1
|
Pursuit of precision medicine: Systems biology approaches in Alzheimer's disease mouse models. Neurobiol Dis 2021; 161:105558. [PMID: 34767943 PMCID: PMC10112395 DOI: 10.1016/j.nbd.2021.105558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a complex disease that is mediated by numerous factors and manifests in various forms. A systems biology approach to studying AD involves analyses of various body systems, biological scales, environmental elements, and clinical outcomes to understand the genotype to phenotype relationship that potentially drives AD development. Currently, there are many research investigations probing how modifiable and nonmodifiable factors impact AD symptom presentation. This review specifically focuses on how imaging modalities can be integrated into systems biology approaches using model mouse populations to link brain level functional and structural changes to disease onset and progression. Combining imaging and omics data promotes the classification of AD into subtypes and paves the way for precision medicine solutions to prevent and treat AD.
Collapse
|
2
|
Amponsah AE, Guo R, Kong D, Feng B, He J, Zhang W, Liu X, Du X, Ma Z, Liu B, Ma J, Cui H. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer's disease. Rev Neurosci 2021; 32:379-402. [PMID: 33550785 DOI: 10.1515/revneuro-2020-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and a common cause of dementia among elderly individuals. The disease is characterized by progressive cognitive decline, accumulation of senile amyloid plaques and neurofibrillary tangles, oxidative stress, and inflammation. Human-derived cell models of AD are scarce, and over the years, non-human-derived models have been developed to recapitulate clinical AD, investigate the disease's pathogenesis and develop therapies for the disease. Several pharmacological compounds have been developed for AD based on findings from non-human-derived cell models; however, these pharmacological compounds have failed at different phases of clinical trials. This necessitates the application of human-derived cell models, such as induced pluripotent stem cells (iPSCs) in their optimized form in AD mechanistic studies and preclinical drug testing. This review provides an overview of AD and iPSCs. The AD-relevant phenotypes of iPSC-derived AD brain cells and the usefulness of iPSCs in AD are highlighted. Finally, the various recommendations that have been made to enhance iPSC/AD modelling are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Zhenhuan Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| |
Collapse
|
3
|
Stringer MS, Lee H, Huuskonen MT, MacIntosh BJ, Brown R, Montagne A, Atwi S, Ramirez J, Jansen MA, Marshall I, Black SE, Zlokovic BV, Benveniste H, Wardlaw JM. A Review of Translational Magnetic Resonance Imaging in Human and Rodent Experimental Models of Small Vessel Disease. Transl Stroke Res 2020; 12:15-30. [PMID: 32936435 PMCID: PMC7803876 DOI: 10.1007/s12975-020-00843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Cerebral small vessel disease (SVD) is a major health burden, yet the pathophysiology remains poorly understood with no effective treatment. Since much of SVD develops silently and insidiously, non-invasive neuroimaging such as MRI is fundamental to detecting and understanding SVD in humans. Several relevant SVD rodent models are established for which MRI can monitor in vivo changes over time prior to histological examination. Here, we critically review the MRI methods pertaining to salient rodent models and evaluate synergies with human SVD MRI methods. We found few relevant publications, but argue there is considerable scope for greater use of MRI in rodent models, and opportunities for harmonisation of the rodent-human methods to increase the translational potential of models to understand SVD in humans. We summarise current MR techniques used in SVD research, provide recommendations and examples and highlight practicalities for use of MRI SVD imaging protocols in pre-selected, relevant rodent models.
Collapse
Affiliation(s)
- Michael S Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mikko T Huuskonen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Rosalind Brown
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maurits A Jansen
- Edinburgh Preclinical Imaging, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Metaxas A, Thygesen C, Kempf SJ, Anzalone M, Vaitheeswaran R, Petersen S, Landau AM, Audrain H, Teeling JL, Darvesh S, Brooks DJ, Larsen MR, Finsen B. Ageing and amyloidosis underlie the molecular and pathological alterations of tau in a mouse model of familial Alzheimer's disease. Sci Rep 2019; 9:15758. [PMID: 31673052 PMCID: PMC6823454 DOI: 10.1038/s41598-019-52357-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023] Open
Abstract
Despite compelling evidence that the accumulation of amyloid-beta (Aβ) promotes neocortical MAPT (tau) aggregation in familial and idiopathic Alzheimer's disease (AD), murine models of cerebral amyloidosis are not considered to develop tau-associated pathology. In the present study, we show that tau can accumulate spontaneously in aged transgenic APPswe/PS1ΔE9 mice. Tau pathology is abundant around Aβ deposits, and further characterized by accumulation of Gallyas and thioflavin-S-positive inclusions, which were detected in the APPswe/PS1ΔE9 brain at 18 months of age. Age-dependent increases in argyrophilia correlated positively with binding levels of the paired helical filament (PHF) tracer [18F]Flortaucipir, in all brain areas examined. Sarkosyl-insoluble PHFs were visualized by electron microscopy. Quantitative proteomics identified sequences of hyperphosphorylated and three-repeat tau in transgenic mice, along with signs of RNA missplicing, ribosomal dysregulation and disturbed energy metabolism. Tissue from the frontal gyrus of human subjects was used to validate these findings, revealing primarily quantitative differences between the tau pathology observed in AD patient vs. transgenic mouse tissue. As physiological levels of endogenous, 'wild-type' tau aggregate secondarily to Aβ in APPswe/PS1ΔE9 mice, this study suggests that amyloidosis is both necessary and sufficient to drive tauopathy in experimental models of familial AD.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
| | - Camilla Thygesen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Stefan J Kempf
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marco Anzalone
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | | | - Sussanne Petersen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Hélène Audrain
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark
| | - Jessica L Teeling
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark.,Division of Neuroscience, Faculty of Medical Science, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
6
|
Urfer SR, Latimer CS, Ladiges W, Keene CD, Benbow S, Harrison B, Promislow DE, Kaeberlein M, Kraemer BC, Wang A, Guscetti F, Darvas M. Cross species application of quantitative neuropathology assays developed for clinical Alzheimer's disease samples. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2019; 9:1657768. [PMID: 31528297 PMCID: PMC6735310 DOI: 10.1080/20010001.2019.1657768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/16/2019] [Indexed: 12/03/2022]
Abstract
A major obstacle for preclinical testing of Alzheimer's disease (AD) therapies is the availability of translationally relevant AD models. Critical for the validation of such models is the application of the same approaches and techniques used for the neuropathological characterization of AD. Deposition of amyloid-β 42 (Aβ42) plaques and neurofibrillary tangles containing phospho-Tau (pTau) are the pathognomonic features of AD. In the neuropathologic evaluation of AD, immunohistochemistry (IHC) is the current standard method for detection of Aβ42 and pTau. Although IHC is indispensable for determining the distribution of AD pathology, it is of rather limited use for assessment of the quantity of AD pathology. We have recently developed Luminex-based assays for the quantitative assessment of Aβ42 and pTau in AD brains. These assays are based on the same antibodies that are used for the IHC-based diagnosis of AD neuropathologic change. Here we report the application and extension of such quantitative AD neuropathology assays to commonly used genetically engineered AD models and to animals that develop AD neuropathologic change as they age naturally. We believe that identifying AD models that have Aβ42 or pTau levels comparable to those observed in AD will greatly improve the ability to develop AD therapies. Abbreviations: Alzheimer's disease (AD); amyloid β 42 (Aβ42); phospho-Tau (pTau); immunohistochemistry (IHC).
Collapse
Affiliation(s)
- Silvan R. Urfer
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Sarah Benbow
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Veterans Affairs Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | | | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Brian C Kraemer
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Veterans Affairs Geriatric Research Education and Clinical Center, Seattle, WA, USA
| | - Adrienne Wang
- Department of Biology, Western Washington University, Bellingham, WA, USA
| | - Franco Guscetti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Abstract
It is becoming increasingly apparent that microglia, the immune cells of the CNS, and their peripheral counterparts, macrophages, have a major role in normal physiology and pathology. Recent technological advances in the production of particular cell types from induced pluripotent stem cells have led to an interest in applying this methodology to the production of microglia. Here, we discuss recent advances in this area and describe how they will aid our future understanding of microglia.
Collapse
|
8
|
Lee JS, Lee Y, André EA, Lee KJ, Nguyen T, Feng Y, Jia N, Harris BT, Burns MP, Pak DTS. Inhibition of Polo-like kinase 2 ameliorates pathogenesis in Alzheimer's disease model mice. PLoS One 2019; 14:e0219691. [PMID: 31306446 PMCID: PMC6629081 DOI: 10.1371/journal.pone.0219691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by pathological hallmarks of neurofibrillary tangles and amyloid plaques. The plaques are formed by aggregation and accumulation of amyloid β (Aβ), a cleavage fragment of amyloid precursor protein (APP). Enhanced neuronal activity and seizure events are frequently observed in AD, and elevated synaptic activity promotes Aβ production. However, the mechanisms that link synaptic hyperactivity to APP processing and AD pathogenesis are not well understood. We previously found that Polo-like kinase 2 (Plk2), a homeostatic repressor of neuronal overexcitation, promotes APP β-processing in vitro. Here, we report that Plk2 stimulates Aβ production in vivo, and that Plk2 levels are elevated in a spatiotemporally regulated manner in brains of AD mouse models and human AD patients. Genetic disruption of Plk2 kinase function reduces plaque deposits and activity-dependent Aβ production. Furthermore, pharmacological Plk2 inhibition hinders Aβ formation, synapse loss, and memory decline in an AD mouse model. Thus, Plk2 links synaptic overactivity to APP β-processing, Aβ production, and disease-relevant phenotypes in vivo, suggesting that Plk2 may be a potential target for AD therapeutics.
Collapse
Affiliation(s)
- Ji Soo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yeunkum Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Emily A. André
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kea Joo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Thien Nguyen
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yang Feng
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Nuo Jia
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Brent T. Harris
- Department of Neurology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Mark P. Burns
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Daniel T. S. Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
9
|
Angelova DM, Brown DR. Altered Processing of β-Amyloid in SH-SY5Y Cells Induced by Model Senescent Microglia. ACS Chem Neurosci 2018; 9:3137-3152. [PMID: 30052418 DOI: 10.1021/acschemneuro.8b00334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The single greatest risk factor for neurodegenerative diseases is aging. Aging of cells such as microglia in the nervous system has an impact not only on the ability of those cells to function but also on cells they interact with. We have developed a model microglia system that recapitulates the dystrophic/senescent phenotype, and we have combined this with the study of β-amyloid processing. The model is based on the observation that aged microglia have increased iron content. By overloading a human microglial cell line with iron, we were able to change the secretory profile of the microglia. When combining these senescent microglia with SH-SY5Y cells, we noted an increase in extracellular β-amyloid. The increased levels of β-amyloid were due to a decrease in the release of insulin-degrading enzyme by the model senescent microglia. Further analysis revealed that the senescent microglia showed both decreased autophagy and increased ER stress. These studies demonstrate the potential impact of an aging microglial population in terms of β-amyloid produced by neurons, which could play a causal role in diseases like Alzheimer's disease. Our results also further develop the potential utility of an in vitro model of senescent microglia for the study of brain aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Dafina M. Angelova
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
10
|
Sharma K, Darvas M, Keene CD, Niedernhofer LJ, Ladiges W. Modeling Alzheimer's disease in progeria mice. An age-related concept. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2018; 8:1524815. [PMID: 30319737 PMCID: PMC6179061 DOI: 10.1080/20010001.2018.1524815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prevalence of Alzheimer’s disease (AD) is expected to dramatically increase in older people worldwide. Efforts to find disease-modifying treatments have been largely unsuccessful because of the focus on disease-specific pathogenesis, and lack of animal models to study AD in the context of aging and age-related co-morbidities. The geroscience approach to studying AD would suggest that modulation of aging per se would be a useful strategy, but a mammalian model system that combines both aging and AD is not available. One approach to study old age and AD is to utilize murine models of progeroid syndrome, which can provide a number of advantages not only for basic aging biology but also for preclinical drug testing. A progeria background, such as the Ercc1 mutant mouse (Ercc1−/Δ), provides an aging component not seen in current murine models of AD that lack age-related co-morbidities typical of AD patients. Ercc1−/Δ mice experience the same types of stochastic endogenous DNA damage as WT mice, but accumulate lesions faster due to impaired DNA repair, which accelerates the normal aging process by 6-fold. These mice do not show frank AD pathology but represent a predisposed or hypersensitive environment for AD pathology, where pathogenic elements of AD can be introduced, either by crossing with well-established AD transgenic mouse lines, or transcranial stereotaxic delivery directly into the brain. Since Ercc1−/Δ mice age five to six times faster than WT mice, very rapid characterization and testing of therapeutic interventions is possible. Studies are urgently needed to capitalize on the highly informative potential of this novel AD mouse model.
Collapse
Affiliation(s)
- Kavita Sharma
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Martin Darvas
- Department of Pathology, Division of Neuropathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Bischof GN, Endepols H, van Eimeren T, Drzezga A. Tau-imaging in neurodegeneration. Methods 2017; 130:114-123. [PMID: 28790016 DOI: 10.1016/j.ymeth.2017.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 10/19/2022] Open
Abstract
Pathological cerebral aggregations of proteins are suggested to play a crucial role in the development of neurodegenerative disorders. For example, aggregation of the protein ß-amyloid in form of extracellular amyloid-plaques as well as intraneuronal depositions of the protein tau in form of neurofibrillary tangles represent hallmarks of Alzheimer's disease (AD). Recently, novel tracers for in vivo molecular imaging of tau-aggregates in the brain have been introduced, complementing existing tracers for imaging amyloid-plaques. Available data on these novel tracers indicate that the subject of Tau-PET may be of considerable complexity. On the one hand this refers to the various forms of appearance of tau-pathology in different types of neurodegenerative disorders. On the other hand, a number of hurdles regarding validation of these tracers still need to be overcome with regard to comparability and standardization of the different tracers, observed off-target/non-specific binding and quantitative interpretation of the signal. These issues will have to be clarified before systematic clinical application of this exciting new methodological approach may become possible. Potential applications refer to early detection of neurodegeneration, differential diagnosis between tauopathies and non-tauopathies and specific patient selection and follow-up in therapy trials.
Collapse
Affiliation(s)
| | - Heike Endepols
- Department of Nuclear Medicine, University of Cologne, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University of Cologne, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, Germany; German Research Center for Neurodegenerative Diseases (DZNE), Germany.
| |
Collapse
|
12
|
Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat Rev Drug Discov 2017; 16:531-543. [PMID: 28685762 DOI: 10.1038/nrd.2017.111] [Citation(s) in RCA: 570] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phenotypic drug discovery (PDD) approaches do not rely on knowledge of the identity of a specific drug target or a hypothesis about its role in disease, in contrast to the target-based strategies that have been widely used in the pharmaceutical industry in the past three decades. However, in recent years, there has been a resurgence in interest in PDD approaches based on their potential to address the incompletely understood complexity of diseases and their promise of delivering first-in-class drugs, as well as major advances in the tools for cell-based phenotypic screening. Nevertheless, PDD approaches also have considerable challenges, such as hit validation and target deconvolution. This article focuses on the lessons learned by researchers engaged in PDD in the pharmaceutical industry and considers the impact of 'omics' knowledge in defining a cellular disease phenotype in the era of precision medicine, introducing the concept of a chain of translatability. We particularly aim to identify features and areas in which PDD can best deliver value to drug discovery portfolios and can contribute to the identification and the development of novel medicines, and to illustrate the challenges and uncertainties that are associated with PDD in order to help set realistic expectations with regard to its benefits and costs.
Collapse
Affiliation(s)
- John G Moffat
- Biochemical &Cellular Pharmacology, Genentech, South San Francisco, California 94080, USA
| | - Fabien Vincent
- Discovery Sciences, Primary Pharmacology Group, Pfizer, Groton, Connecticut 06340, USA
| | - Jonathan A Lee
- Department of Quantitative Biology, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Jörg Eder
- Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Marco Prunotto
- Phenotype and Target ID, Chemical Biology, pRED, Roche, 4070 Basel, Switzerland. Present address: Office of Innovation, Immunology, Infectious Diseases &Ophthalmology (I2O), Roche Late Stage Development, 124 Grenzacherstrasse, 4070 Basel, Switzerland
| |
Collapse
|