1
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Ballal S, Naidu KS, Bareja L, Chahar M, Gupta S, Sameer HN, Yaseen A, Athab ZH, Adil M. Exploring preventive and treatment strategies for oral cancer: Modulation of signaling pathways and microbiota by probiotics. Gene 2025; 952:149380. [PMID: 40089085 DOI: 10.1016/j.gene.2025.149380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/11/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
The evidence suggests that the microbiome plays a crucial role in cancer development. The oral cavity has many microorganisms that can influence oral cancer progression. Understanding the mechanisms and signaling pathways of the oral, gum, and teeth microbiome in tumor progression can lead to new treatment strategies. Probiotics, which are friendly microorganisms, have shown potential as anti-cancer agents. These positive characteristics of probiotic strains make them suitable for cancer prevention or treatment. The oral-gut microbiome axis supports health and homeostasis, and imbalances in the oral microbiome can disrupt immune signaling pathways, epithelial barriers, cell cycles, apoptosis, genomic stability, angiogenesis, and metabolic processes. Changes in the oral microbiome in oral cancer may suggest using probiotics-based treatments for their direct or indirect positive roles in cancer development, progression, and metastasis, specifically oral squamous cell carcinoma (OSCC). Here, reported relationships between probiotics, oral microbiota, and oral cancer are summarized.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003 Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Arias AM, Reinartz DM, Sairs C, Kumar SS, Wilson JE. Streptococcus anginosus Activates the NLRP3 Inflammasome to Promote Inflammatory Responses from Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642696. [PMID: 40161672 PMCID: PMC11952393 DOI: 10.1101/2025.03.12.642696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chronic inflammation and oral dysbiosis are common features of oral squamous cell carcinoma (OSCC). The commensal streptococci, S. anginosus, is increased in oral diseases including OSCC. Our previous work revealed that S. anginosus promotes inflammatory responses from macrophage cell lines, however the molecular mechanism by which S. anginosus interacts with macrophages to instigate this response remains to be investigated. Here, we expand on our previous findings by investigating the effects of S. anginosus infection of primary bone marrow derived macrophages (BMMs) and during in vivo infection. We found S. anginosus activated primary BMMs, which presented an enlarged cellular area, increased NF-κB activation and downstream inflammatory cytokines TNF⍰, IL-6 and IL-1β at 24 hours post infection. S. anginosus viability was dispensable for NF-κB activation, but essential for the induction of downstream inflammatory proteins and cytokines. S. anginosus persisted intracellularly within BMMs and induced the expression of inflammasome sensors AIM2, NLRC4 and NLRP3. Further, BMMs lacking the inflammasome adapter protein ASC ( Asc -/- ) had significantly diminished IL-1β production compared to wild type BMMs, indicating that S. anginosus activated the inflammasome. S. anginosus primarily triggered the inflammasome through NLRP3 as S. anginosus -infected Nlrp3 -/- BMMs and NLRP3 inhibitor (MCC950)-treated wild type BMMs displayed diminished IL-1β production compared to wild type controls. Lastly, S. anginosus -infected Asc -/- and Nlrp3 -/- mice displayed reduced weight loss compared to C57BL/6 mice. These overall findings indicate that S. anginosus replicates within macrophages and promotes a proinflammatory response in part through activation of the NLRP3 inflammasome. brief summary sentence: S. anginosus replicates intracellularly within macrophages and is sensed by the NLRP3 inflammasome to promote proinflammatory response.
Collapse
|
3
|
Xialu S, Faqiang M. Mechanisms of action of intestinal microorganisms and advances in head and neck tumors. Discov Oncol 2025; 16:303. [PMID: 40072772 PMCID: PMC11903988 DOI: 10.1007/s12672-025-02035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
In the last decade, it has been discovered that intestinal flora can affect various organ-specific cancers by altering the body's energy balance, synthesizing genetic toxins and small signaling molecules, and initiating and modulating immune responses. In this review, we will focus on elucidating the role of intestinal flora based on its molecular mechanisms and its possible impact on head and neck cancers in the near future, and explore how it may be a novel approach to treating head and neck cancers in the future.
Collapse
Affiliation(s)
- Su Xialu
- Graduate School of Guizhou Medical University, Guiyang, 550000, China
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Ma Faqiang
- Graduate School of Guizhou Medical University, Guiyang, 550000, China.
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
| |
Collapse
|
4
|
Dhungana G, Srisai D, Sampath C, Soliman J, Kelly RM, Saleh HY, Sedik A, Raynes E, Ferguson A, Alluri LSC, Gangula PR. Unveiling the Molecular Crosstalk Between Periodontal and Cardiovascular Diseases: A Systematic Review. Dent J (Basel) 2025; 13:98. [PMID: 40136726 PMCID: PMC11941040 DOI: 10.3390/dj13030098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/27/2025] Open
Abstract
Background/Objectives: Periodontal disease (PD) is a chronic inflammatory condition caused by dysbiosis of the oral microbiome. PD is linked to systemic inflammation and endothelial dysfunction, which associate it with cardiovascular disease (CVD). This systematic review explores the molecular and microbial mechanisms through which periodontal pathogens, including "Red Complex" bacteria (Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and Fusobacterium nucleatum, influence cardiovascular health via inflammatory pathways, immune modulation, and microbial dissemination. Methods: A systematic review was conducted following PRISMA guidelines. A literature search was conducted in the PubMed and ScienceDirect databases using relevant keywords, with strict inclusion and exclusion criteria, from the first week of September 2024 to the first week of October 2024. Studies addressing the relationship between PD and CVD were assessed for methodological rigor, relevance, and data availability. The outcomes were synthesized using a descriptive narrative approach. Out of 591 records screened, 421 full-text articles were sought for retrieval. The final review included 58 articles providing supplementary aggregated data after eligibility assessment. Results: The pathogenesis of PD involves the activation of immune cells and the release of pro-inflammatory cytokines (such as IL-1, IL-6, TNF-α, and PGE2) and chemokines (including IL-8 and MCP-1) along with oxidative stress driven by reactive oxygen species (ROS). Periodontal pathogens trigger endothelial oxidative stress and systemic inflammation via Toll-like receptors (TLRs), NF-κB signaling, and nitric oxide (NO) dysregulation, contributing to endothelial dysfunction and atherogenesis. Biomarkers, such as C-reactive protein, interleukins, and matrix metalloproteinases (MMPs), further highlight the systemic inflammatory response. Conclusions: This review underscores the significant role of periodontal pathogens and inflammatory mediators in systemic health, particularly in the progression of CVD. Although existing evidence illustrates these associations, the underlying molecular mechanisms remain inadequately understood, indicating a need for further research to advance precision medicine and therapeutic strategies.
Collapse
Affiliation(s)
- Gunaraj Dhungana
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| | - Dollada Srisai
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| | - Chethan Sampath
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| | - Jeremiah Soliman
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| | - Regan M. Kelly
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| | - Honar Y. Saleh
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| | - Abdelrahman Sedik
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| | - Edilberto Raynes
- Department of Professional and Medical Education, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Alexys Ferguson
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| | | | - Pandu R. Gangula
- Department of Oral Diagnostic Sciences & Research, School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA; (G.D.); (D.S.); (C.S.); (J.S.); (H.Y.S.); (A.S.); (A.F.)
| |
Collapse
|
5
|
Meng Y, Deng J, Deng W, Sun Z. Intra-tumoral bacteria in head and neck cancer: holistic integrative insight. Cancer Biol Med 2025; 22:j.issn.2095-3941.2024.0311. [PMID: 39969204 PMCID: PMC11899592 DOI: 10.20892/j.issn.2095-3941.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Intra-tumoral bacteria are pivotal in the initiation and progression of head and neck squamous cell carcinoma (HNSCC), exerting a significant influence on tumor cell biology, immune responses, and the tumor microenvironment (TME). Different types and distribution of bacteria threaten the balance of metabolism and the immune environment of tumor cells. Taking advantage of this disrupted homeostasis, intra-tumoral bacteria stimulate the secretion of metabolites or influence specific immune cell types to produce inflammatory or chemokines, thereby influencing the anti-tumor immune response while regulating the level of inflammation and immunosuppression within the TME. Some intra-tumoral bacteria are used as diagnostic and prognostic markers in clinical practice. Based on the unique characteristics of bacteria, the use of engineered bacteria and outer membrane vesicles for drug delivery and biological intervention is a promising new therapeutic strategy. The presence of intra-tumoral bacteria also makes chemoradiotherapy tolerable, resulting in a poor treatment effect. However, due to the immune-related complexity of intra-tumoral bacteria, there may be unexpected effects in immunotherapy. In this review the patterns of intra-tumoral bacteria involvement in HNSCC are discussed, elucidating the dual roles, while exploring the relevance to anti-tumor immune responses in the clinical context and the prospects and limitations of the use of bacteria in targeted therapy.
Collapse
Affiliation(s)
- Yucheng Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Jiaru Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Weiwei Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhijun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
- Department of Oral & Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Sahin TK, Sonmezer MC. The role of the microbiome in head and neck squamous cell cancers. Eur Arch Otorhinolaryngol 2025; 282:623-637. [PMID: 39306588 DOI: 10.1007/s00405-024-08966-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 02/09/2025]
Abstract
The human microbiome has garnered tremendous interest in the field of oncology, and microbiota studies in head and neck oncology has also flourished. Given the increasing incidence and mortality of HNSCC, as well as the suboptimal outcomes of available treatments, there is an urgent need for innovative approaches involving the microbiome. This review evaluates the intricate relationship between the microbiome and HNSCC, highlighting the potential of the microbiome as a marker for cancer detection, its role in malignancy, and its impact on the efficacy of conventional treatments like chemotherapy and radiotherapy. The review also explores the effects of treatment modalities on the microbiome and discusses the potential of microbiome alterations to predict and influence treatment toxicities such as mucositis and xerostomia. Further research is warranted to characterize the microbiome-HNSCC association, which holds promise for advancing early diagnosis, enhancing prognostic accuracy, and personalizing treatment strategies to improve patient outcomes. The exploration of the microbiome in clinical trials indicates a burgeoning subject of microbiome-focused therapies, heralding a new frontier in most cancer care.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine and Medical Oncology Department, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| | - Meliha Cagla Sonmezer
- Department of Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Deo PN, Deshmukh RS, Gaike AH, Christopher A, Gujare M, Inamdar M. Oral microbiome profiles in oral potentially malignant disorders and oral cancer - A diagnostic perspective. J Oral Maxillofac Pathol 2025; 29:87-97. [PMID: 40248614 PMCID: PMC12002586 DOI: 10.4103/jomfp.jomfp_140_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 01/17/2025] [Indexed: 04/19/2025] Open
Abstract
Background Dysregulation of the oral microbiome has been correlated with many diseases, but oral microbiome in the etiopathogenesis of oral cancer remains a grey area and needs to be explored. It is imperative to understand the oral microbiome profiles so as to know the variations in the composition from normal to pre-cancer to cancer. Aim To profile the oral microbiome of normal, oral potentially malignant disorders (leukoplakia - Leu, oral submucous fibrosis - OSMF) and oral squamous cell carcinoma (OSCC) by Next-Generation Sequencing of the 16S ribosomal rRNA gene. Material and Methods This is an observational cross-sectional study. A total of 50 subjects were selected for this study, which included the the normal, Leukoplakia, OSMF, and OSCC groups. Bacterial genomic DNA was extracted, and 16S rRNA gene sequencing of the V4 region was carried out using the Illumina MiSeq system. Bio-informatics data analysis was carried out using the DADA2 pipeline and phyloseq R package, and the t-test was used for statistical analysis. Results and Conclusion Variations in the composition of the oral microbiome were identified across all study groups, and significant differences were noted in certain microbial taxa across normal, pre-cancer, and cancer. Certain bacterial taxa were detected only in OSCC. An increase in relative abundance of Gram-negative bacteria as well as an increasing trend in the abundance of periodontal taxa was observed in OSCC. This study generated a baseline data which may provide a guideline for future functional and integrative oral microbiome studies. Variations in oral microbiome composition may be used as biomarkers and provide signatures during the progression from normal to pre-cancer to cancer.
Collapse
Affiliation(s)
- Priya N. Deo
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India
| | - Revati S. Deshmukh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India
| | - Akshay H. Gaike
- National Centre for Cell Science, Pune, Maharashtra, India
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Anu Christopher
- Department of Pathology, Bharati Hospital and Research Centre, Pune, Maharashtra, India
| | - Mohak Gujare
- National Centre for Cell Science, Pune, Maharashtra, India
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Mitali Inamdar
- National Centre for Cell Science, Pune, Maharashtra, India
| |
Collapse
|
8
|
Jain P, Mohapatra S, Farooq U, Hassan N, Mirza MA, Iqbal Z. An Overview of the Dichotomous Role of Microbiota in Cancer Progression and Management. Curr Cancer Drug Targets 2025; 25:38-48. [PMID: 38409691 DOI: 10.2174/0115680096282503240124104029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
It is a well-known fact that cancer is considered the second leading cause of mortality across the globe. Although the human oral cavity and intestine are the natural habitat of thousands of microbes, dysbiosis results in malignancies, such as oral squamous cell carcinoma and colorectal cancer. Amongst the intestinal microbes, H. pylori is a deadly carcinogen. Also, causative pathogens for the development of pancreatic and colorectal cancer are found in the oral cavity, such as Fusobacterium nucleatum and Porphyromonas gingivalis. Many periodontopathic micro- organisms, like Streptococcus sp., Peptostreptococcus sp., Prevotella sp., Fusobacterium sp., Porphyromonas gingivalis, and Capnocytophaga gingivalis, strongly have an impact on the development of oral cancers. Three basic mechanisms are involved in pathogen-mediated cancer development, like chronic inflammation-mediated angiogenesis, inhibition of cellular apoptosis, and release of carcinogenic by-products. Microbiota has a dichotomous role to play in cancer, i.e., microbiota can be used for cancer management too. Shreds of evidence are there to support the fact that microbiota enhances the chemotherapeutic drug efficacy. This review presents the possible mechanism of the oncogenic effect of microbiota with emphasis on the oral microbiome and also attempts to explain the intricate role of microbiota in cancer management.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110030, India
| | - Sradhanjali Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110030, India
| | - Uzma Farooq
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110030, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110030, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110030, India
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110030, India
| |
Collapse
|
9
|
Praveen Z, Choi SW, Lee JH, Park JY, Oh HJ, Kwon IJ, Park JH, Kim MK. Oral Microbiome and CPT1A Function in Fatty Acid Metabolism in Oral Cancer. Int J Mol Sci 2024; 25:10890. [PMID: 39456670 PMCID: PMC11508181 DOI: 10.3390/ijms252010890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The oral microbiome is crucial for human health. Although oral dysbiosis may contribute to oral cancer (OC), the detailed relationships between the microbiome and OC remain unclear. In this case-control study, we aimed to elucidate the connection between the oral microbiome and mechanisms potentially involved in oral cancer. The study analyzed 1022 oral saliva samples, including 157 from oral cancer patients and 865 from healthy controls, using 16S ribosomal RNA (16S rRNA) sequencing and a Light Gradient Boosting Machine (LightGBM) model to identify four bacterial genera significantly associated with oral cancer. In patients with oral cancer, the relative abundance of Streptococcus and Parvimonas was higher; Corynebacterium and Prevotella showed decreased relative abundance; and levels of fatty acid oxidation enzymes, including Carnitine palmitoyltransferase 1A (CPT1A), long-chain acyl-CoA synthetase, acyl-CoA dehydrogenase, diacylglycerol choline phosphotransferase, and H+-transporting ATPase, were significantly higher compared to controls. Conversely, healthy controls exhibited increased levels of short-chain fatty acids (SCFAs) and CD4+T-helper cell counts. Survival analysis revealed that higher abundance of Streptococcus and Parvimonas, which correlated positively with interleukin-6, tumor necrosis factor-alpha, and CPT1A, were linked to poorer disease-free survival (DFS) and overall survival (OS) rates, while Prevotella and Corynebacterium were associated with better outcomes. These findings suggest that changes in these bacterial genera are associated with alterations in specific cytokines, CPT1A levels, SCFAs in oral cancer, with lower SCFA levels in patients reinforcing this link. Overall, these microbiome changes, along with cytokine and enzyme alterations, may serve as predictive markers, enhancing diagnostic accuracy for oral cancer.
Collapse
Affiliation(s)
- Zeba Praveen
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Sung-Weon Choi
- Oral Oncology Clinic, Research Institute and Hospital, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea; (S.-W.C.); (J.H.L.); (J.Y.P.); (H.J.O.)
| | - Jong Ho Lee
- Oral Oncology Clinic, Research Institute and Hospital, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea; (S.-W.C.); (J.H.L.); (J.Y.P.); (H.J.O.)
| | - Joo Yong Park
- Oral Oncology Clinic, Research Institute and Hospital, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea; (S.-W.C.); (J.H.L.); (J.Y.P.); (H.J.O.)
| | - Hyun Jun Oh
- Oral Oncology Clinic, Research Institute and Hospital, National Cancer Center, 323 Ilsandong-gu, Goyang-si 10408, Gyeonggi-do, Republic of Korea; (S.-W.C.); (J.H.L.); (J.Y.P.); (H.J.O.)
| | - Ik Jae Kwon
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea;
| | - Jin Hee Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea;
| | - Mi Kyung Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea;
| |
Collapse
|
10
|
Wu J, Li J, Yan M, Xiang Z. Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024; 10:104. [PMID: 39389989 PMCID: PMC11467339 DOI: 10.1038/s41522-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung G, Najarzadegan F, Wong DT, Ton‐That H, Wang C, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2024; 96:250-280. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Pachiyappan Kamarajan
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Alex Cho
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Sandy Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Guo‐Chin Hung
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | | | - David T. Wong
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Hung Ton‐That
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Cun‐Yu Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Yvonne L. Kapila
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| |
Collapse
|
12
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
13
|
Sulaiman Y, Pacauskienė IM, Šadzevičienė R, Anuzyte R. Oral and Gut Microbiota Dysbiosis Due to Periodontitis: Systemic Implications and Links to Gastrointestinal Cancer: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1416. [PMID: 39336457 PMCID: PMC11433653 DOI: 10.3390/medicina60091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Periodontitis can disrupt oral and gut microbiota, leading to dysbiosis that affects overall systemic health. Besides the spread of periodontal pathogens by the hematogenous route, they can also be translocated into the gastrointestinal tract, possibly intervening in the neoplastic process in the gastrointestinal tract. This manuscript reviews the relationship between oral and gut microbiota due to periodontitis, discussing systemic health implications and potential links to gastrointestinal cancer. This article highlights the significance and effect of dysbiosis in the gut, emphasizing the importance of maintaining oral health to prevent systemic diseases. Lastly, it will go through therapeutic innovations such as probiotics and oral microbiota analysis tools for systemic disease detection. These findings will mark the integration of oral health management in clinical practice to lower systemic disease risk and improve overall patient outcomes. Aim of work: This manuscript aims to unravel the pathological interaction between oral and gut microbiota and their bidirectional effect on systemic diseases. Materials and methods: The review was performed using the MEDLINE and ScienceDirect databases. Reviewed articles were published in English between the year 2015 and 2024. The search used keywords such as ("oral microbiota" AND "periodontal disease") OR ("oral microbiota" AND "gastrointestinal cancer") OR ("Porphyromonas gingivalis" AND "periodontal disease") OR ("Helicobacter pylori" AND "gastric cancer") OR ("gut microbiome" AND "inflammatory bowel disease") OR ("oral microbiome" AND "systemic diseases"). Conclusions: The dysbiotic change in the oral cavity due to periodontitis is linked directly and indirectly to systemic diseases such as IBS, neurodegenerative diseases, muscle joint diseases, respiratory infections, and gastrointestinal cancer; this underscores the importance of maintaining oral hygiene for prophylaxis of oral diseases and the prevention of systemic diseases. A better understanding of the interconnections between oral health and systemic diseases will integrate oral health management to offer new prevention, diagnostic, and treatment opportunities to improve overall patient outcomes.
Collapse
Affiliation(s)
- Yaman Sulaiman
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Ingrida Marija Pacauskienė
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Renata Šadzevičienė
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| | - Rugile Anuzyte
- Clinic of Dental and Oral Pathology, Faculty of Odontology, Medical Academy, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50161 Kaunas, Lithuania
| |
Collapse
|
14
|
Wang S, Tan X, Cheng J, Liu Z, Zhou H, Liao J, Wang X, Liu H. Oral microbiome and its relationship with oral cancer. J Cancer Res Ther 2024; 20:1141-1149. [PMID: 39206975 DOI: 10.4103/jcrt.jcrt_44_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
ABSTRACT As the initial point for digestion, the balance of oral microorganisms plays an important role in maintaining local and systemic health. Oral dysbiosis, or an imbalance in the oral microbial community, may lead to the onset of various diseases. The presence or abnormal increase of microbes in the oral cavity has attracted significant attention due to its complicated relationship with oral cancer. Oral cancer can remodel microbial profiles by creating a more beneficial microenvironment for its progression. On the other hand, altered microbial profiles can promote tumorigenesis by evoking a complex inflammatory response and affecting host immunity. This review analyzes the oncogenic potential of oral microbiome alterations as a driver and biomarker. Additionally, a potentially therapeutic strategy via the reversal of the oral microbiome dysbiosis in oral cancers has been discussed.
Collapse
Affiliation(s)
- Shengran Wang
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xiao Tan
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Juan Cheng
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Zeyang Liu
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Huiping Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Jiyuan Liao
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Xijun Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| | - Hongyun Liu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning Hubei, China
| |
Collapse
|
15
|
Unlu O, Demirci M, Paksoy T, Eden AB, Tansuker HD, Dalmizrak A, Aktan C, Senel F, Sunter AV, Yigit O, Cakir BO, Kantarci A. Oral microbial dysbiosis in patients with oral cavity cancers. Clin Oral Investig 2024; 28:377. [PMID: 38884817 PMCID: PMC11182825 DOI: 10.1007/s00784-024-05770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES The pathogenesis of oral cavity cancers is complex. We tested the hypothesis that oral microbiota dysbiosis is associated with oral cavity cancer. MATERIALS AND METHODS Patients with primary oral cavity cancer who met the inclusion and exclusion criteria were included in the study. Matching healthy individuals were recruited as controls. Data on socio-demographic and behavioral factors, self-reported periodontal measures and habits, and current dental status were collected using a structured questionnaire and periodontal chartings. In addition to self-reported oral health measures, each participant received a standard and detailed clinical examination. DNA was extracted from saliva samples from patients and healthy controls. Next-generation sequencing was performed by targeting V3-V4 gene regions of the 16 S rRNA with subsequent bioinformatic analyses. RESULTS Patients with oral cavity cancers had a lower quality of oral health than healthy controls. Proteobacteria, Aggregatibacter, Haemophilus, and Neisseria decreased, while Firmicutes, Bacteroidetes, Actinobacteria, Lactobacillus, Gemella, and Fusobacteria increased in oral cancer patients. At the species level, C. durum, L. umeaens, N. subflava, A. massiliensis, and V. dispar were significantly lower, while G. haemolysans was significantly increased (p < 0.05). Major periodontopathogens associated with periodontal disease (P. gingivalis and F.nucleatum) increased 6.5- and 2.8-fold, respectively. CONCLUSION These data suggested that patients with oral cancer had worse oral health conditions and a distinct oral microbiome composition that is affected by personal daily habits and may be associated with the pathogenicity of the disease and interspecies interactions. CLINICAL RELEVANCE This paper demonstrates the link between oral bacteria and oral cancers, identifying mechanistic interactions between species of oral microbiome.
Collapse
Affiliation(s)
- Ozge Unlu
- Faculty of Medicine, Department of Medical Microbiology, Istanbul Atlas University, Istanbul, Turkey.
- ADA Forsyth Institute, Cambridge, MA, USA.
| | - Mehmet Demirci
- Faculty of Medicine, Department of Medical Microbiology, Kırklareli University, Kırklareli, Turkey
| | - Tugce Paksoy
- Faculty of Dentistry, Department of Periodontology, University of Health Sciences, Istanbul, Turkey
| | - Arzu Baygul Eden
- Faculty of Medicine, Department of Biostatistics, Koc University, Istanbul, Turkey
| | - Hasan Deniz Tansuker
- Faculty of Medicine, Department of Otolaryngology, Yeditepe University, Istanbul, Turkey
| | - Aysegul Dalmizrak
- Faculty of Medicine, Department of Medical Biology, Balıkesir University, Balıkesir, Turkey
| | - Cagdas Aktan
- Faculty of Medicine, Department of Medical Biology, Bandirma University, Balıkesir, Turkey
| | - Firdevs Senel
- Faculty of Dentistry, Department of Oral & Maxillofacial Surgery, Beykent University, Istanbul, Turkey
| | - Ahmet Volkan Sunter
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, Turkey
| | - Ozgur Yigit
- Department of Ear, Nose and Throat Diseases, Istanbul Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, Turkey
| | - Burak Omur Cakir
- Faculty of Medicine, Department of Ear, Nose and Throat Diseases, Istanbul Aydin University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, MA, USA
- School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
16
|
Gauss C, Stone LD, Ghafouri M, Quan D, Johnson J, Fribley AM, Amm HM. Overcoming Resistance to Standard-of-Care Therapies for Head and Neck Squamous Cell Carcinomas. Cells 2024; 13:1018. [PMID: 38920648 PMCID: PMC11201455 DOI: 10.3390/cells13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Although there have been some advances during in recent decades, the treatment of head and neck squamous cell carcinoma (HNSCC) remains challenging. Resistance is a major issue for various treatments that are used, including both the conventional standards of care (radiotherapy and platinum-based chemotherapy) and the newer EGFR and checkpoint inhibitors. In fact, all the non-surgical treatments currently used for HNSCC are associated with intrinsic and/or acquired resistance. Herein, we explore the cellular mechanisms of resistance reported in HNSCC, including those related to epigenetic factors, DNA repair defects, and several signaling pathways. This article discusses these mechanisms and possible approaches that can be used to target different pathways to sensitize HNSCC to the existing treatments, obtain better responses to new agents, and ultimately improve the patient outcomes.
Collapse
Affiliation(s)
- Chester Gauss
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Logan D. Stone
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Daniel Quan
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Jared Johnson
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Andrew M. Fribley
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Hope M. Amm
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
17
|
Singh S, Yadav PK, Singh AK. Structure based High-Throughput Virtual Screening, Molecular Docking and Molecular Dynamics Study of anticancer natural compounds against fimbriae (FimA) protein of Porphyromonas gingivalis in oral squamous cell carcinoma. Mol Divers 2024; 28:1141-1152. [PMID: 37043160 DOI: 10.1007/s11030-023-10643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/25/2023] [Indexed: 04/13/2023]
Abstract
Oral cancer is among the most common cancer in the world. Tobacco, alcohol, and viruses have been regarded as a well- known risk factors of OCC however, 15% of OSCC cases occurred each year without these known risk factors. Recently a myriad of studies has shown that bacterial infections lead to cancer. Accumulated shreds of evidence have demonstrated the role of Porphyromonas gingivalis (P. gingivalis) in OSCC. The virulence factor FimA of P. gingivalis activates the oncogenic pathways in OSCC by upregulating various cytokines. It also led to the inactivation of a tumor suppressor protein p53. The present Insilico study uses High-Throughput Virtual Screening, molecular docking, and molecular dynamics techniques to find the potential compounds against the target protein FimA. The goal of this study is to identify the anti-cancer lead compounds retrieved from natural sources that can be used to develop potent drug molecules to treat P.gingivalis-related OSCC. The anticancer natural compounds library was screened to identify the potential lead compounds. Furthermore, these lead compounds were subjected to precise docking, and based on the docking score potential lead compounds were identified. The top docked receptor-ligand complex was subjected to molecular dynamics simulation. A study of this insilico finding provides potent lead molecules which help in the development of therapeutic drugs against the target protein FimA in OSCC.
Collapse
Affiliation(s)
- Suchitra Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Piyush Kumar Yadav
- Department of Bioinformatics, Central University of South Bihar, Gaya, India
| | - Ajay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, India.
| |
Collapse
|
18
|
Kashyap B, Kullaa A. Salivary Metabolites Produced by Oral Microbes in Oral Diseases and Oral Squamous Cell Carcinoma: A Review. Metabolites 2024; 14:277. [PMID: 38786754 PMCID: PMC11122927 DOI: 10.3390/metabo14050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, salivary metabolome studies have provided new biological information and salivary biomarkers to diagnose different diseases at early stages. The saliva in the oral cavity is influenced by many factors that are reflected in the salivary metabolite profile. Oral microbes can alter the salivary metabolite profile and may express oral inflammation or oral diseases. The released microbial metabolites in the saliva represent the altered biochemical pathways in the oral cavity. This review highlights the oral microbial profile and microbial metabolites released in saliva and its use as a diagnostic biofluid for different oral diseases. The importance of salivary metabolites produced by oral microbes as risk factors for oral diseases and their possible relationship in oral carcinogenesis is discussed.
Collapse
Affiliation(s)
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
19
|
Su L, Yang R, Sheng Y, Ullah S, Zhao Y, Shunjiayi H, Zhao Z, Wang Q. Insights into the oral microbiota in human systemic cancers. Front Microbiol 2024; 15:1369834. [PMID: 38756728 PMCID: PMC11098135 DOI: 10.3389/fmicb.2024.1369834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The oral cavity stands as one of the pivotal interfaces facilitating the intricate interaction between the human body and the external environment. The impact of diverse oral microorganisms on the emergence and progression of various systemic cancers, typified by oral cancer, has garnered increasing attention. The potential pathogenicity of oral bacteria, notably the anaerobic Porphyromonas gingivalis and Fusobacterium nucleatum, has been extensively studied and exhibits obvious correlation with different carcinoma types. Furthermore, oral fungi and viruses are closely linked to oropharyngeal carcinoma. Multiple potential mechanisms of oral microbiota-induced carcinogenesis have been investigated, including heightened inflammatory responses, suppression of the host immune system, influence on the tumor microenvironment, anti-apoptotic activity, and promotion of malignant transformation. The disturbance of microbial equilibrium and the migration of oral microbiota play a pivotal role in facilitating oncogenic functions. This review aims to comprehensively outline the pathogenic mechanisms by which oral microbiota participate in carcinogenesis. Additionally, this review delves into their potential applications in cancer prevention, screening, and treatment. It proves to be a valuable resource for researchers investigating the intricate connection between oral microbiota and systemic cancers.
Collapse
Affiliation(s)
- Lan Su
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Rui Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Yanan Sheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Saif Ullah
- Department of Microbiology School of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yuheng Zhao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Hu Shunjiayi
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo Zhao
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Radocchia G, Brunetti F, Marazzato M, Totino V, Neroni B, Bonfiglio G, Conte AL, Pantanella F, Ciolli P, Schippa S. Women Skin Microbiota Modifications during Pregnancy. Microorganisms 2024; 12:808. [PMID: 38674752 PMCID: PMC11051999 DOI: 10.3390/microorganisms12040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Several studies have shown fluctuations in the maternal microbiota at various body sites (gut, oral cavity, and vagina). The skin microbiota plays an important role in our health, but studies on the changes during pregnancy are limited. Quantitative and qualitative variations in the skin microbiota in pregnant woman could indeed play important roles in modifying the immune and inflammatory responses of the host. These alterations could induce inflammatory disorders affecting the individual's dermal properties, and could potentially predict infant skin disorder in the unborn. The present study aimed to characterize skin microbiota modifications during pregnancy. For this purpose, skin samples were collected from 52 pregnant women in the first, second, and third trimester of non-complicated pregnancies and from 17 age- and sex-matched healthy controls. The skin microbiota composition was assessed by next generation sequencing (NGS) of the V3-V4 region of the bacterial rRNA 16S. Our results indicate that from the first to the third trimester of pregnancy, changes occur in the composition of the skin microbiota, microbial interactions, and various metabolic pathways. These changes could play a role in creating more advantageous conditions for fetal growth.
Collapse
Affiliation(s)
- Giulia Radocchia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Francesca Brunetti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Valentina Totino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
- Policlinico Luigi Di Liegro, 00148 Rome, Italy
| | - Bruna Neroni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
- Diagnostic Medicine and Radiology, UOC Clinical Pathology, Policlinico Umberto I Hospital, 00161 Rome, Italy
| | - Giulia Bonfiglio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
- Diagnostic Medicine and Radiology, UOC Clinical Pathology, Policlinico Umberto I Hospital, 00161 Rome, Italy
| | - Antonietta Lucia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Fabrizio Pantanella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| | - Paola Ciolli
- Department of Maternal Infantile and Urological Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Serena Schippa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (F.B.); (M.M.); (V.T.); (B.N.); (G.B.); (A.L.C.); (F.P.); (S.S.)
| |
Collapse
|
21
|
Zhang M, Zhao Y, Umar A, Zhang H, Yang L, Huang J, Long Y, Yu Z. Comparative analysis of microbial composition and functional characteristics in dental plaque and saliva of oral cancer patients. BMC Oral Health 2024; 24:411. [PMID: 38575895 PMCID: PMC10993480 DOI: 10.1186/s12903-024-04181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The oral cavity is home to various ecological niches, each with its own unique microbial composition. Understanding the microbial communities and gene composition in different ecological niches within the oral cavity of oral cancer (OC) patients is crucial for determining how these microbial populations contribute to disease progression. METHODS In this study, saliva and dental plaque samples were collected from patients with OC. Metagenomic sequencing was employed to analyze the microbial community classification and functional composition of the different sample groups. RESULTS The results of the study revealed significant differences in both the function and classification of microbial communities between saliva and dental plaque samples. The diversity of microbial species in saliva was found to be higher compared to that in plaque samples. Notably, Actinobacteria were enriched in the dental plaque of OC patients. Furthermore, the study identified several inter-group differential marker species, including Prevotella intermedia, Haemophilus parahaemolyticus, Actinomyces radius, Corynebacterium matruchitii, and Veillonella atypica. Additionally, 1,353 differential genes were annotated into 23 functional pathways. Interestingly, a significant correlation was observed between differentially labeled species and Herpes simplex virus 1 (HSV-1) infection, which may be related to the occurrence and development of cancer. CONCLUSIONS Significant differences in the microbial and genetic composition of saliva and dental plaque samples were observed in OC patients. Furthermore, pathogenic bacteria associated with oral diseases were predominantly enriched in saliva. The identification of inter-group differential biomarkers and pathways provide insights into the relationship between oral microbiota and the occurrence and development of OC.
Collapse
Affiliation(s)
- Man Zhang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yiming Zhao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hailin Zhang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lirong Yang
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ying Long
- Translational Medicine Center, Department of Head and Neck Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Pignatelli P, Curia MC, Tenore G, Bondi D, Piattelli A, Romeo U. Oral bacteriome and oral potentially malignant disorders: A systematic review of the associations. Arch Oral Biol 2024; 160:105891. [PMID: 38295615 DOI: 10.1016/j.archoralbio.2024.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Periodontal bacteria can infiltrate the epithelium, activate signaling pathways, induce inflammation, and block natural killer and cytotoxic cells, all of which contribute to the vicious circle of carcinogenesis. It is unknown whether oral dysbiosis has an impact on the etiology or prognosis of OPMD. AIMS Within this paradigm, this work systemically investigated and reported on the composition of oral microbiota in patients with oral potentially malignant disorders (OPMD) versus healthy controls. METHODS Observational studies that reported next generation sequencing analysis of oral tissue or salivary samples and found at least three bacterial species were included. Identification, screening, citation analysis, and graphical synthesis were carried out. RESULTS For oral lichen planus (OLP), the bacteria with the highest abundance were Fusobacterium, Capnocytophaga, Gemella, Granulicatella, Porphyromonas, and Rothia; for oral leukoplakia (OLK), Prevotella. Streptococci levels in OLK and OLP were lower. The usage of alcohol or smoke had no effect on the outcomes. CONCLUSIONS An increase in periodontal pathogenic bacteria could promote the development and exacerbation of lichen. Effective bacteriome-based biomarkers are worthy of further investigation and application, as are bacteriome-based treatments.
Collapse
Affiliation(s)
- Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, Viale Ionio, 74122 Taranto, Italy.
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Gianluca Tenore
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome, Via Caserta, 00161 Rome, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy; Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
| | - Umberto Romeo
- Department of Oral Sciences and Maxillofacial Surgery, Sapienza University of Rome, Via Caserta, 00161 Rome, Italy
| |
Collapse
|
23
|
Sikdar R, Beauclaire MV, Lima BP, Herzberg MC, Elias MH. N-acyl homoserine lactone signaling modulates bacterial community associated with human dental plaque. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585217. [PMID: 38559107 PMCID: PMC10980036 DOI: 10.1101/2024.03.15.585217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
N-acyl homoserine lactones (AHLs) are small diffusible signaling molecules that mediate a cell density-dependent bacterial communication system known as quorum sensing (QS). AHL-mediated QS regulates gene expression to control many critical bacterial behaviors including biofilm formation, pathogenicity, and antimicrobial resistance. Dental plaque is a complex multispecies oral biofilm formed by successive colonization of the tooth surface by groups of commensal, symbiotic, and pathogenic bacteria, which can contribute to tooth decay and periodontal diseases. While the existence and roles of AHL-mediated QS in oral microbiota have been debated, recent evidence indicates that AHLs play significant roles in oral biofilm development and community dysbiosis. The underlying mechanisms, however, remain poorly characterized. To better understand the importance of AHL signaling in dental plaque formation, we manipulated AHL signaling by adding AHL lactonases or exogenous AHL signaling molecules. We find that AHLs can be detected in dental plaque grown under 5% CO2 conditions, but not when grown under anaerobic conditions, and yet anaerobic cultures are still responsive to AHLs. QS signal disruption using lactonases leads to changes in microbial population structures in both planktonic and biofilm states, changes that are dependent on the substrate preference of the used lactonase but mainly result in the increase in the abundance of commensal and pioneer colonizer species. Remarkably, the opposite manipulation, that is the addition of exogenous AHLs increases the abundance of late colonizer bacterial species. Hence, this work highlights the importance of AHL-mediated QS in dental plaque communities, its potential different roles in anaerobic and aerobic parts of dental plaque, and underscores the potential of QS interference in the control of periodontal diseases.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Mai V. Beauclaire
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Bruno P. Lima
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mikael H. Elias
- Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
24
|
Singh P, Verma UP, Verma AK, Gupta P, Pathak AK, Singhal R, Kaushal S. Periodontal health status in patients with lung cancer: Case-control study. Int J Health Sci (Qassim) 2024; 18:17-23. [PMID: 38188898 PMCID: PMC10768471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Objective The objective of this study was to assess the periodontal health status of individuals with lung cancer in the North Indian population. In addition, the study aimed to determine the levels of human beta-defensin2 (Hbd-2) in the gingival crevicular fluid (GCF) and serum samples collected from the participants. Methods The study consisted of a total of 90 participants, who were categorized into three groups: Group 1 included 30 healthy individuals, Group 2 comprised 30 patients with chronic periodontitis, and Group 3 involved 30 patients diagnosed with both lung cancer and chronic periodontitis. Various periodontal parameters, including plaque index, gingival index, probing pocket depth, and clinical attachment level (CAL), were assessed in addition to the analysis of human beta defensin2 levels in both the GCF and serum samples of all participants. Results The study results revealed that all clinical parameters assessed were higher in Group 3 compared to both Group 2 and Group 1. Specifically, the levels of hBD-2 in the GCF were measured as 52.29 ± 46.41 pg/mL in Group 1, 27.15 ± 28.76 pg/mL in Group 2, and 86.01 ± 68.82 pg/mL in Group 3. When comparing the hBD-2 levels in serum, the values were found to be 813.72 ± 269.43 pg/mL in Group 1, 591.50 ± 263.91 pg/mL in Group 2, and 1093.04 ± 674.55 pg/mL in Group 3. These intergroup comparisons indicate variations in hBD-2 levels among the different groups. Conclusions The study findings demonstrated significantly higher clinical and biochemical markers in patients with both lung cancer and chronic periodontitis, in comparison to individuals with chronic periodontitis alone and healthy participants. These results suggest that Hbd-2 could potentially serve as a valuable diagnostic biomarker for identifying and distinguishing individuals with both lung cancer and chronic periodontitis.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Periodontology, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Umesh Pratap Verma
- Department of Periodontology, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Ajay Kumar Verma
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Prashant Gupta
- Department of Microbiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Anjani Kumar Pathak
- Department of Periodontology, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Rameshwari Singhal
- Department of Periodontology, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Shalini Kaushal
- Department of Periodontology, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Rochefort J, Radoi L, Campana F, Fricain JC, Lescaille G. [Oral cavity cancer: A distinct entity]. Med Sci (Paris) 2024; 40:57-63. [PMID: 38299904 DOI: 10.1051/medsci/2023196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Oral Squamous cell carcinoma represent the 17th most frequent cancer in the world. The main risk factors are alcohol and tobacco consumption but dietary, familial, genetic, or oral diseases may be involved in oral carcinogenesis. Diagnosis is made on biopsy, but detection remains late, leading to a poor prognosis. New technologies could reduce these delays, notably Artificial Intelligence and the quantitative evaluation of salivary biological markers. Currently, management of oral cancer consists in surgery, which can be mutilating despite possible reconstructions. In the future, immunotherapies could become a therapeutic alternative and the immune microenvironment could constitute a source of prognostic markers.
Collapse
Affiliation(s)
- Juliette Rochefort
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Service de médecine bucco-dentaire, Paris, France - Faculté d'odontologie, université Paris Cité, Paris, France - Sorbonne université, Inserm U.1135, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, Paris, France
| | - Lorédana Radoi
- Faculté d'odontologie, université Paris Cité, Paris, France - Centre de recherche en épidémiologie et santé des populations, Inserm U1018, université Paris Saclay
| | - Fabrice Campana
- Aix Marseille Univ, Assistance Publique-Hôpitaux de Marseille (AP-HM), Timone Hospital, Oral Surgery Department, Marseille, France
| | - Jean-Christophe Fricain
- CHU Bordeaux, Dentistry and Oral Health Department, F-33404 Bordeaux, France - Inserm U1026, université de Bordeaux, Tissue Bioengineering (BioTis), F-33076 Bordeaux, France
| | - Géraldine Lescaille
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe hospitalier Pitié-Salpêtrière, Service de médecine bucco-dentaire, Paris, France - Faculté d'odontologie, université Paris Cité, Paris, France - Sorbonne université, Inserm U.1135, Centre d'immunologie et des maladies infectieuses, CIMI-Paris, Paris, France
| |
Collapse
|
26
|
Asili P, Mirahmad M, Rezaei P, Mahdavi M, Larijani B, Tavangar SM. The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy. J Gastrointest Cancer 2023; 54:1082-1101. [PMID: 36600023 DOI: 10.1007/s12029-022-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The second leading mortality cause in the world is cancer, making it a critical issue that impacts human health. As a result, scientists are looking for novel biomarkers for cancer detection. The oral microbiome, made up of approximately 700 species-level taxa, is a significant source for discovering novel biomarkers. In this review, we aimed to prepare a summary of research that has investigated the association between the oral microbiome and gastrointestinal cancers. METHODS We searched online scientific datasets including Web of Science, PubMed, Scopus, and Google Scholar. Eligibility criteria included human studies that reported abundances of the oral microbiome, or its diagnostic/prognostic performance in patients with gastrointestinal cancers. RESULTS Some phyla of the oral microbiome have a relationship with cancers. Some particular phyla of the oral microbiome that may be related to gastrointestinal cancers consist of Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria. Changes in the abundances of Porphyromonas, Fusobacterium, Prevotella, and Veillonella are correlated with carcinogenesis, and may be used for distinguishing cancer patients from healthy subjects. Oral, colorectal, pancreatic, and esophageal cancers are the most important cancers related to the oral microbiome. CONCLUSION The results of this study may help future research to select bacteria as an early diagnostic or prognostic biomarker of gastrointestinal cancer. Given the current state of our knowledge, additional research is required to comprehend the multiplex processes underlying the role of bacterial microbiota upon cancer progression and to characterize the complex microbiota-host interaction network.
Collapse
Affiliation(s)
- Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rezaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
28
|
Menditti D, Santagata M, Imola G, Staglianò S, Vitagliano R, Boschetti CE, Inchingolo AM. Personalized Medicine in Oral Oncology: Imaging Methods and Biological Markers to Support Diagnosis of Oral Squamous Cell Carcinoma (OSCC): A Narrative Literature Review. J Pers Med 2023; 13:1397. [PMID: 37763165 PMCID: PMC10532745 DOI: 10.3390/jpm13091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
For decades, oral squamous cell carcinoma (OSCC) has been one of the most prevalent and mortal cancers worldwide. The gold standard for OSCC diagnosis is still histopathology but this narrative multidisciplinary review has the aim to explore the literature about conventional OSCC prognostic indicators related to the pTNM stage at the diagnosis such as the depth of invasion and the lymphovascular invasion associated with distant metastasis as indicators of poor life expectancy. Despite its multifactorial nature and recognizable precursors, its diagnosis at the early stages is still challenging. We wanted to highlight the importance of the screening as a primary weapon that a stomatologist should consider, intercepting all at-risk conditions and lesions associated with OSCC and its early stages. This narrative review also overviews the most promising imaging techniques, such as CT, MRI, and US-echography, and their application related to clinical and surgical practice, but also the most-investigated prognostic and diagnostic tissue and salivary biomarkers helpful in OSCC diagnosis and prognostic assessment. Our work highlighted remarkable potential biomarkers that could have a leading role in the future. However, we are still far from defining an appropriate and concrete protocol to apply in clinical practice. The hope is that the present and future research will overcome these limitations to benefit patients, clinicians, and welfare.
Collapse
Affiliation(s)
- Dardo Menditti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Mario Santagata
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Gianmaria Imola
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Samuel Staglianò
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Rita Vitagliano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | - Ciro Emiliano Boschetti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (D.M.); (M.S.); (G.I.); (S.S.); (C.E.B.)
| | | |
Collapse
|
29
|
Lyu WN, Lin MC, Shen CY, Chen LH, Lee YH, Chen SK, Lai LC, Chuang EY, Lou PJ, Tsai MH. An Oral Microbial Biomarker for Early Detection of Recurrence of Oral Squamous Cell Carcinoma. ACS Infect Dis 2023; 9:1783-1792. [PMID: 37565768 PMCID: PMC10496842 DOI: 10.1021/acsinfecdis.3c00269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 08/12/2023]
Abstract
Changes in the oral microbiome are associated with oral squamous cell carcinoma (OSCC). Oral microbe-derived signatures have been utilized as markers of OSCC. However, the structure of the oral microbiome during OSCC recurrence and biomarkers for the prediction of OSCC recurrence remains unknown. To identify OSCC recurrence-associated microbial biomarkers for the prediction of OSCC recurrence, we performed 16S rRNA amplicon sequencing on 54 oral swab samples from OSCC patients. Differences in bacterial compositions were observed in patients with vs without recurrence. We found that Granulicatella, Peptostreptococcus, Campylobacter, Porphyromonas, Oribacterium, Actinomyces, Corynebacterium, Capnocytophaga, and Dialister were enriched in OSCC recurrence. Functional analysis of the oral microbiome showed altered functions associated with OSCC recurrence compared with nonrecurrence. A random forest prediction model was constructed with five microbial signatures including Leptotrichia trevisanii, Capnocytophaga sputigena, Capnocytophaga, Cardiobacterium, and Olsenella to discriminate OSCC recurrence from original OSCC (accuracy = 0.963). Moreover, we validated the prediction model in another independent cohort (46 OSCC patients), achieving an accuracy of 0.761. We compared the accuracy of the prediction of OSCC recurrence between the five microbial signatures and two clinicopathological parameters, including resection margin and lymph node counts. The results predicted by the model with five microbial signatures showed a higher accuracy than those based on the clinical outcomes from the two clinicopathological parameters. This study demonstrated the validity of using recurrence-related microbial biomarkers, a noninvasive and effective method for the prediction of OSCC recurrence. Our findings may contribute to the prognosis and treatment of OSCC recurrence.
Collapse
Affiliation(s)
- Wei-Ni Lyu
- Institute
of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Mei-Chun Lin
- Department
of Otolaryngology, National Taiwan University
Hospital, Taipei 10002, Taiwan
| | - Cheng-Ying Shen
- Institute
of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Han Chen
- Institute
of Fisheries Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yung-Hua Lee
- Institute
of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Shin-Kuang Chen
- Center
for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Liang-Chuan Lai
- Graduate
Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Eric Y. Chuang
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan
University, Taipei 10617, Taiwan
| | - Pei-Jen Lou
- Department
of Otolaryngology, National Taiwan University
Hospital, Taipei 10002, Taiwan
| | - Mong-Hsun Tsai
- Institute
of Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
30
|
Rothman JA, Riis JL, Hamilton KR, Blair C, Granger DA, Whiteson KL. Oral microbial communities in children, caregivers, and associations with salivary biomeasures and environmental tobacco smoke exposure. mSystems 2023; 8:e0003623. [PMID: 37338237 PMCID: PMC10470043 DOI: 10.1128/msystems.00036-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
Human oral microbial communities are diverse, with implications for oral and systemic health. Oral microbial communities change over time; thus, it is important to understand how healthy versus dysbiotic oral microbiomes differ, especially within and between families. There is also a need to understand how the oral microbiome composition is changed within an individual including by factors such as environmental tobacco smoke (ETS) exposure, metabolic regulation, inflammation, and antioxidant potential. Using archived saliva samples collected from caregivers and children during a 90-month follow-up assessment in a longitudinal study of child development in the context of rural poverty, we used 16S rRNA gene sequencing to determine the salivary microbiome. A total of 724 saliva samples were available, 448 of which were from caregiver/child dyads, an additional 70 from children and 206 from adults. We compared children's and caregivers' oral microbiomes, performed "stomatotype" analyses, and examined microbial relations with concentrations of salivary markers associated with ETS exposure, metabolic regulation, inflammation, and antioxidant potential (i.e., salivary cotinine, adiponectin, C-reactive protein, and uric acid) assayed from the same biospecimens. Our results indicate that children and caregivers share much of their oral microbiome diversity, but there are distinct differences. Microbiomes from intrafamily individuals are more similar than microbiomes from nonfamily individuals, with child/caregiver dyad explaining 52% of overall microbial variation. Notably, children harbor fewer potential pathogens than caregivers, and participants' microbiomes clustered into two groups, with major differences being driven by Streptococcus spp. Differences in salivary microbiome composition associated with ETS exposure, and taxa associated with salivary analytes representing potential associations between antioxidant potential, metabolic regulation, and the oral microbiome. IMPORTANCE The human oral cavity is a multi-environment habitat that harbors a diversity of microorganisms. This oral microbiome is often transmitted between cohabitating individuals, which may associate oral and systemic health within family members. Furthermore, family social ecology plays a significant role in childhood development, which may be associated with lifelong health outcomes. In this study, we collected saliva from children and their caregivers and used 16S rRNA gene sequencing to characterize their oral microbiomes. We also analyzed salivary biomeasures of environmental tobacco smoke exposure, metabolic regulation, inflammation, and antioxidant potential. We show there are differences in individuals' oral microbiomes mainly due to Streptococcus spp. that family members share much of their microbes, and several bacterial taxa associate with the selected salivary biomeasures. Our results suggest there are large-scale oral microbiome patterns, and there are likely relationships between oral microbiomes and the social ecology of families.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
| | - Jenna L. Riis
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Katrina R. Hamilton
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Clancy Blair
- Department of Population Health, New York University, New York, New York, USA
- Department of Applied Psychology, New York University, New York, New York, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
- Department of Acute and Chronic Care, Johns Hopkins University School of Nursing, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Salivary Bioscience Laboratory, University of Nebraska, Lincoln, Nebraska, USA
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
- Institute for Interdisciplinary Salivary Bioscience Research, University of California, Irvine, California, USA
| |
Collapse
|
31
|
Pratap Singh R, Kumari N, Gupta S, Jaiswal R, Mehrotra D, Singh S, Mukherjee S, Kumar R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol Spectr 2023; 11:e0459622. [PMID: 37409975 PMCID: PMC10434029 DOI: 10.1128/spectrum.04596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Characterization of the oral microbiota profile through various studies has shown an association between the microbiome and oral cancer; however, stage-specific determinants of dynamic changes in microbial communities of oral cancer remain elusive. Additionally, the influence of the intratumoral microbiota on the intratumoral immune system remains largely unexplored. Therefore, this study aims to stratify microbial abundance in the early-onset and subsequent stages of oral cancer and analyze their influence on clinical-pathological and immunological features. The microbiome composition of tissue biopsy samples was identified using 16S rRNA amplicon sequencing, while intratumoral and systemic immune profiling was done with flow cytometry and immunohistochemistry-based analysis. The bacterial composition differed significantly among precancer, early cancer, and late cancer stages with the enrichment of genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while Streptococcus and Rothia were enriched in the precancer group. Late cancer stages were significantly associated with Capnocytophaga with high predicting accuracy, while Fusobacterium was associated with early stages of cancer. A dense intermicrobial and microbiome-immune network was observed in the precancer group. At the cellular level, intratumoral immune cell infiltration of B cells and T cells (CD4+ and CD8+) was observed with enrichment of the effector memory phenotype. Naive and effector subsets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to be distinctly associated with bacterial communities; most importantly, highly abundant bacterial genera of the tumor microenvironment were either negatively correlated or not associated with the effector lymphocytes, which led to the conclusion that the tumor microenvironment favors an immunosuppressive and nonimmunogenic microbiota. IMPORTANCE The gut microbiome has been explored extensively for its importance in the modulation of systemic inflammation and immune response; in contrast, the intratumoral microbiome is less studied for its influence on immunity in cancer. Given the established correlation between intratumoral lymphocyte infiltration and patient survival in cases of solid tumors, it was pertinent to explore the extrinsic factor influencing immune cell infiltration in the tumor. Modulation of intratumoral microbiota could have a beneficial effect on the antitumor immune response. This study stratifies the microbial profile of oral squamous cell carcinoma starting from precancer to late-stage cancer and provides evidence for their immunomodulatory role in the tumor microenvironment. Our results suggest combining microbiome study with immunological signatures of tumors for their prognostic and diagnostic application.
Collapse
Affiliation(s)
- Raghwendra Pratap Singh
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naina Kumari
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sudhir Singh
- Department of Radiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Souvik Mukherjee
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Rashmi Kumar
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Lin Y, Li S, Mo C, Liu H, Bi J, Xu S, Jia B, Liu C, Liu Z. Oral microbial changes and oral disease management before and after the treatment of hematological malignancies: a narrative review. Clin Oral Investig 2023; 27:4083-4106. [PMID: 37071220 DOI: 10.1007/s00784-023-05021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVES Patients with hematological malignancies have dynamic changes in oral microbial communities before and after treatment. This narrative review describes the changes in oral microbial composition and diversity, and discusses an oral microbe-oriented strategy for oral disease management. MATERIALS AND METHODS A literature search was performed in PubMed/Medline, Web of Science, and Embase for articles published between 1980 and 2022. Any articles on the changes in oral microbial communities in patients with hematological malignancies and their effects on disease progression and prognosis were included. RESULTS Oral sample detection and oral microbial sequencing analysis of patients with hematological malignancies showed a correlation between changes in oral microbial composition and diversity and disease progression and prognosis. The possible pathogenic mechanism of oral microbial disorders is the impairment of mucosal barrier function and microbial translocation. Probiotic strategies, antibiotic strategies, and professional oral care strategies targeting the oral microbiota can effectively reduce the risk of oral complications and the grade of severity in patients with hematological malignancies. CLINICAL RELEVANCE This review provides dentists and hematologists with a comprehensive understanding of the host-microbe associated with hematologic malignancies and oral disease management advice.
Collapse
Affiliation(s)
- Yunhe Lin
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Siwei Li
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chuzi Mo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hongyu Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaming Bi
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Chengxia Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhongjun Liu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
33
|
Diwan P, Nirwan M, Bahuguna M, Kumari SP, Wahlang J, Gupta RK. Evaluating Alterations of the Oral Microbiome and Its Link to Oral Cancer among Betel Quid Chewers: Prospecting Reversal through Probiotic Intervention. Pathogens 2023; 12:996. [PMID: 37623956 PMCID: PMC10459687 DOI: 10.3390/pathogens12080996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Areca nut and slaked lime, with or without tobacco wrapped in Piper betle leaf, prepared as betel quid, is extensively consumed as a masticatory product in many countries across the world. Betel Quid can promote the malignant transformation of oral lesions as well as trigger benign cellular and molecular changes. In the oral cavity, it causes changes at the compositional level in oral microbiota called dysbiosis. This dysbiosis may play an important role in Oral Cancer in betel quid chewers. The abnormal presence and increase of bacteria Fusobacterium nucleatum, Capnocytophaga gingivalis, Prevotella melaninogenica, Peptostreptococcus sp., Porphyromonas gingivalis, and Streptococcus mitis in saliva and/or other oral sites of the cancer patients has attracted frequent attention for its association with oral cancer development. In the present review, the authors have analysed the literature reports to revisit the oncogenic potential of betel quid and oral microbiome alterations, evaluating the potential of oral microbiota both as a driver and biomarker of oral cancer. The authors have also shared a perspective that the restoration of local microbiota can become a potentially therapeutic or prophylactic strategy for the delay or reversal of lip and oral cavity cancers, especially in high-risk population groups.
Collapse
Affiliation(s)
- Prerna Diwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mohit Nirwan
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Mayank Bahuguna
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - Shashi Prabha Kumari
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| | - James Wahlang
- Department of Biochemistry, St. Edmund’s College, Shillong 793003, India;
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi 110021, India; (M.N.); (M.B.); (S.P.K.); (R.K.G.)
| |
Collapse
|
34
|
Saturio S, Rey A, Samarra A, Collado MC, Suárez M, Mantecón L, Solís G, Gueimonde M, Arboleya S. Old Folks, Bad Boon: Antimicrobial Resistance in the Infant Gut Microbiome. Microorganisms 2023; 11:1907. [PMID: 37630467 PMCID: PMC10458625 DOI: 10.3390/microorganisms11081907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The development of the intestinal microbiome in the neonate starts, mainly, at birth, when the infant receives its founding microbial inoculum from the mother. This microbiome contains genes conferring resistance to antibiotics since these are found in some of the microorganisms present in the intestine. Similarly to microbiota composition, the possession of antibiotic resistance genes is affected by different perinatal factors. Moreover, antibiotics are the most used drugs in early life, and the use of antibiotics in pediatrics covers a wide variety of possibilities and treatment options. The disruption in the early microbiota caused by antibiotics may be of great relevance, not just because it may limit colonization by beneficial microorganisms and increase that of potential pathogens, but also because it may increase the levels of antibiotic resistance genes. The increase in antibiotic-resistant microorganisms is one of the major public health threats that humanity has to face and, therefore, understanding the factors that determine the development of the resistome in early life is of relevance. Recent advancements in sequencing technologies have enabled the study of the microbiota and the resistome at unprecedent levels. These aspects are discussed in this review as well as some potential interventions aimed at reducing the possession of resistance genes.
Collapse
Affiliation(s)
- Silvia Saturio
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| | - Alejandra Rey
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain; (A.S.); (M.C.C.)
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Paterna, Spain; (A.S.); (M.C.C.)
| | - Marta Suárez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Laura Mantecón
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Gonzalo Solís
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| | - Silvia Arboleya
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.S.); (A.R.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; (M.S.); (L.M.); (G.S.)
| |
Collapse
|
35
|
Li R, Hou M, Yu L, Luo W, Liu R, Wang H. Association between periodontal disease and oral squamous cell carcinoma: a systematic review and meta-analysis. Br J Oral Maxillofac Surg 2023; 61:394-402. [PMID: 37308334 DOI: 10.1016/j.bjoms.2023.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/15/2023] [Accepted: 05/07/2023] [Indexed: 06/14/2023]
Abstract
To investigate the relation between periodontal disease (PD) and oral squamous cell carcinoma (OSCC) we systematically searched records published up to August 2022. Odds ratios (OR) and relative risk (RR) with 95% confidence intervals (95% CI) were estimated to evaluate this relation, then sensitivity analysis was performed accordingly. Begg's test and Egger's test were used to detect publication bias. Out of 970 papers from several databases, 13 studies were included. Summary estimates showed that PD was positively associated with the prevalence of OSCC (OR = 3.28, 95% CI: 1.87 to 5.74), especially for severe PD (OR = 4.23, 95% CI: 2.92 to 6.13). No evident publication bias was revealed. No increased OSCC risk among patients with PD was shown according to the combined results (RR = 1.50, 95% CI: 0.93 to 2.42). Patients with OSCC exhibited significant differences in alveolar bone loss, clinical attachment loss, and bleeding on probing, when compared with controls. The systematic review and meta-analysis suggested that there was a positive association between PD and prevalence of OSCC. However, according to the current evidence, a causal relation is unclear.
Collapse
Affiliation(s)
- Rui Li
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, China.
| | - Mengjie Hou
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, China.
| | - Liying Yu
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, China.
| | - Wen Luo
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, China.
| | - Ruihan Liu
- Clinical Medicine, Shenyang Medical College, Huanghe North Street 146, Shenyang, China.
| | - Hongyan Wang
- Department of Periodontology, School of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, China.
| |
Collapse
|
36
|
Gerace E, Baldi S, Salimova M, Di Gloria L, Curini L, Cimino V, Nannini G, Russo E, Pallecchi M, Ramazzotti M, Bartolucci G, Occupati B, Lanzi C, Scarpino M, Lanzo G, Grippo A, Lolli F, Mannaioni G, Amedei A. Oral and fecal microbiota perturbance in cocaine users: Can rTMS-induced cocaine abstinence support eubiosis restoration? iScience 2023; 26:106627. [PMID: 37250301 PMCID: PMC10214473 DOI: 10.1016/j.isci.2023.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/31/2023] [Indexed: 05/31/2023] Open
Abstract
The effects of cocaine on microbiota have been scarcely explored. Here, we investigated the gut (GM) and oral (OM) microbiota composition of cocaine use disorder (CUD) patients and the effects of repetitive transcranial magnetic stimulation (rTMS). 16S rRNA sequencing was used to characterize GM and OM, whereas PICRUST2 assessed functional changes in microbial communities, and gas-chromatography was used to evaluate fecal short and medium chain fatty acids. CUD patients reported a significant decrease in alpha diversity and modification of the abundances of several taxa in both GM and OM. Furthermore, many predicted metabolic pathways were differentially expressed in CUD patients' stool and saliva samples, as well as reduced levels of butyric acid that appear restored to normal amounts after rTMS treatment. In conclusion, CUD patients showed a profound dysbiotic fecal and oral microbiota composition and function and rTMS-induced cocaine abstinence determined the restoration of eubiotic microbiota.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Maya Salimova
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Lavinia Curini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Virginia Cimino
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
| | - Brunella Occupati
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Cecilia Lanzi
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Maenia Scarpino
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Giovanni Lanzo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Antonello Grippo
- Azienda Ospedaliera Universitaria di Careggi, Neurophysiology Unit, 50134 Florence, Italy
| | - Francesco Lolli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliera Universitaria di Careggi, Clinical Toxicology and Poison Control Centre, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
37
|
Jain V, Baraniya D, El-Hadedy DE, Chen T, Slifker M, Alakwaa F, Cai KQ, Chitrala KN, Fundakowski C, Al-Hebshi NN. Integrative Metatranscriptomic Analysis Reveals Disease-specific Microbiome-host Interactions in Oral Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:807-820. [PMID: 37377901 PMCID: PMC10166004 DOI: 10.1158/2767-9764.crc-22-0349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/05/2023] [Accepted: 04/13/2023] [Indexed: 06/29/2023]
Abstract
Studies on the microbiome of oral squamous cell carcinoma (OSCC) have been limited to 16S rRNA gene sequencing. Here, laser microdissection coupled with brute-force, deep metatranscriptome sequencing was employed to simultaneously characterize the microbiome and host transcriptomes and predict their interaction in OSCC. The analysis involved 20 HPV16/18-negative OSCC tumor/adjacent normal tissue pairs (TT and ANT) along with deep tongue scrapings from 20 matched healthy controls (HC). Standard bioinformatic tools coupled with in-house algorithms were used to map, analyze, and integrate microbial and host data. Host transcriptome analysis identified enrichment of known cancer-related gene sets, not only in TT versus ANT and HC, but also in the ANT versus HC contrast, consistent with field cancerization. Microbial analysis identified a low abundance yet transcriptionally active, unique multi-kingdom microbiome in OSCC tissues predominated by bacteria and bacteriophages. HC showed a different taxonomic profile yet shared major microbial enzyme classes and pathways with TT/ANT, consistent with functional redundancy. Key taxa enriched in TT/ANT compared with HC were Cutibacterium acnes, Malassezia restricta, Human Herpes Virus 6B, and bacteriophage Yuavirus. Functionally, hyaluronate lyase was overexpressed by C. acnes in TT/ANT. Microbiome-host data integration revealed that OSCC-enriched taxa were associated with upregulation of proliferation-related pathways. In a preliminary in vitro validation experiment, infection of SCC25 oral cancer cells with C. acnes resulted in upregulation of MYC expression. The study provides a new insight into potential mechanisms by which the microbiome can contribute to oral carcinogenesis, which can be validated in future experimental studies. Significance Studies have shown that a distinct microbiome is associated with OSCC, but how the microbiome functions within the tumor interacts with the host cells remains unclear. By simultaneously characterizing the microbial and host transcriptomes in OSCC and control tissues, the study provides novel insights into microbiome-host interactions in OSCC which can be validated in future mechanistic studies.
Collapse
Affiliation(s)
- Vinay Jain
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
- Low level Radiation Research Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Doaa E. El-Hadedy
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, Massachusetts
| | - Michael Slifker
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fadhl Alakwaa
- Department of Internal Medicine, Nephrology Division, University of Michigan, Ann Arbor, Michigan
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | | | - Nezar N. Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Maan M, Abuzayeda M, Kaklamanos EG, Jamal M, Dutta M, Moharamzadeh K. Molecular insights into the role of electronic cigarettes in oral carcinogenesis. Crit Rev Toxicol 2023; 53:1-14. [PMID: 37051806 DOI: 10.1080/10408444.2023.2190764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Electronic cigarette (EC) usage or vaping has seen a significant rise in recent years across various parts of the world. They have been publicized as a safe alternative to smoking; however, this is not supported strongly by robust research evidence. Toxicological analysis of EC liquid and aerosol has revealed presence of several toxicants with known carcinogenicity. Oral cavity is the primary site of exposure of both cigarette smoke and EC aerosol. Role of EC in oral cancer is not as well-researched as that of traditional smoking. However, several recent studies have shown that it can lead to a wide range of potentially carcinogenic molecular events in oral cells. This review delineates the oral carcinogenesis potential of ECs at the molecular level, providing a summary of the effects of EC usage on cancer therapy resistance, cancer stem cells (CSCs), immune evasion, and microbiome dysbiosis, all of which may lead to increased tumor malignancy and poorer patient prognosis. This review of literature indicates that ECs may not be as safe as they are perceived to be, however further research is needed to definitively determine their oncogenic potential.
Collapse
Affiliation(s)
- Meenu Maan
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
| | - Moosa Abuzayeda
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
| | - Eleftherios G Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
- School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
- School of Dentistry, European University Cyprus, Nicosia, Cyprus
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE
- School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| |
Collapse
|
39
|
Wright RJ, Pewarchuk ME, Marshall EA, Murrary B, Rosin MP, Laronde DM, Zhang L, Lam WL, Langille MGI, Rock LD. Exploring the microbiome of oral epithelial dysplasia as a predictor of malignant progression. BMC Oral Health 2023; 23:206. [PMID: 37024828 PMCID: PMC10080811 DOI: 10.1186/s12903-023-02911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
A growing body of research associates the oral microbiome and oral cancer. Well-characterized clinical samples with outcome data are required to establish relevant associations between the microbiota and disease. The objective of this study was to characterize the community variations and the functional implications of the microbiome in low-grade oral epithelial dysplasia (OED) using 16S rRNA gene sequencing from annotated archival swabs in progressing (P) and non-progressing (NP) OED. We characterised the microbial community in 90 OED samples - 30 swabs from low-grade OED that progressed to cancer (cases) and 60 swabs from low-grade OED that did not progress after a minimum of 5 years of follow up (matched control subjects). There were small but significant differences between P and NP samples in terms of alpha diversity as well as beta diversity in conjunction with other clinical factors such as age and smoking status for both taxa and functional predictions. Across all samples, the most abundant genus was Streptococcus, followed by Haemophilus, Rothia, and Neisseria. Taxa and predicted functions were identified that were significantly differentially abundant with progression status (all Ps and NPs), when samples were grouped broadly by the number of years between sampling and progression or in specific time to progression for Ps only. However, these differentially abundant features were typically present only at low abundances. For example, Campylobacter was present in slightly higher abundance in Ps (1.72%) than NPs (1.41%) and this difference was significant when Ps were grouped by time to progression. Furthermore, several of the significantly differentially abundant functions were linked to the Campylobacteraceae family in Ps and may justify further investigation. Larger cohort studies to further explore the microbiome as a potential biomarker of risk in OED are warranted.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Dalhousie University, Halifax, Canada.
| | - Michelle E Pewarchuk
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Benjamin Murrary
- Department of Pharmacology, Dalhousie University, Halifax, Canada
| | - Miriam P Rosin
- Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Denise M Laronde
- Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, Canada
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lewei Zhang
- Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Oral Biopsy Service, Vancouver General Hospital, Vancouver, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Morgan G I Langille
- Department of Pharmacology, Dalhousie University, Halifax, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Canada
| | - Leigha D Rock
- Department of Pharmacology, Dalhousie University, Halifax, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Canada
- Faculty of Dentistry, Dalhousie University, Halifax, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Canada
- Department of Anatomical Pathology, QEII Hospital, Nova Scotia Health, Halifax, Canada
| |
Collapse
|
40
|
Chiu YW, Su YF, Yang CC, Liu CJ, Chen YJ, Cheng HC, Wu CH, Chen PY, Lee YH, Chen YL, Chen YT, Peng CY, Lu MY, Yu CH, Kao SY, Fwu CW, Huang YF. Is OLP potentially malignant? A clue from ZNF582 methylation. Oral Dis 2023; 29:1282-1290. [PMID: 34967949 DOI: 10.1111/odi.14120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Whether oral lichen planus (OLP) was potentially malignant remains controversial. Here, we examined associations of ZNF582 methylation (ZNF582m ) with OLP lesions, dysplastic features and squamous cell carcinoma (OSCC). MATERIALS AND METHODS This is a case-control study. ZNF582m was evaluated in both lesion and adjacent normal sites of 42 dysplasia, 90 OSCC and 43 OLP patients, whereas ZNF582m was evaluated only in one mucosal site of 45 normal controls. High-risk habits affecting ZNF582m such as betel nut chewing and cigarette smoking were also compared in those groups. RESULTS OLP lesions showed significantly lower ZNF582m than those of dysplasia and OSCC. At adjacent normal mucosa, ZNF582m increased from patients of OLP, dysplasia, to OSCC. In addition, ZNF582m at adjacent normal sites in OLP patients was comparable to normal mucosa in control group. Dysplasia/OSCC patients with high-risk habits exhibited significantly higher ZNF582m than those without high-risk habits. However, ZNF582m in OLP patients was not affected by those high-risk habits. CONCLUSIONS OLP is unlikely to be potentially malignant based on ZNF582m levels. ZNF582m may also be a potential biomarker for distinguishing OLP from true dysplastic features and OSCC, and for monitoring the malignant transformation of OLP, potentially malignant disorders with dysplastic features and OSCC.
Collapse
Affiliation(s)
- Yu-Wei Chiu
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yee-Fun Su
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Ju Chen
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Han-Chieh Cheng
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hsien Wu
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pei-Yin Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsien Lee
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yen-Lin Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Tzu Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Yu Peng
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chuan-Hang Yu
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shou-Yen Kao
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Yu-Feng Huang
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
42
|
Shen X, Zhang YL, Zhu JF, Xu BH. Oral dysbiosis in the onset and carcinogenesis of oral epithelial dysplasia: A systematic review. Arch Oral Biol 2023; 147:105630. [PMID: 36709626 DOI: 10.1016/j.archoralbio.2023.105630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
OBJECTIVE This systematic review aims to investigate possible connections between the oral microbiome and the onset and carcinogenesis of oral epithelial dysplasia (OED). METHODS A systematic search was performed on PubMed, Embase, Cochrane Database, and SCOPUS by two authors independently, addressing the focused question- "Has oral microbiome dysbiosis been involved in the onset and carcinogenesis of oral epithelial dysplasia?" We used the Newcastle-Ottawa scale to assess the quality of studies included in the review. RESULTS Out of 580 references screened, ten studies were found eligible for inclusion. All studies were case-control studies, and only qualitative analysis was conducted due to heterogeneous characteristics. The overall risk of bias in the eligible studies was considered as high. Microbiome diversity indices showed inconsistent evidence among studies. A significant increase of phylum Bacteroidetes in OED patients was reported in five studies. Five studies reported an increase of genus Fusobacterium in both the OED and oral squamous cell carcinoma (OSCC) patients and six different studies respectively reported a reduction of genus Streptococcus in both the OED and OSCC groups when compared to normal controls. Other predominant bacteria that were specific to different patient groups varied in each study. CONCLUSIONS The results of the included studies showed that the composition of the oral microbiome in patients with OED compared to healthy controls and OSCC patients was inconsistent. However, all ten studies showed non-negligible heterogeneity in the type and size of the sample, and the comparability between groups, which strongly limited the external validity of results. Further studies are strongly recommended.
Collapse
Affiliation(s)
- Xiao Shen
- Center of Dental Medicine, China-Japan Friendship Hospital, 2 Ying-Hua-Yuan East Street, Chaoyang District, Beijing 100029, China
| | - Yue-Lun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jun-Fei Zhu
- Center of Dental Medicine, China-Japan Friendship Hospital, 2 Ying-Hua-Yuan East Street, Chaoyang District, Beijing 100029, China
| | - Bao-Hua Xu
- Center of Dental Medicine, China-Japan Friendship Hospital, 2 Ying-Hua-Yuan East Street, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
43
|
Giannella L, Grelloni C, Quintili D, Fiorelli A, Montironi R, Alia S, Delli Carpini G, Di Giuseppe J, Vignini A, Ciavattini A. Microbiome Changes in Pregnancy Disorders. Antioxidants (Basel) 2023; 12:463. [PMID: 36830021 PMCID: PMC9952029 DOI: 10.3390/antiox12020463] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The human microbiota comprises all microorganisms, such as bacteria, fungi, and viruses, found within a specific environment that live on our bodies and inside us. The last few years have witnessed an explosion of information related to the role of microbiota changes in health and disease. Even though the gut microbiota is considered the most important in maintaining our health, other regions of the human body, such as the oral cavity, lungs, vagina, and skin, possess their own microbiota. Recent work suggests a correlation between the microbiota present during pregnancy and pregnancy complications. The aim of our literature review was to provide a broad overview of this growing and important topic. We focused on the most significant changes in the microbiota in the four more common obstetric diseases affecting women's health. Thus, our attention will be focused on hypertensive disorders, gestational diabetes mellitus, preterm birth, and recurrent miscarriage. Pregnancy is a unique period in a woman's life since the body undergoes different adaptations to provide an optimal environment for fetal growth. Such changes also involve all the microorganisms, which vary in composition and quantity during the three trimesters of gestation. In addition, special attention will be devoted to the potential and fundamental advances in developing clinical applications to prevent and treat those disorders by modulating the microbiota to develop personalized therapies for disease prevention and tailored treatments.
Collapse
Affiliation(s)
- Luca Giannella
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Camilla Grelloni
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Dayana Quintili
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Alessia Fiorelli
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Ramona Montironi
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Sonila Alia
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Giovanni Delli Carpini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Jacopo Di Giuseppe
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Via Tronto 10/A, 60126 Ancona, Italy
| | - Andrea Ciavattini
- Woman’s Health Sciences Department, Gynecologic Section, Polytechnic University of Marche, Via Filippo Corridoni, 16, 60123 Ancona, Italy
| |
Collapse
|
44
|
Li R, Xiao L, Gong T, Liu J, Li Y, Zhou X, Li Y, Zheng X. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. Mol Oral Microbiol 2023; 38:9-22. [PMID: 36420924 DOI: 10.1111/omi.12403] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Squamous cell carcinoma is the most common malignant tumor of the oral cavity and its adjacent sites, which endangers the physical and mental health of patients and has a complex etiology. Chronic infection is considered to be a risk factor in cancer development. Evidence suggests that periodontal pathogens, such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, are associated with oral squamous cell carcinoma (OSCC). They can stimulate tumorigenesis by promoting epithelial cells proliferation while inhibiting apoptosis and regulating the inflammatory microenvironment. Candida albicans promotes OSCC progression and metastasis through multiple mechanisms. Moreover, oral human papillomavirus (HPV) can induce oropharyngeal squamous cell carcinoma (OPSCC). There is evidence that HPV16 can integrate with host cells' DNA and activate oncogenes. Additionally, oral dysbiosis and synergistic effects in the oral microbial communities can promote cancer development. In this review, we will discuss the biological characteristics of oral microbiome associated with OSCC and OPSCC and then highlight the mechanisms by which oral microbiome is involved in oral oncogenesis, tumor progression, and metastasis. These findings may have positive implications for early diagnosis and treatment of oral cancer.
Collapse
Affiliation(s)
- Ruohan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Yu X, Shi Y, Yuan R, Chen Z, Dong Q, Han L, Wang L, Zhou J. Microbial dysbiosis in oral squamous cell carcinoma: A systematic review and meta-analysis. Heliyon 2023; 9:e13198. [PMID: 36793959 PMCID: PMC9922960 DOI: 10.1016/j.heliyon.2023.e13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The aim of this study was to summarize previously published data and assess the alterations in the composition of the oral microbiome in OSCC using a systematic review and meta-analysis. DESIGN Electronic databases were systematically searched for studies on the oral microbiome in OSCC published before December 2021. Qualitative assessments of compositional variations at the phylum level were performed. The meta-analysis on abundance changes of bacteria genera was performed via a random-effects model. RESULTS A total of 18 studies involving 1056 participants were included. They consisted of two categories of studies: 1) case-control studies (n = 9); 2) nine studies that compared the oral microbiome between cancerous tissues and paired paracancerous tissues. At the phylum level, enrichment of Fusobacteria but depletion in Actinobacteria and Firmicutes in the oral microbiome was demonstrated in both categories of studies. At the genus level, Fusobacterium showed an increased abundance in OSCC patients (SMD = 0.65, 95% CI: 0.43-0.87, Z = 5.809, P = 0.000) and in cancerous tissues (SMD = 0.54, 95% CI: 0.36-0.72, Z = 5.785, P = 0.000). The abundance of Streptococcus was decreased in OSCC (SMD = -0.46, 95% CI: -0.88-0.04, Z = -2.146, P = 0.032) and in cancerous tissues (SMD = -0.45, 95% CI: -0.78-0.13, Z = -2.726, P = 0.006). CONCLUSIONS Disturbances in the interactions between enriched Fusobacterium and depleted Streptococcus may participate in or prompt the occurrence and development of OSCC and could be potential biomarkers for detection of OSCC.
Collapse
Affiliation(s)
- Xiaoyun Yu
- Graduate School of Dalian Medical University, Dalian, 116044, China
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Yongmei Shi
- Department of Outpatient, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Rongtao Yuan
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Quanjiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Linzi Han
- Graduate School of Dalian Medical University, Dalian, 116044, China
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Lili Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Jianhua Zhou
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
46
|
Morrison AG, Sarkar S, Umar S, Lee STM, Thomas SM. The Contribution of the Human Oral Microbiome to Oral Disease: A Review. Microorganisms 2023; 11:318. [PMID: 36838283 PMCID: PMC9962706 DOI: 10.3390/microorganisms11020318] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.
Collapse
Affiliation(s)
- Austin Gregory Morrison
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- 1717 Claflin Road, 136 Ackert Hall, Manhattan, KS 66506, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- 3901 Rainbow Blvd., 4031 Wahl Hall East, MS 3040, Kansas City, KS 66160, USA
| |
Collapse
|
47
|
Muthukrishnan L. "Perturbed oral microbiome and their interaction as molecular signature in the early prognosis of oral cancer progression". Chem Biol Interact 2023; 369:110290. [PMID: 36470524 DOI: 10.1016/j.cbi.2022.110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), 162 Poonamalle High Road, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
48
|
Muacevic A, Adler JR, Poothakulath Krishnan R, K H, Sukumaran G, Ramasubramanian A. Oral Microflora and Its Potential Carcinogenic Effect on Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cureus 2023; 15:e33560. [PMID: 36779115 PMCID: PMC9908422 DOI: 10.7759/cureus.33560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
The oral cavity has the second largest and most diverse microflora. A wide variety of bacteria, viruses, and fungi are present in the oral cavity. A significant number of studies have shown the important role of oral microflora in the initiation and pathogenesis of oral squamous cell carcinoma (OSCC). Microorganisms like Staphylococcus, Streptococcus, Neisseria, Prevotella, Fusobacterium, Porphyromonas, Herpes Simplex Virus I (HSV-1), Epstein-Barr Virus (EBV), Human Papilloma Virus (HPV), Candida plays an important role in OSCC. Increased microbial load affects tumor initiation and progression through direct effects on the tumor cells and indirectly through manipulation of the immune system. But the mechanisms describing the steps of oral microflora initiating the OSCC remain an enigma. This systematic review aims to understand the potential carcinogenic effect of oral microflora on OSCC. A systematic literature search was done in PubMed and Google Scholar databases, and six studies were obtained, comprising 1267 participants. The incidence was evaluated as an odds ratio (OR) with a 95% confidence interval (95% CI) using review manager 5.2 software. Oral microflora increased 2.10-fold risk of oral squamous cell carcinoma (OR=2.10, 95% CI: 0.76, 5.84, P= 0.15, I2=86%, Ph<0.00001). In our subgroup analysis, there is a significant relation between Fusobacterium and oral squamous cell carcinoma (OR= 4.86, 95% CI: 0.99, 23.82, P=0.05, I2=0%, Ph= 0.84). Individuals with Epstein-Barr Virus infection exhibit increased incidence of oral squamous cell carcinoma (OR= 3.72, 95% CI: 1.97, 7.04, P=<0.0001, I2=0%, Ph= 0.82). The meta-analysis revealed that oral microflora increases the risk of oral squamous cell carcinoma.
Collapse
|
49
|
Hashimoto K, Shimizu D, Ueda S, Miyabe S, Oh-Iwa I, Nagao T, Shimozato K, Nomoto S. Feasibility of oral microbiome profiles associated with oral squamous cell carcinoma. J Oral Microbiol 2022; 14:2105574. [PMID: 35958277 PMCID: PMC9361761 DOI: 10.1080/20002297.2022.2105574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective Recently, the possibility that oral microbiomes is associated with oral squamous cell carcinoma (OSCC) initiation and progression has attracted attention; however, this association is still unclear. Here, we comprehensively analyze the microbiome profiles of saliva samples using next-generation sequencing followed by determining the association between oral microbiome profiles and OSCC. Materials and Methods Microbiome profiles in saliva samples from patients with OSCC, oral leukoplakia (OLK), and postoperative OSCC (Post) were analyzed. Candidate OSCC-associated bacteria were identified by comparing the bacterial diversity and relative abundance of each group based on these microbiome profiles, and their applicability as OSCC detection tools were evaluated. Results There were significant differences in genus abundances (Streptococcus, Aggregatibacter, and Alloprevotella) among the groups from saliva samples. In the OSCC group, compared with the OLK and Post groups, abundances of the genus Fusobacterium, phylum Fusobacteria and phylum Bacteroidetes were markedly increased and that of the genus Streptococcus and phylum Firmicutes were decreased. Conclusion The results suggested a strong association of these bacteria with OSCC. Especially, phylum Fusobacterium was significantly associated with early recurrence of OSCC. Thus, oral microbiome analysis may have a potential of novel OSCC detection and prognostic tool.
Collapse
Affiliation(s)
- Kengo Hashimoto
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Dai Shimizu
- Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Sei Ueda
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Satoru Miyabe
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Ichiro Oh-Iwa
- Department of Maxillofacial Surgery, Japanese Red Cross, Nagoya Daiichi Hospital, Nagoya, Japan
| | - Toru Nagao
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Kazuo Shimozato
- Department of Oral and Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| | - Shuji Nomoto
- Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
50
|
Oral microbiota in cancer: could the bad guy turn good with application of polyphenols? Expert Rev Mol Med 2022; 25:e1. [PMID: 36511134 DOI: 10.1017/erm.2022.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human oral cavity is comprised of dynamic and polynomial microbes which uniquely reside in the microenvironments of oral cavities. The cumulative functions of the symbiotic microbial communities maintain normal homeostasis; however, a shifted microbiota yields a dysbiosis state, which produces local and systemic diseases including dental caries, periodontitis, cancer, obesity and diabetes. Recent research reports claim that an association occurs between oral dysbiosis and the progression of different types of cancers including oral, gastric and pancreatic ones. Different mechanisms are proposed for the development of cancer, such as induction of inflammatory reactions, production of carcinogenic materials and alteration of the immune system. Medications are available to treat these associated diseases; however, the current strategies may further worsen the disease by unwanted side effects. Natural-derived polyphenol molecules significantly inhibit a wide range of systemic diseases with fewer side effects. In this review, we have displayed the functions of the oral microbes and we have extended the report regarding the role of polyphenols in oral microbiota to maintain healthy conditions and prevention of diseases with emphasis on the treatment of oral microbiota-associated cancer.
Collapse
|