1
|
Daniels MG, Werner ME, Li RT, Pascal SM. Exploration of Potential Broad-Spectrum Antiviral Targets in the Enterovirus Replication Element: Identification of Six Distinct 5' Cloverleaves. Viruses 2024; 16:1009. [PMID: 39066172 PMCID: PMC11281424 DOI: 10.3390/v16071009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Enterovirus genomic replication initiates at a predicted RNA cloverleaf (5'CL) at the 5' end of the RNA genome. The 5'CL contains one stem (SA) and three stem-loops (SLB, SLC, SLD). Here, we present an analysis of 5'CL conservation and divergence for 209 human health-related serotypes from the enterovirus genus, including enterovirus and rhinovirus species. Phylogenetic analysis indicates six distinct 5'CL serotypes that only partially correlate with the species definition. Additional findings include that 5'CL sequence conservation is higher between the EV species than between the RV species, the 5'CL of EVA and EVB are nearly identical, and RVC has the lowest 5'CL conservation. Regions of high conservation throughout all species include SA and the loop and nearby bases of SLB, which is consistent with known protein interactions at these sites. In addition to the known protein binding site for the Poly-C binding protein in the loop of SLB, other conserved consecutive cytosines in the stems of SLB and SLC provide additional potential interaction sites that have not yet been explored. Other sites of conservation, including the predicted bulge of SLD and other conserved stem, loop, and junction regions, are more difficult to explain and suggest additional interactions or structural requirements that are not yet fully understood. This more intricate understanding of sequence and structure conservation and variability in the 5'CL may assist in the development of broad-spectrum antivirals against a wide range of enteroviruses, while better defining the range of virus isotypes expected to be affected by a particular antiviral.
Collapse
Affiliation(s)
- Morgan G. Daniels
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| | - Meagan E. Werner
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| | - Rockwell T. Li
- Math and Science Academy, Ocean Lakes High School, Virginia Beach, VA 23454, USA;
| | - Steven M. Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA; (M.G.D.); (M.E.W.)
| |
Collapse
|
2
|
Almas S, Carpenter RE, Singh A, Rowan C, Tamrakar VK, Sharma R. Deciphering Microbiota of Acute Upper Respiratory Infections: A Comparative Analysis of PCR and mNGS Methods for Lower Respiratory Trafficking Potential. Adv Respir Med 2023; 91:49-65. [PMID: 36825940 PMCID: PMC9952210 DOI: 10.3390/arm91010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Although it is clinically important for acute respiratory tract (co)infections to have a rapid and accurate diagnosis, it is critical that respiratory medicine understands the advantages of current laboratory methods. In this study, we tested nasopharyngeal samples (n = 29) with a commercially available PCR assay and compared the results with those of a hybridization-capture-based mNGS workflow. Detection criteria for positive PCR samples was Ct < 35 and for mNGS samples it was >40% target coverage, median depth of 1X and RPKM > 10. A high degree of concordance (98.33% PPA and 100% NPA) was recorded. However, mNGS yielded positively 29 additional microorganisms (23 bacteria, 4 viruses, and 2 fungi) beyond PCR. We then characterized the microorganisms of each method into three phenotypic categories using the IDbyDNA Explify® Platform (Illumina® Inc, San Diego, CA, USA) for consideration of infectivity and trafficking potential to the lower respiratory region. The findings are significant for providing a comprehensive yet clinically relevant microbiology profile of acute upper respiratory infection, especially important in immunocompromised or immunocompetent with comorbidity respiratory cases or where traditional syndromic approaches fail to identify pathogenicity. Accordingly, this technology can be used to supplement current syndrome-based tests, and data can quickly and effectively be phenotypically characterized for trafficking potential, clinical (co)infection, and comorbid consideration-with promise to reduce morbidity and mortality.
Collapse
Affiliation(s)
- Sadia Almas
- Department of Research, Advanta Genetics, 10935 CR 159, Tyler, TX 75703, USA
| | - Rob E. Carpenter
- Department of Research, Advanta Genetics, 10935 CR 159, Tyler, TX 75703, USA
- Department of Human Resource Development, University of Texas at Tyler, 3900 University Boulevard, Tyler, TX 75799, USA
- Correspondence: ; Tel.: +1-903-530-1700
| | - Anuradha Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, India
| | - Chase Rowan
- Department of Research, Advanta Genetics, 10935 CR 159, Tyler, TX 75703, USA
| | - Vaibhav K. Tamrakar
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, India
- RetroBioTech LLC, 838 Dalmalley Ln, Coppell, TX 75019, USA
| | - Rahul Sharma
- Department of Research, Advanta Genetics, 10935 CR 159, Tyler, TX 75703, USA
- ICMR-National Institute of Research in Tribal Health, Jabalpur 482003, India
| |
Collapse
|
3
|
Wang Y, Ji W, Hao C, Yan Y, Jiang W, Shao X, Xu J. Epidemiological and clinical characteristics of human rhinovirus caused bronchiolitis in children in Southeast China. Minerva Pediatr (Torino) 2023; 75:26-31. [PMID: 36799342 DOI: 10.23736/s2724-5276.16.04418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Human rhinovirus (hRV) is a critical viral pathogen implicated in bronchiolitis in children. However, there is no study on hRV bronchiolitis in children from Southeast China. The aim of this study was to determine the incidence and clinical features of hRV bronchiolitis in Southeast China. METHODS The study was carried out in Children's Hospital of Soochow University on children admitted with the diagnosis of bronchiolitis from January 2013 to December 2014. hRV was tested using reverse-transcription polymerase chain reaction. RESULTS hRV was identified in 140 of 797 specimens (17.6%). hRV was detected with a highest rate in June and August. The hRV positive rate in patients younger than 6 months of age was significantly lower than that in other age groups (P<0.01). The most common radiological finding was hyperinflation (51.4%). Patients with hRV infection were older and more likely to have eczema than those with RSV. CONCLUSIONS The hRV was an important viral pathogen associated with bronchiolitis in children with an epidemic peak in summer. Most of patients were between 6 to 24 months and with a high presence of eczema.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Wei Ji
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China -
| | - Chuangli Hao
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Wujun Jiang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Jun Xu
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Gray GC, Robie ER, Studstill CJ, Nunn CL. Mitigating Future Respiratory Virus Pandemics: New Threats and Approaches to Consider. Viruses 2021; 13:637. [PMID: 33917745 PMCID: PMC8068197 DOI: 10.3390/v13040637] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite many recent efforts to predict and control emerging infectious disease threats to humans, we failed to anticipate the zoonotic viruses which led to pandemics in 2009 and 2020. The morbidity, mortality, and economic costs of these pandemics have been staggering. We desperately need a more targeted, cost-efficient, and sustainable strategy to detect and mitigate future zoonotic respiratory virus threats. Evidence suggests that the transition from an animal virus to a human pathogen is incremental and requires a considerable number of spillover events and considerable time before a pandemic variant emerges. This evolutionary view argues for the refocusing of public health resources on novel respiratory virus surveillance at human-animal interfaces in geographical hotspots for emerging infectious diseases. Where human-animal interface surveillance is not possible, a secondary high-yield, cost-efficient strategy is to conduct novel respiratory virus surveillance among pneumonia patients in these same hotspots. When novel pathogens are discovered, they must be quickly assessed for their human risk and, if indicated, mitigation strategies initiated. In this review, we discuss the most common respiratory virus threats, current efforts at early emerging pathogen detection, and propose and defend new molecular pathogen discovery strategies with the goal of preempting future pandemics.
Collapse
Affiliation(s)
- Gregory C. Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore 169856, Singapore
- Global Health Center, Duke Kunshan University, Kunshan 215316, China
| | - Emily R. Robie
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Caleb J. Studstill
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA; (E.R.R.); (C.J.S.)
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
| | - Charles L. Nunn
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA;
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Kenmoe S, Kengne-nde C, Ebogo-belobo JT, Mbaga DS, Modiyinji AF, Njouom R. Systematic review and meta-analysis of the prevalence of common respiratory viruses in children < 2 years with bronchiolitis reveal a weak role played by the SARS-CoV-2.. [DOI: 10.1101/2020.08.28.20183681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
AbstractIntroduction The advent of genome amplification assays has allowed description of new respiratory viruses and to reconsider the role played by certain respiratory viruses in bronchiolitis. This systematic review and meta-analysis was initiated to clarify the prevalence of respiratory viruses in children with bronchiolitis in the coronavirus disease 2019 pandemic context.MethodsWe performed an electronic search through Pubmed and Global Index Medicus databases. We included observational studies reporting the detection rate of common respiratory viruses in children with bronchiolitis using molecular assays. Data was extracted and the quality of the included articles was assessed. We conducted sensitivity, subgroups, publication bias, and heterogeneity analyses using a random effect model.ResultsThe final meta-analysis included 51 studies. Human respiratory syncytial virus (HRSV) was largely the most commonly detected virus 59.2%; 95% CI [54.7; 63.6]). The second predominant virus was Rhinovirus (RV) 19.3%; 95% CI [16.7; 22.0]) followed by Human bocavirus (HBoV) 8.2%; 95% CI [5.7; 11.2]). Other reported viruses included Human Adenovirus (HAdV) 6.1%; 95% CI [4.4; 8.0]), Human Metapneumovirus (HMPV) 5.4%; 95% CI [4.4; 6.4]), Human Parainfluenzavirus (HPIV) 5.4%; 95% CI [3.8; 7.3]), Influenza 3.2%; 95% CI [2.2; 4.3], mild Human Coronavirus (HCoV) 2.9%; 95% CI [2.0; 4.0]), and Enterovirus (EV) 2.9%; 95% CI [1.6; 4.5]). HRSV was the predominant virus involved in multiple detection and most codetections were HRSV + RV 7.1%, 95% CI [4.6; 9.9]) and HRSV + HBoV 4.5%, 95% CI [2.4; 7.3]).ConclusionsThe present study has shown that HRSV is the main cause of bronchiolitis in children, we also have Rhinovirus, and Bocavirus which also play a significant role. No study has reported the presence of Severe Acute Respiratory Syndrome Coronavirus-2 in children with bronchiolitis to date.
Collapse
|
6
|
Merckx J, Kraicer-Melamed H, Gore G, Ducharme FM, Quach C. Respiratory pathogens and clinical outcomes in children with an asthma exacerbation: A systematic review. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2019; 4:145-168. [PMID: 36340656 PMCID: PMC9603032 DOI: 10.3138/jammi.2019-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/15/2019] [Indexed: 06/16/2023]
Abstract
BACKGROUND In asthmatic children, respiratory pathogens are identified in 60%-80% of asthma exacerbations, contributing to a significant burden of illness. The role of pathogens in the clinical evolution of exacerbations is unknown. OBJECTIVE We systematically reviewed the association between the presence of pathogens and clinical outcomes in children with an asthma exacerbation. METHOD PubMed, EMBASE, BIOSIS, and the Cochrane Central Register of Controlled Trials were searched up to October 2016 for studies reporting on respiratory pathogen exposure and clinical outcome. The Risk of Bias in Non-Randomized Studies of Interventions tool was used for quality assessment. RESULTS Twenty-eight observational studies (N = 4,224 children) reported on 112 different associations between exposure to any pathogen (n = 45), human rhinovirus (HRV; n = 34), atypical bacteria (n = 21), specific virus (n = 11), or bacteria (n = 1) and outcomes of exacerbation severity (n = 26), health care use (n = 38), treatment response (n = 19), and morbidity (n = 29). Restricting the analysis only to comparisons with a low to moderate risk of bias, we observed an association between HRV and higher exacerbation severity on presentation (regression p = .016) and between the presence of any pathogen and emergency department treatment failure (odds ratio [OR] = 1.57; 95% CI 1.04% to 2.37%). High-quality evidence for effect on morbidity or health care use is lacking. CONCLUSIONS Further research on the role of pathogen-treatment interaction and outcomes is required to inform the need for point-of-care, real-time testing for pathogens. Studies with a sufficiently large sample size that address selection bias, correctly adjust for confounding, and rigorously report core patient-centred outcomes are necessary to improve knowledge.
Collapse
Affiliation(s)
- Joanna Merckx
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, Canada
- Division of Infectious Diseases, Department of Pediatrics, Montreal Children’s Hospital, McGill University, Montreal, Québec, Canada
| | - Hannah Kraicer-Melamed
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, Canada
| | - Genevieve Gore
- Life Sciences Library, McGill University, Montreal, Québec, Canada
| | - Francine M Ducharme
- Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, Québec, Canada
| | - Caroline Quach
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, Canada
- Department of Microbiology, Infectious Disease, and Immunology, University of Montreal, Montreal, Québec, Canada
- Infection Prevention and Control Unit, Division of Infectious Disease and Medical Microbiology, CHU Sainte-Justine, Montreal, Québec, Canada
| |
Collapse
|
7
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Wiyatno A, Febrianti ESZ, Dewantari AK, Myint KS, Safari D, Idris NS. Characterization of rhinovirus C from a 4-year-old boy with acute onset dilated cardiomyopathy in Jakarta, Indonesia. JMM Case Rep 2018; 5:e005139. [PMID: 30425833 PMCID: PMC6230756 DOI: 10.1099/jmmcr.0.005139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction Myocarditis, inflammation of the heart muscle, can be caused by infections, autoimmune disease or exposure to toxins. The major cause of myocarditis in the paediatric population is viral infection, including coxsackievirus B3, adenovirus, herpesvirus, parvovirus, influenza A and B, and hepatitis. Here, we report the detection of rhinovirus C in a boy with a clinical presentation of myocarditis, suggesting a possible causative role of this virus in this case. Case presentation A previously well 4.5-year-old boy presented with increasing breathlessness for a week prior to admission. He also had upper respiratory tract infection a few days before the event. An echocardiogram revealed severe left ventricle (LV) systolic dysfunction with dilation of the LV. RNA was extracted from serum and two nasal swabs, and tested with conventional PCR at the family level for viruses including enterovirus, dengue, chikungunya, influenza, herpesvirus, paramyxovirus and coronavirus. Further characterization of the enterovirus group was carried out using PCR with primers targeting the VP4/VP2 gene, followed by sequencing. Molecular tests showed the presence of rhinovirus C genetic material in both serum and swab samples. Phylogenetic analysis of the VP4/VP2 region showed 96-97 % similarity with the closest strain isolated in Ulaanbaatar (Mongolia) and Japan in 2012. Conclusion We report the possible association of rhinovirus C and myocarditis in a child presenting with acute onset of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - E S Zul Febrianti
- Cardiology Division, Department of Child Health, Faculty of Medicine Universitas Indonesia/Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | | | - Khin Saw Myint
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nikmah Salamia Idris
- Cardiology Division, Department of Child Health, Faculty of Medicine Universitas Indonesia/Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| |
Collapse
|
9
|
Tsatsral S, Xiang Z, Fuji N, Maitsetseg C, Khulan J, Oshitani H, Wang J, Nymadawa P. Molecular Epidemiology of the Human Rhinovirus Infection in Mongolia during 2008-2013. Jpn J Infect Dis 2015; 68:280-7. [PMID: 25672409 DOI: 10.7883/yoken.jjid.2014.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rhinovirus infections are common in all age groups world-wide, and they occur throughout the year. In this study, we examined 2,689 nasopharyngeal swabs collected in Mongolia during 2008-2013. Human rhinoviruses (HRVs) were detected in 295 (11.0%) samples, and 85 (28.8%) patients were co-infected with other respiratory viruses. HRV was co-detected with bocavirus, human coronavirus, and respiratory syncytial virus in 21 (24.7%), 17 (20.0%), and 14 (16.5%), respectively. We tested 170 (57.6%) of the 295 HRV-positive samples: 117 HRV strains were typed by using the VP4/VP2 method and 53 by using 5' UTR method. We found HVR-A, HVR-C, and HVR-B infections in 80 (47.1%), 76 (44.7%), and 14 (8.2%) samples, respectively.
Collapse
|