: 34564601 PMCID: PMC8473049 DOI: 10.3390/toxins13090596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Standardization and validation of alternative cell lysis methods used for quantifying total cyanotoxins is needed to improve laboratory response time goals for total cyanotoxin analysis. In this study, five cell lysis methods (i.e., probe sonication, microwave, freeze-thaw, chemical lysis with Abraxis QuikLyseTM, and chemical lysis with copper sulfate) were assessed using laboratory-cultured Microcystis aeruginosa (M. aeruginosa) cells. Methods were evaluated for destruction of cells (as determined by optical density of the sample) and recovery of total microcystin-LR (MC-LR) using three M. aeruginosa cell densities (i.e., 1 × 105 cells/mL (low-density), 1 × 106 cells/mL (medium-density), and 1 × 107 cells/mL (high-density)). Of the physical lysis methods, both freeze-thaw (1 to 5 cycles) and pulsed probe sonication (2 to 10 min) resulted in >80% destruction of cells and consistent (>80%) release and recovery of intracellular MC-LR. Microwave (3 to 5 min) did not demonstrate the same decrease in optical density (<50%), although it provided effective release and recovery of >80% intracellular MC-LR. Abraxis QuikLyseTM was similarly effective for intracellular MC-LR recovery across the different M. aeruginosa cell densities. Copper sulfate (up to 500 mg/L Cu2+) did not lyse cells nor release intracellular MC-LR within 20 min. None of the methods appeared to cause degradation of MC-LR. Probe sonication, microwave, and Abraxis QuikLyseTM served as rapid lysis methods (within minutes) with varying associated costs, while freeze-thaw provided a viable, low-cost alternative if time permits.
Collapse
|
12
|
Low Dose Coagulant and Local Soil Ballast Effectively Remove Cyanobacteria (Microcystis) from Tropical Lake Water without Cell Damage. WATER 2021. [DOI: 10.3390/w13020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The combination of a low dose of coagulant with a ballast, also known as “flock and sink,” has been proposed as a lake restoration and cyanobacteria bloom management strategy. The effectiveness of this technique using aluminum sulfate (alum) as a coagulant and a local soil (LS) from Thailand as a ballast in eutrophic water dominated by positively buoyant Microcystis colonies collected from a tropical lake was investigated by measuring changes in chlorophyll-a (chl-a), pH, and zeta potential. Cell integrity was also evaluated using scanning electron microscopy. Results showed that alum alone could reduce chl-a (up to 60% to 83%) at doses (higher than 3 to 6 mg Al/L) dependent on the initial pH (7.6 to 8.2) and initial chl-a concentration (138 to 615 µg/L) of the lake water but resulted in morphological changes to cellular structure and generally required a dose that reduced pH to <7. LS ballast alone was able to reduce chl-a concentrations (up to 26% at highest dose of 400 mg/L) and caused no significant changes to pH or zeta potential. Combining a low dose of alum (2 mg Al/L) with some amount of LS ballast (50 to 400 mg/L) created an interaction effect that resulted in 81 to 88% reduction in chl-a without changes to zeta potential or morphological changes to cellular structure. Flock and sink may serve a niche role in lake restoration when positively buoyant cyanobacteria are present in the water column during time of treatment. This research showed that an 800% increase in ballast dose resulted in about an 8% reduction in chl-a when combined with 2 mg Al/L of alum. Therefore, it is recommended that ballast dose should be determined by considering its phosphorus sorption capacity and the potentially releasable phosphorus in the lake sediment in order to realize long-term reductions in sediment nutrient release.
Collapse
|
13
|
Moradinejad S, Trigui H, Guerra Maldonado JF, Shapiro J, Terrat Y, Zamyadi A, Dorner S, Prévost M. Diversity Assessment of Toxic Cyanobacterial Blooms during Oxidation. Toxins (Basel) 2020; 12:toxins12110728. [PMID: 33233813 PMCID: PMC7699887 DOI: 10.3390/toxins12110728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Fresh-water sources of drinking water are experiencing toxic cyanobacterial blooms more frequently. Chemical oxidation is a common approach to treat cyanobacteria and their toxins. This study systematically investigates the bacterial/cyanobacterial community following chemical oxidation (Cl2, KMnO4, O3, H2O2) using high throughput sequencing. Raw water results from high throughput sequencing show that Proteobacteria, Actinobacteria, Cyanobacteria and Bacteroidetes were the most abundant phyla. Dolichospermum, Synechococcus, Microcystis and Nostoc were the most dominant genera. In terms of species, Dolichospermum sp.90 and Microcystis aeruginosa were the most abundant species at the beginning and end of the sampling, respectively. A comparison between the results of high throughput sequencing and taxonomic cell counts highlighted the robustness of high throughput sequencing to thoroughly reveal a wide diversity of bacterial and cyanobacterial communities. Principal component analysis of the oxidation samples results showed a progressive shift in the composition of bacterial/cyanobacterial communities following soft-chlorination with increasing common exposure units (CTs) (0–3.8 mg·min/L). Close cyanobacterial community composition (Dolichospermum dominant genus) was observed following low chlorine and mid-KMnO4 (287.7 mg·min/L) exposure. Our results showed that some toxin producing species may persist after oxidation whether they were dominant species or not. Relative persistence of Dolichospermum sp.90 was observed following soft-chlorination (0.2–0.6 mg/L) and permanganate (5 mg/L) oxidation with increasing oxidant exposure. Pre-oxidation using H2O2 (10 mg/L and one day contact time) caused a clear decrease in the relative abundance of all the taxa and some species including the toxin producing taxa. These observations suggest selectivity of H2O2 to provide an efficient barrier against toxin producing cyanobacteria entering a water treatment plant.
Collapse
Affiliation(s)
- Saber Moradinejad
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
- Correspondence:
| | - Hana Trigui
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Juan Francisco Guerra Maldonado
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Jesse Shapiro
- Department of Biological Science, Université de Montréal, Montréal, QC H2V 0B3, Canada; (J.S.); (Y.T.)
| | - Yves Terrat
- Department of Biological Science, Université de Montréal, Montréal, QC H2V 0B3, Canada; (J.S.); (Y.T.)
| | - Arash Zamyadi
- Water Research Australia (WaterRA), Adelaide, SA 5001, Australia;
- BGA Innovation Hub and Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Sarah Dorner
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| | - Michèle Prévost
- Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; (H.T.); (J.F.G.M.); (S.D.); (M.P.)
| |
Collapse
|
14
|
Effects of Mixed Allelochemicals on the Growth of Microcystis aeruginosa, Microcystin Production, Extracellular Polymeric Substances, and Water Quality. WATER 2020. [DOI: 10.3390/w12071861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inhibition of cyanobacteria growth by allelochemicals, which controls harmful algal blooms has been examined in many studies. The objective of this work was to compare the efficiencies of different allelochemicals and determine a mixing proportion corresponding to the highest algae inhibiting activity and smallest adverse effect. The obtained results demonstrated that artemisinin, nonanoic acid, malonic acid, and ethyl acetate inhibited algal growth more efficiently than D-menthol and lactic acid. Synergies were observed in five groups of allelochemical combinations with inhibition ratios exceeding 80%, and the concentrations of extracellular microcystin-LR in the groups with high algal inhibition ratios were lower than that in the control group on the 7th day. No changes in extracellular polymeric substances compositions were detected after treatment. The permanganate indices of the treated groups were higher than that of the control group; however, this disparity gradually decreased with time. In addition, a sharp decrease in the concentration of dissolved inorganic phosphorus was observed for all treated groups. From the obtained data, the optimal proportion of mixed allelochemicals corresponding to 3.94 mg L−1 of artemisinin, 6.27 mg L−1 of nonanoic acid, 8.2 mg L−1 of malonic acid, and 6.38 mg L−1 of ethyl acetate was suggested.
Collapse
|
15
|
Greenstein KE, Zamyadi A, Glover CM, Adams C, Rosenfeldt E, Wert EC. Delayed Release of Intracellular Microcystin Following Partial Oxidation of Cultured and Naturally Occurring Cyanobacteria. Toxins (Basel) 2020; 12:E335. [PMID: 32443714 PMCID: PMC7291037 DOI: 10.3390/toxins12050335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oxidation processes can provide an effective barrier to eliminate cyanotoxins by damaging cyanobacteria cell membranes, releasing intracellular cyanotoxins, and subsequently oxidizing these toxins (now in extracellular form) based on published reaction kinetics. In this work, cyanobacteria cells from two natural blooms (from the United States and Canada) and a laboratory-cultured Microcystis aeruginosa strain were treated with chlorine, monochloramine, chlorine dioxide, ozone, and potassium permanganate. The release of microcystin was measured immediately after oxidation (t ≤ 20 min), and following oxidant residual quenching (stagnation times = 96 or 168 h). Oxidant exposures (CT) were determined resulting in complete release of intracellular microcystin following chlorine (21 mg-min/L), chloramine (72 mg-min/L), chlorine dioxide (58 mg-min/L), ozone (4.1 mg-min/L), and permanganate (391 mg-min/L). Required oxidant exposures using indigenous cells were greater than lab-cultured Microcystis. Following partial oxidation of cells (oxidant exposures ≤ CT values cited above), additional intracellular microcystin and dissolved organic carbon (DOC) were released while the samples remained stagnant in the absence of an oxidant (>96 h after quenching). The delayed release of microcystin from partially oxidized cells has implications for drinking water treatment as these cells may be retained on a filter surface or in solids and continue to slowly release cyanotoxins and other metabolites into the finished water.
Collapse
Affiliation(s)
| | - Arash Zamyadi
- Water Research Australia (WaterRA), Adelaide, SA 5001, Australia;
- BGA Innovation Hub and Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Caitlin M. Glover
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0G4, Canada;
| | - Craig Adams
- Department of Civil Engineering, Saint Louis University, St. Louis, MO 63103, USA;
| | | | - Eric C. Wert
- Southern Nevada Water Authority (SNWA), P.O. Box 99954, Las Vegas, NV 89193-9954, USA;
| |
Collapse
|