1
|
An S, Li J, Du J, Feng L, Zhang L, Zhang X, Zhuang Z, Zhao Z, Yang G. Coupled nitrogen and phosphorus cycles mediated by coordinated variations of functional microbes in industrial recirculating aquaculture system. WATER RESEARCH 2025; 280:123726. [PMID: 40305950 DOI: 10.1016/j.watres.2025.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/29/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Industrial Recirculating Aquaculture Systems (IRAS) represent a sustainable and efficient approach to aquaculture, offering significant benefits in water conservation and environmental management. A comprehensive understanding of nitrogen (N) and phosphorus (P) cycling is essential for optimizing system design and operational strategies, enabling the maintenance of a balanced ecosystem within IRAS. Here, water microbial communities in the shrimp aquaculture pond (AP) and nitrification tank (NT) of the IRAS were investigated using a metagenomics-based approach to explore the mechanisms of N and P coupling cycles. Results showed that (1) N and P cycling genes were more abundant in AP water than in NT, with higher potentials for degrading organic N and P compounds, nitrate reduction, denitrification, and phosphate uptake in AP; and their hosts (functional bacteria) were identified as Marivivens for nitrate reduction, Polaribacter and Erythobacter for organophosphorus hydrolysis, and Fluviibacter and Sediminibacterium for phosphate uptake; (2) the coupling of N and P cycles was observed through the abundance of functional genes, likely mediated by coordinated variations in host composition, with nitrite content as a key factor influencing this variation; several bacterial species possessing both N and P cycling genes were identified, primarily engaged in the degradation of organic N and P compounds, denitrification, and phosphate uptake. This study highlights the coupling of N and P cycling in IRAS and the important role of functional bacteria in maintaining water quality. The results also have important implications for the management and improvement of IRAS for more effective aquaculture activities.
Collapse
Affiliation(s)
- Shenqun An
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Jiaxi Li
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Jinyu Du
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Li Feng
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Lianbo Zhang
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Xiaohua Zhang
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Zhong Zhuang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zelong Zhao
- Shanghai Biozeron Biotechnology Co., Ltd, Shanghai 201800, China
| | - Guang Yang
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing 100141, PR China.
| |
Collapse
|
2
|
Lemos MFL. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Mar Drugs 2024; 22:481. [PMID: 39590761 PMCID: PMC11595546 DOI: 10.3390/md22110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The quest for sustainable space exploration and colonization is a challenge in its infancy, which faces scarcity of resources and an inhospitable environment. In recent years, advancements in space biotechnology have emerged as potential solutions to the hurdles of prolonged space habitation. Taking cues from the oceans, this review focuses on the sundry types of marine organisms and marine-derived chemicals that have the potential of sustaining life beyond planet Earth. It addresses how marine life, including algae, invertebrates, and microorganisms, may be useful in bioregenerative life support systems, food production, pharmaceuticals, radiation shielding, energy sources, materials, and other applications in space habitats. With the considerable and still unexplored potential of Earth's oceans that can be employed in developing space colonization, we allow ourselves to dream of the future where people can expand to other planets, not only surviving but prospering. Implementing the blend of marine and space sciences is a giant leap toward fulfilling man's age-long desire of conquering and colonizing space, making it the final frontier.
Collapse
Affiliation(s)
- Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
3
|
Glaviano F, Federico S, Pinto B, Gharbi M, Russo T, Cosmo AD, Polese G, Costantini M, Zupo V. Morphologic and genic effects of waste pollution on the reproductive physiology of Paracentrotus lividus lmk: a mesocosm experiment. Front Physiol 2023; 14:1161852. [PMID: 37288438 PMCID: PMC10242131 DOI: 10.3389/fphys.2023.1161852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
A considerable amount of coastal contamination is caused by wastes deriving from household and the degradation and the metabolism of plants and animals, even if our attention is commonly focused on industrial pollutants and contaminants. Waste pollutants are mainly represented by highly diluted soluble compounds and particles deriving from dead organisms. This complex combination, consisting of suspended particles and dissolved nutrients, has a significant impact on coastal planktonic and benthic organisms, also playing an active role in the global cycles of carbon. In addition, production practices are nowadays shifting towards recirculated aquaculture systems (RAS) and the genic responses of target organisms to the pollution deriving from animal metabolism are still scarcely addressed by scientific investigations. The reservoir of organic matter dissolved in the seawater is by far the least understood if compared to that on land, cause only a few compounds have been identified and their impacts on animals and plants are poorly understood. The tendency of these compounds to concentrate at interfaces facilitates the absorption of dissolved organic compound (DOC) onto suspended particles. Some DOC components are chemically combined with dissolved metals and form complexes, affecting the chemical properties of the seawater and the life of the coastal biota. In this research, we compared the reproductive performances of the common sea urchin Paracentrotus lividus cultured in open-cycle tanks to those cultured in a recirculating aquaculture system (RAS), where pollution progressively increased during the experiment due to animal escretions. Sea urchins were cultured for 7 months under these two conditions and their gametes were collected. Embryos resulting by in vitro fertilization were analyzed by Real Time qPCR to identify possible effects of pollution-induced stress. The fertility of sea urchins was evaluated, as well as the gonadosomatic indices and the histological features of gonads. Our results indicate that pollution due to excess of nutrients, event at sub-lethal concentrations, may hardly impact the reproductive potential of this key species and that chronic effects of stress are revealed by the analyses of survival rates and gene expression.
Collapse
Affiliation(s)
- Francesca Glaviano
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Serena Federico
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Napoli, Italy
| | - Bruno Pinto
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Maissa Gharbi
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Tania Russo
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Napoli, Italy
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Naples, Italy
| |
Collapse
|
4
|
Supplemental C Addressed the pH Conundrum in Sustainable Marine Aquaponic Food Production Systems. Foods 2022; 12:foods12010069. [PMID: 36613284 PMCID: PMC9818600 DOI: 10.3390/foods12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
pH is the major issue that concerns all producers in aquaponics, as the main three organisms (aquatic animal, plant, and microbes) have different preferences. Additional C is a potential approach to amend the growing environment and improve shrimp and plant growth, and microbe establishment. Aquaponics under saline conditions has, however, not been studied in detail in regard to the effect of pH and additional C. In this study, we evaluate the impact of pH and additional C on the growth of Pacific whiteleg shrimp and five edible plants (three halophytes and two glycophytes) in marine aquaponic systems using nutrient film technique (NFT). The results indicated that plants grow better in both pH 6.5 treatments; however, additional C improved the growth in pH 7.5 + C treatment and had similar yield to lower pH treatments. The results indicated both pH and additional C had little impact on shrimp growth. In conclusion, adding C can be a practical solution to the pH conundrum for marine aquaponics. Appling additional C was suggested for the operation of marine aquaponic food production system when the pH is high.
Collapse
|
5
|
Kim DY, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Kumar M, Syed A, Bahkali AH, Ghodake GS. Advantage of Species Diversification to Facilitate Sustainable Development of Aquaculture Sector. BIOLOGY 2022; 11:368. [PMID: 35336742 PMCID: PMC8945328 DOI: 10.3390/biology11030368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022]
Abstract
Intensified agrochemical-based monoculture systems worldwide are under adoption to meet the challenge of human population growth and the ever-growing global demand for food. However, this path has been opposed and criticized because it involves overexploitation of land, monoculture of few species, excessive input of agrochemicals, and adverse impacts on human health and the environment. The wide diversity among polyculture systems practiced across the globe has created confusion over the priority of a single strategy towards sustainable aquaculture development and safer products. Herein, we highlight the significance of polyculture and integrated aquaculture practices in conveying the successful transition of the aquaculture industry towards sustainable development. So far, the established thought is that the precise selection of aquatic species and a focus on compatible and complementary species combinations are supposed to facilitate rapid progress in food production with more profitability and sustainability. Therefore, the advantages of species diversification are discussed from an ecological perspective to enforce aquaculture expansion. This account asserts that a diverse range of aquaculture practices can promote synergies among farmed species, enhance system resilience, enable conservation, decrease ecological footprints, and provide social benefits such as diversified income and local food security.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (D.-Y.K.); (S.K.S.)
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (D.-Y.K.); (S.K.S.)
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (A.A.K.); (R.G.S.)
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (A.A.K.); (R.G.S.)
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.H.B.)
| | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea; (D.-Y.K.); (S.K.S.)
| |
Collapse
|
6
|
Silva CP, Louros V, Silva V, Otero M, Lima DLD. Antibiotics in Aquaculture Wastewater: Is It Feasible to Use a Photodegradation-Based Treatment for Their Removal? TOXICS 2021; 9:toxics9080194. [PMID: 34437512 PMCID: PMC8402555 DOI: 10.3390/toxics9080194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
Aquacultures are a sector facing a huge development: farmers usually applying antibiotics to treat and/or prevent diseases. Consequently, effluents from aquaculture represent a source of antibiotics for receiving waters, where they pose a potential threat due to antimicrobial resistance (AMR) induction. This has recently become a major concern and it is expectable that regulations on antibiotics’ discharge will be established in the near future. Therefore, it is urgent to develop treatments for their removal from wastewater. Among the different possibilities, photodegradation under solar radiation may be a sustainable option. Thus, this review aims at providing a survey on photolysis and photocatalysis in view of their application for the degradation of antibiotics from aquaculture wastewater. Experimental facts, factors affecting antibiotics’ removal and employed photocatalysts were hereby addressed. Moreover, gaps in this research area, as well as future challenges, were identified.
Collapse
Affiliation(s)
- Carla Patrícia Silva
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
- Correspondence:
| | - Vitória Louros
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
| | - Valentina Silva
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
- CESAM & Department of Environment and Planning, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marta Otero
- CESAM & Department of Environment and Planning, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Diana L. D. Lima
- CESAM & Department of Chemistry, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (V.L.); (V.S.); (D.L.D.L.)
| |
Collapse
|
7
|
LED Lighting and High-Density Planting Enhance the Cost-Efficiency of Halimione Portulacoides Extraction Units for Integrated Aquaculture. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.
Collapse
|
8
|
Jerónimo D, Lillebø AI, Maciel E, Domingues MRM, Cremades J, Calado R. Unravelling the fatty acid profiles of different polychaete species cultured under integrated multi-trophic aquaculture (IMTA). Sci Rep 2021; 11:10812. [PMID: 34031455 PMCID: PMC8144190 DOI: 10.1038/s41598-021-90185-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
Polychaetes can be successfully employed to recover otherwise wasted nutrients present in particulate organic matter (POM) of aquaculture effluents. The present study describes the fatty acid (FA) profile of four different polychaete species cultured in sand filters supplied with effluent water from a marine fish farm. The FA profile of cultured and wild Hediste diversicolor was compared and revealed a ≈ 24.2% dissimilarity, with cultured biomass displaying a higher content in two essential n-3 highly unsaturated FA (HUFA) (EPA [20:5 n-3] and DHA [22:6 n-3]—eicosapentaenoic and docosahexaenoic acid, respectively). The comparison of the FA profile of cultured H. diversicolor with that of other polychaete species whose larvae successfully settled on the sand filters (Diopatra neapolitana, Sabella cf. pavonina and Terebella lapidaria) revealed that their FA profile, which is here described for the first time, displayed high levels of EPA and DHA (≈ 1.5–4.8 and 1.0–1.1 µg mg−1 DW, respectively). The highest concentration of total FA per biomass of polychaete was recorded in H. diversicolor and T. lapidaria, with both species being the ones whose FA profiles revealed a lowest level of dissimilarity and more closely resembled that of the aquafeed used in the fish farm. In the present work it was demonstrated that it is possible to produce polychaetes biomass with high nutritional value through an eco-design concept such as integrated multi-trophic aquaculture (IMTA). Indeed, this framework promotes a cleaner production and, in this specific case, allowed to recover essential fatty acids that are commonly wasted in aquaculture effluents.
Collapse
Affiliation(s)
- Daniel Jerónimo
- ECOMARE & CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Ana Isabel Lillebø
- ECOMARE & CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Elisabete Maciel
- ECOMARE & CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Centro de Espectrometria de Massa, LAQV REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - M Rosário M Domingues
- ECOMARE & CESAM & Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.,Centro de Espectrometria de Massa, LAQV REQUIMTE, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Javier Cremades
- Coastal Biology Research Group (BioCost), Facultad de Ciencias & CICA, Universidade da Coruña, 15071, A Coruña, Spain
| | - Ricardo Calado
- ECOMARE & CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Custódio M, Villasante S, Calado R, Lillebø AI. Testing the hydroponic performance of the edible halophyte Halimione portulacoides, a potential extractive species for coastal Integrated Multi-Trophic Aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144378. [PMID: 33421773 DOI: 10.1016/j.scitotenv.2020.144378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Sea purslane Halimione portulacoides (L.) Aellen is a candidate extractive species for coastal Integrated Multi-Trophic Aquaculture (IMTA) to recycle the dissolved inorganic nitrogen (DIN) and phosphorus (DIP) wasted by excretive species. To test its suitability, saline aquaculture effluents were simulated in the laboratory using a hydroponics approach to cultivate the plants. Nutrient extraction efficiency, growth performance and nutritional profile were assessed under a range of DIN and DIP concentrations representing three different aquaculture intensification regimes and using Hoagland's solution as a control. Over a 10-week period, hydroponic units under non-limited N and P conditions displayed daily extraction rates between 1.5 and 2.8 mg DIN-N L-1 day-1 and 0.1-0.2 mg DIP-P L-1 day-1 and yielded between 63.0 and 73.0 g m-2 day-1 of H. portulacoides biomass. Relatively to biomass produced, H. portulacoides extracted between 2.6 and 4.2 mg DIN-N g-1 and 0.1-0.4 mg DIP-P g-1. The treatment with low-input of DIN and DIP (6.4 mg N L-1 and 0.7 mg P L-1) induced some degree of nutrient limitation, as suggested by the extremely high extraction efficiencies of DIN extraction (99%) in parallel with lower productivity. The nutritional profile of H. portulacoides leaves is comparable to that of other edible halophytes and leafy greens and could be a low-sodium alternative to salt in its lyophilized form. From the present study, we conclude that the edible halophyte H. portulacoides can be highly productive in hydroponics using saline water irrigation with non-limiting concentrations of DIN and DIP and is, therefore, a suitable extractive species for coastal IMTA in brackish waters.
Collapse
Affiliation(s)
- Marco Custódio
- ECOMARE & Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Sebastián Villasante
- Department of Applied Economics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ricardo Calado
- ECOMARE & Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana I Lillebø
- ECOMARE & Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
10
|
Jerónimo D, Lillebø AI, Cremades J, Cartaxana P, Calado R. Recovering wasted nutrients from shrimp farming through the combined culture of polychaetes and halophytes. Sci Rep 2021; 11:6587. [PMID: 33758242 PMCID: PMC7988113 DOI: 10.1038/s41598-021-85922-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/05/2021] [Indexed: 01/31/2023] Open
Abstract
The bioremediation and biomass production of organic extractive organisms (polychaetes Arenicola marina, Hediste diversicolor and halophyte Salicornia ramosissima) was assessed in an integrated multi-trophic aquaculture (IMTA) framework. Culture trials were performed outdoors using the nutient rich effluent from a shrimp farm employing recirculated aquaculture systems. Similar bioremediation efficiencies were obtained in cultures using a single polyculture tank (1 T) or two trophic levels separated tanks (2 T; ≈ 0.3 and 0.6 m2 operational area, respectively), with a reduction of 74-87% for particulate organic matter (POM), 56-64% for dissolved inorganic nitrogen (DIN) and 60-65% for dissolved inorganic phosphorus (DIP). Hediste diversicolor adapted well to culture conditions, reaching densities up to 5.000 ind. m-2 (≈ 78-98 g m-2). Arenicola marina failed to cope with water temperature that exceeded the species thermal limits, displaying a survival < 10% (20 °C often pointed as the maximum thermal threshold for this species). Productivity of S. ramosissima with 1 T was about twice that obtained with 2 T (≈ 150-170 and ≈ 60-90 g FW m-2 edible aboveground biomass, respectively). The yellowish coloration of cultured plants was likely due to the chemical oxidation and rapid sand filtration pre-treatment applied to the brackish groundwater used in the aquaculture facility, that removed iron (and probably other essential elements). Overall, 1 T design combining H. diversicolor and S. ramosissima displayed the best bioremediation performance and biomass production, while also allowing reducing in half the operational area required to implement this IMTA framework.
Collapse
Affiliation(s)
- Daniel Jerónimo
- grid.7311.40000000123236065ECOMARE and CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Isabel Lillebø
- grid.7311.40000000123236065ECOMARE and CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Javier Cremades
- grid.8073.c0000 0001 2176 8535Coastal Biology Research Group (BioCost), Facultad de Ciencias and CICA, Universidade da Coruña, 15071 A Coruña, Spain
| | - Paulo Cartaxana
- grid.7311.40000000123236065ECOMARE and CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Calado
- grid.7311.40000000123236065ECOMARE and CESAM and Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Performance of polychaete assisted sand filters under contrasting nutrient loads in an integrated multi-trophic aquaculture (IMTA) system. Sci Rep 2020; 10:20871. [PMID: 33257745 PMCID: PMC7705650 DOI: 10.1038/s41598-020-77764-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Polychaete assisted sand filters (PASFs) allow to combine a highly efficient retention of particulate organic matter (POM) present in aquaculture effluent water and turn otherwise wasted nutrients into valuable worm biomass, following an integrated multi-trophic aquaculture (IMTA) approach. This study evaluated the bioremediation and biomass production performances of three sets of PASFs stocked with ragworms (Hediste diversicolor) placed in three different locations of an open marine land-based IMTA system. The higher organic matter (OM) recorded in the substrate of the systems which received higher POM content (Raw and Df PASFs – filtered raw and screened by drum filter effluent, respectively) likely prompted a superior reproductive success of stocked polychaetes (final densities 2–7 times higher than initial stock; ≈1000–3000 ind. m−2). Bioremediation efficiencies of ≈70% of supplied POM (≈1.5–1.8 mg L−1) were reported in these systems. The PASFs with lower content of OM in the substrate (Df + Alg PASFs – filtered effluent previously screened by drum filter and macroalgae biofilter) differed significantly from the other two, with stocked polychaetes displaying a poorer reproductive success. The PASFs were naturally colonized with marine invertebrates, with the polychaetes Diopatra neapolitana, Terebella lapidaria and Sabella cf. pavonina being some of the species identified with potential for IMTA.
Collapse
|
12
|
HOLGUIN PEÑA RAMONJAIME, MEDINA-HERNÁNDEZ DIANA, GHASEMI MOJTABA, Rueda Puente EO. SALT TOLERANT PLANTS AS A VALUABLE RESOURCE FOR SUSTAINABLE FOOD PRODUCTION IN ARID AND SALINE COASTAL ZONES. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.82412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This review focuses on the potential of halophytes for food, fodder and biofuels production, as well as their impacts on the environment and societies. Moreover, to open new areas in production systems using novel technologies such as halophytes in a desert agriculture. We are faced with the crisis and the shortage of freshwater in arid, semi-arid and desert regions. For this reason, we have to apply sustainable systems for human food, fodder and biofuels. Halophytes are naturally resistant to salt and develop on the coastal coast and arid-saline areas. We present a complete summary of the current situation of human population growth and food demand, a sustainable alternative such as halophilic crops of agro-industrial importance compared with conventional crops and how they can be incorporated into agriculture sustainable in arid, desert and coastal areas, basing the above on success stories.
Collapse
|
13
|
Abstract
Implementing microalgae biorefinery in arid environments requires utilization of strains that can grow at high temperatures (above 28 °C) and salinity levels (above 30 ppt). In this study, we investigate the newly isolated seawater strain, Synechococcus, native to the United Arab Emirates, and evaluate its value as a perspective organism for cultivation (for fuel and bio-products) in regions with freshwater scarcity. The strain displayed tolerance to a wide range of temperature (22–37 °C) and salinity (20–41 ppt), with maximum biomass concentration of 0.72 g L−1 and a maximum growth rate of 82 mg L−1 d−1 at 25 °C and 33 ppt salinity. Lipids accumulation reached up to 26% of dry weight in nitrogen-depleted conditions (with 1.8 mM of nitrates addition to the media), whereas protein content exceeded 50% dry weight. In this study, harvesting is investigated using three chemical agents: Ferric chloride, sodium hydroxide, and chitosan. Cell disruption is analyzed for four distinct treatments: Enzymatic, alkaline, ultrasonic, and hydrothermal. Among tested methods, flocculation with sodium hydroxide and ultrasonication were found to be the most efficient techniques for harvesting and cell disruption, respectively. The growth characteristics of the local strain and the potential to derive protein and lipids from it makes it a promising biomass in a biorefinery context.
Collapse
|