1
|
Henderson IM, Benevidez AD, Mowry CD, Watt J, Bachand GD, Kirk ML, Dokładny K, DeAguero J, Escobar GP, Wagner B. Precipitation of gadolinium from magnetic resonance imaging contrast agents may be the Brass tacks of toxicity. Magn Reson Imaging 2025; 119:110383. [PMID: 40064247 DOI: 10.1016/j.mri.2025.110383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/19/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
The formation of gadolinium-rich nanoparticles in multiple tissues from intravenous magnetic resonance imaging contrast agents may be the initial step in rare earth metallosis. The mechanism of gadolinium-induced diseases is poorly understood, as is how these characteristic nanoparticles are formed. Gadolinium deposition has been observed with all magnetic resonance imaging contrast agent brands. Aside from endogenous metals and acidic conditions, little attention has been paid to the role of the biological milieu in the degradation of magnetic resonance imaging contrast agents into nanoparticles. Herein, we describe the decomposition of the commercial magnetic resonance imaging contrast agents Omniscan and Dotarem in the presence of oxalic acid, a well-known endogenous compound. Omniscan dechelated rapidly and preluded measurement by the means available, while Dotarem underwent a two-step decomposition process. The decomposition of both magnetic resonance imaging contrast agents by oxalic acid formed gadolinium oxalate (Gd2[C2O4]3, Gd2Ox3). Furthermore, both observed steps of the Dotarem reaction involved the associative addition of oxalic acid. Adding protein (bovine serum albumin) increased the rate of dechelation. Displacement reactions could occur at lysosomal pH. Through these studies, we have demonstrated that magnetic resonance imaging contrast agents can be dissociated by endogenous molecules, thus illustrating a metric by which gadolinium-based contrast agents (GBCAs) might be destabilized in vivo.
Collapse
Affiliation(s)
- Ian M Henderson
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Angelica D Benevidez
- Department of Chemical & Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Curtis D Mowry
- University of New Mexico, Department of Chemistry and Chemical Biology, Albuquerque, NM, USA
| | - John Watt
- Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Albuquerque, NM, USA
| | - George D Bachand
- Sandia National Laboratories, Center for Integrated Nanotechnologies, Albuquerque, NM, USA
| | - Martin L Kirk
- University of New Mexico, Department of Chemistry and Chemical Biology, Albuquerque, NM, USA
| | - Karol Dokładny
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; New Mexico VA Health Care System, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Pawloski W, Gruschus JM, Opina A, Vasalatiy O, Tjandra N. Evaluating the use of lanthanide containing dendrimers for solvent paramagnetic relaxation enhancement. JOURNAL OF BIOMOLECULAR NMR 2025:10.1007/s10858-025-00468-9. [PMID: 40208391 DOI: 10.1007/s10858-025-00468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025]
Abstract
Paramagnetic relaxation enhancement (PRE) is widely used in biomolecular NMR spectroscopy to obtain long-range distance and orientational information for intra- or intermolecular interactions. In contrast to conventional PRE measurements, which require tethering small molecules containing either a radical or paramagnetic ion to specific sites on the target protein, solvent PRE (sPRE) experiments utilize paramagnetic cosolutes to induce a delocalized PRE effect. Compounds developed as contrast agents in magnetic resonance imaging (MRI) applications typically consist of Gd chelated by a small molecule. Coordinating these Gd-containing small molecules to larger and inert scaffolds has been shown to increase the PRE-effect and produce more effective contrast agents in MRI. Inspired by their use as MRI contrast agent, in this work we evaluate the effectiveness of using a functionalized polyamidoamine (PAMAM) dendrimer for sPRE measurements. Using ubiquitin as a model system, we measured the sPRE effect from a generation 5 PAMAM dendrimer (G5-Gd) as a function of temperature and pH and compared to conventional relaxation agents. We also demonstrated the utility of G5-Gd in sPRE studies to monitor changes in the structures of two proteins as they bind their ligands. These studies highlight the attractive properties of these macromolecular relaxation agents in biomolecular sPRE.
Collapse
Affiliation(s)
- Westley Pawloski
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 3503, Bethesda, MD, 20892, USA
| | - James M Gruschus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 3503, Bethesda, MD, 20892, USA
| | - Ana Opina
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Nico Tjandra
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 3503, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Ijaz M, Hasan I, Aslam B, Yan Y, Zeng W, Gu J, Jin J, Zhang Y, Wang S, Xing L, Guo B. Diagnostics of brain tumor in the early stage: current status and future perspectives. Biomater Sci 2025. [PMID: 40200902 DOI: 10.1039/d4bm01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Early diagnosis of brain tumors is challenging due to their complexity and delicate structure. Conventional imaging techniques like MRI, CT, and PET are unable to provide detailed visualization of early-stage brain tumors. Early-stage detection of brain tumors is vital for enhancing patient outcomes and survival rates. So far, several scientists have dedicated their efforts to innovating advanced diagnostic probes to efficiently cross the BBB and selectively target brain tumors for optimal imaging. The integration of these techniques presents a viable pathway for non-invasive, accurate, and early-stage tumor identification. Herein, we provide a timely update on the various imaging probes and potential challenges for the diagnosis of early-stage brain tumors. Furthermore, this review highlights the significance of integrating advanced imaging probes for improving the early detection of brain tumors, ultimately enhancing treatment outcomes. Hopefully, this review will stimulate the interest of researchers to accelerate the development of new imaging probes and even their clinical translation for improving the early diagnosis of brain tumors.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bilal Aslam
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yuqian Yan
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Wenjun Zeng
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jian Jin
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| | - Shaohua Wang
- Diagnostic Center of Infectious Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Lu Xing
- Department of Sleep Medicine, Shenzhen Kangning Hospital, No. 1080 Cuizhu Road, Guangdong 518020, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of, Technology, Shenzhen-518055, China.
| |
Collapse
|
4
|
Scarciglia A, Papi C, Romiti C, Leone A, Di Gregorio E, Ferrauto G. Gadolinium-Based Contrast Agents (GBCAs) for MRI: A Benefit-Risk Balance Analysis from a Chemical, Biomedical, and Environmental Point of View. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400269. [PMID: 40071223 PMCID: PMC11891575 DOI: 10.1002/gch2.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/07/2025] [Indexed: 03/14/2025]
Abstract
Gadolinium-based contrast agents (GBCAs) have revolutionized medical imaging, enhancing the accuracy and diagnostic value of magnetic resonance imaging (MRI). The increasing use of GBCAs has raised concerns about the release of gadolinium (Gd)(III) into the environment and potential risks for human health. Initially, multiple administrations of GBCAs were associated only with nephrogenic system fibrosis disease in individuals with impaired kidney function. Even if the Gd(III) retention in tissues has not yet been correlated with any specific disease, caution is required for the extensive use of GBCAs. The concerns related to the employment of GBCAs, due to the possible deposition and retention, should be extended also to healthy individuals without renal impairments. To ensure the well-being of patients, there is a need to develop even more stable and better-performing GBCAs, new MRI approaches requiring lower doses of GBCAs and, finally, innovative methods for recovering Gd(III) from both patients' urines and the environment. This can have strong advantages for human health and for environmental sustainability, also considering Gd(III) scarcity, being a rare earth element, and the shared guideline to reduce, as much as possible, the use of rare metals.
Collapse
Affiliation(s)
- Angelo Scarciglia
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Chiara Papi
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Chiara Romiti
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Andrea Leone
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnologies and Health SciencesUniversity of TorinoVia Nizza 52Torino10126Italy
| |
Collapse
|
5
|
Jafar NNA, Abd Hamid J, M A Altalbawy F, Sharma P, Kumar A, Shomurotova S, Jihad Albadr R, Atiyah Altameemi KK, Mahdi Saleh H, Alajeeli F, Mohammed Ahmed A, Ahmad I, Dawood II. Gadolinium (Gd)-based nanostructures as dual-armoured materials for microbial therapy and cancer theranostics. J Microencapsul 2025:1-27. [PMID: 39992246 DOI: 10.1080/02652048.2025.2469259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Gadolinium (Gd) nanoparticles hold significant promise in medical theranostics due to their unique properties. This review outlines the synthesis, characterisation, and applications of Gd nanostructures in combating microbial threats and advancing cancer theragnostic strategies. Synthesis methods such as co-precipitation, microemulsion, and laser ablation are discussed, alongside TEM, SEM, and magnetic characterisation. The antimicrobial efficacy of Gd nanostructures, their potential in combination therapy, and promising anticancer mechanisms are explored. Biocompatibility, toxicity, and regulatory considerations are also evaluated. Challenges, future perspectives, and emerging trends in Gd nanostructure research are highlighted, emphasising their transformative potential in medical applications.
Collapse
Affiliation(s)
- Nadhir N A Jafar
- AL-Zahraa University for Women, College of Health and Medical Technology, Kerbala, Iraq
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pawan Sharma
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Sciences, Vivekananda Global University, Jaipur, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, India
| | - Shirin Shomurotova
- Department of Chemistry Teaching Methods, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | | | | | - Hawraa Mahdi Saleh
- Department of Dentistry, Al-Manara College For Medical Sciences, Maysan, Iraq
| | - Fakhri Alajeeli
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, Iraq
| | - Ahmed Mohammed Ahmed
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq
| | - Irfan Ahmad
- Central Labs, King Khalid University, AlQura'a, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Imad Ibrahim Dawood
- Department of Medical Laboratories Technology, Mazaya University College, Nasiriyah, Iraq
| |
Collapse
|
6
|
Innuan P, Kongkarnka S, Thongtharb A, Kantapan J, Dechsupa N. Iron(III)-Quercetin Complex: In Vivo Acute Toxicity and Biodistribution of Novel MRI Agent. Int J Nanomedicine 2025; 20:1303-1320. [PMID: 39906526 PMCID: PMC11792624 DOI: 10.2147/ijn.s496015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Background The iron(III)-quercetin complex, known as "IronQ", is an innovative MRI contrast agent composed of one Fe(III) ion and two quercetin molecules. IronQ is efficiently internalized by cells, enabling T1-weighted MRI tracking. It has demonstrated therapeutic benefits in reducing inflammation in an intracerebral hemorrhage (ICH) mouse model and offers a safer alternative to gadolinium-based agents by avoiding cytotoxicity and genotoxicity. These properties make IronQ a promising candidate for safe and effective MRI contrast enhancement. Purpose This study aims to further the development of IronQ as an MRI contrast agent by investigating its biodistribution, pharmacokinetics, and acute toxicity in a preclinical animal model. Methods The relaxivity of IronQ was measured in water and whole blood phantoms. Acute toxicity was evaluated in Sprague Dawley rats administered single intraperitoneal doses of IronQ (75, 150, and 225 µmol Fe/kg BW) over a 14-day period. Pharmacokinetic studies were performed at a dose of 150 µmol Fe/kg BW, with blood iron content analyzed using ICP-OES. For in vivo biodistribution, SD rats were administered an intravenous dose of IronQ (225 µmol Fe/kg BW), followed by MR imaging using a 1.5 T scanner and subsequent tissue-ICP analysis. Results The longitudinal relaxivity (r1) of IronQ was measured to be 2.17 mm⁻¹s⁻¹ in ultrapure water and 3.56 mm⁻¹s⁻¹ in whole blood. Acute toxicity studies showed no mortality, morbidity, or significant biochemical changes, with histopathology confirming no irreversible organ damage. Pharmacokinetics revealed peak blood iron content at 1.1 hours post-administration and clearance within 24 hours. MRI demonstrated enhanced T1 signal intensity, particularly in the liver and kidney. Conclusion These findings provide valuable insights into the safety, pharmacokinetics, and imaging efficacy of IronQ, highlighting its potential as a robust and biocompatible MRI contrast agent.
Collapse
Affiliation(s)
- Phattarawadee Innuan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Atigan Thongtharb
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
7
|
Luo T, Wang B, Chen R, Qi Q, Wu R, Xie S, Chen H, Han J, Wu D, Cao S. Research progress of nitroxide radical-based MRI contrast agents: from structure design to application. J Mater Chem B 2025; 13:372-398. [PMID: 39565110 DOI: 10.1039/d4tb02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) remains a cornerstone of diagnostic imaging, offering unparalleled insights into anatomical structures and pathological conditions. Gadolinium-based contrast agents have long been the standard in MRI enhancement, yet concerns over nephrogenic systemic fibrosis have spurred interest in metal-free alternatives. Nitroxide radical-based MRI contrast agents (NO-CAs) have emerged as promising candidates, leveraging their biocompatibility and imaging capabilities. This review summaries the latest advancements in NO-CAs, focusing on synthesis methodologies, influencing effects of structures of NO-CAs on relaxation efficiency and their applications across various clinical contexts. Comprehensive discussions encompass small molecular, polymeric, and nano-sized NO-CAs, detailing their unique properties and potential clinical utilities. Despite challenges, NO-CAs represent a dynamic area of research poised to revolutionize MRI diagnostics. This review serves as a critical resource for researchers and practitioners seeking to navigate the evolving landscape of MRI contrast agents.
Collapse
Affiliation(s)
- Tao Luo
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Runxin Chen
- Shenzhen University General Hospital, Shenzhen, China
| | - Qi Qi
- Shenzhen University General Hospital, Shenzhen, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, China
| | - Shunzi Xie
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Hanbing Chen
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Shenzhen, China
| | | |
Collapse
|
8
|
Moradi B, Aghasi M, Rahmani M, Sharifi E, Malek M, Yarandi F, Banihashemian M, Behtash N, Abdolghafoorian H. Unenhanced magnetic resonance imaging for the evaluation of sonographically indeterminate ovarian and adnexal masses. Radiol Bras 2025; 58:e20240032. [PMID: 39949873 PMCID: PMC11816912 DOI: 10.1590/0100-3984.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/19/2024] [Accepted: 10/02/2024] [Indexed: 02/16/2025] Open
Abstract
Objective To investigate the accuracy of magnetic resonance imaging (MRI) in classifying sonographically indeterminate ovarian and adnexal masses. Materials and Methods This was a retrospective cross-sectional study of the unenhanced pelvic MRI scans of 243 patients with a collective total of 336 adnexal and ovarian masses. Results Unenhanced MRI showed a sensitivity of 97.7%, a specificity of 86.4%, and an accuracy of 93.8%. The area under the ROC curve was 0.944 (95% CI: 0.913-0.974). Conclusion Our results show that an unenhanced MRI protocol can be used to classify adnexal masses, especially in clinical settings in which the intravenous administration of gadolinium-based contrast is not safe and should be avoided.
Collapse
|
9
|
Suslova EV, Shashurin DA, Maslakov KI, Kupreenko SY, Luneva TO, Medvedev OS, Chelkov GA. Composite Contrast Enhancement of Hydrogel-Based Implants for Photon-Counting Computed Tomography Studies. Gels 2024; 10:807. [PMID: 39727565 DOI: 10.3390/gels10120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogels have a wide range of medical applications, including use within implantable systems. However, when used in implants, their visibility under conventional medical imaging techniques is limited, creating safety risks for patients. In the current work, we assessed the possibility of enhancing hydrogels using Ln-based contrasting agents to facilitate their visualization in photon-counting computed tomography (PCCT). The contrast enhancement of gelatin, polyacrylamide (PAM), and silicone shells of implants was assessed. A novel synthetic route for producing cross-linked nanosized Ln2O3 with polyacrylamide was proposed and discussed in detail. Several prototypes of silicone implants, including silicone shell and gelatin or PAM filling with different combinations of contrasting agents, were produced and assessed in phantom PCCT studies.
Collapse
Affiliation(s)
- Evgeniya V Suslova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Denis A Shashurin
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave. 27 Bld. 10, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Stepan Yu Kupreenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Tatyana O Luneva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 Bld. 3, 119991 Moscow, Russia
| | - Oleg S Medvedev
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave. 27 Bld. 10, 119991 Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Georgy A Chelkov
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia
| |
Collapse
|
10
|
He JF, Yang WW, Quan WX, Yang YC, Zhang Z, Luo QY. Application of rare earth elements in dual-modality molecular probes. RSC Adv 2024; 14:38480-38490. [PMID: 39640527 PMCID: PMC11618533 DOI: 10.1039/d4ra04987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The unique 4f subshell electronic structure of rare earth elements endows them with exceptional properties in electrical, magnetic, and optical domains. These properties include prolonged fluorescence lifetimes, large Stokes shifts, distinctive spectral bands, and strong resistance to photobleaching, making them ideal for the synthesis of molecular probes. Each imaging technique possesses unique advantages and specific applicabilities but also inherent limitations due to its operational principles. Dual-modality molecular probes effectively address these limitations, particularly in applications involving high-resolution Magnetic Resonance Imaging (MRI) such as MRI/OI, MRI/PET, MRI/CT, and MRI/US. This review summarizes the applications, advantages, challenges, and current research status of rare earth elements in these four dual imaging modalities, providing a theoretical basis for the future development and application of rare earth elements in the field of dual-modality molecular probes.
Collapse
Affiliation(s)
- Jie-Fang He
- School of Life Sciences, Guizhou Normal University Guiyang 550025 China
| | - Wen-Wen Yang
- School of Life Sciences, Guizhou Normal University Guiyang 550025 China
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Wen-Xuan Quan
- Provincial Key Laboratory of Mountainous Ecological Environment, Guizhou Normal University Guiyang 550025 China
| | - Yue-Chun Yang
- Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Zhengwei Zhang
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| | - Qing-Ying Luo
- School of Food and Drug, Shenzhen Polytechnic University Shenzhen 518055 China
| |
Collapse
|
11
|
Comino Garcia-Munoz A, Varlet I, Grau GE, Perles-Barbacaru TA, Viola A. Contribution of Magnetic Resonance Imaging Studies to the Understanding of Cerebral Malaria Pathogenesis. Pathogens 2024; 13:1042. [PMID: 39770302 PMCID: PMC11728472 DOI: 10.3390/pathogens13121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
Cerebral malaria (CM), the most lethal clinical syndrome of Plasmodium falciparum infection, mostly affects children under 5 in sub-Saharan Africa. CM is characterized by seizures and impaired consciousness that lead to death in 15-20% of cases if treated quickly, but it is completely fatal when untreated. Brain magnetic resonance imaging (MRI) is an invaluable source of information on the pathophysiology of brain damage, but, due to limited access to scanners in endemic regions, only until very recently have case reports of CM patients studied with advanced MRI methods been published. The murine model of experimental cerebral malaria (ECM) shares many common features with the human disease and has been extensively used to study the pathogenic mechanisms of the neurological syndrome. In vivo MRI studies on this model, the first of which was published in 2005, have contributed to a better understanding of brain lesion formation in CM and identified disease markers that were confirmed by MRI studies published from 2013 onwards in pediatric patients from endemic areas. In this review, we recapitulate the main findings and critically discuss the contributions of MRI studies in the ECM model to the understanding of human CM.
Collapse
Affiliation(s)
- Alicia Comino Garcia-Munoz
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Isabelle Varlet
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Georges Emile Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine, The University of Sydney, Medical Foundation Building (K25), Camperdown, NSW 2042, Australia;
| | - Teodora-Adriana Perles-Barbacaru
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| | - Angèle Viola
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM) UMR 7339, Faculté des Sciences Médicales et Paramédicales la Timone, Aix-Marseille Université, CNRS, 13055 Marseille, France; (A.C.G.-M.); (I.V.); (T.-A.P.-B.)
| |
Collapse
|
12
|
Tapper S, Tisell A, Hillman J, Wårdell K. Method for detection of cerebral blood flow in neurointensive care using longitudinal arterial spin labeling MRI. PLoS One 2024; 19:e0314056. [PMID: 39561199 PMCID: PMC11575771 DOI: 10.1371/journal.pone.0314056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Cerebral blood flow (CBF) is carefully monitored in the Neurointensive Care Unit (NICU) to prevent secondary brain insults in patients who have suffered subarachnoid hemorrhage. Including absolute MRI measurements of CBF in the NICU monitoring protocol could add valuable information and potentially improve patient outcomes. This is particularly feasible at Linköping University Hospital, which uniquely has an MRI scanner located in the NICU, enabling longitudinal CBF measurements while eliminating medical transportation risks. Arterial spin labeling is a subtraction-based MRI technique that can measure CBF globally in the brain without the use of contrast agents, and thus is suitable for repeated measurements over short time periods. Therefore, this work aims to develop and implement a methodological workflow for the acquisition, analysis, absolute quantification, and visualization of longitudinal arterial spin labeling MRI measurements acquired in the clinical NICU setting. At this initial stage, the workflow was implemented and tested using acquired test-retest data and longitudinal data from two healthy participants. Subsequently, the workflow was tested in clinical practice on an intubated and ventilated patient monitored in the NICU after suffering a subarachnoid hemorrhage. To ensure accurate day-to-day comparisons between the repeated measurements, the selection of processing and analysis methods aimed to obtain CBF maps in absolute units of ml/min/100g. These CBF maps were quantified using both the FMRIB Software Library and an openly available flow territory atlas. The test-retest data showed small variations (4.4 ml/min/100g between sessions), and the longitudinal measurement resulted in low CBF variability over 12 days. Despite the greater complexity of clinical data, the quantification and chosen visualization tools proved helpful in interpreting the results. In conclusion, this workflow including repeated MRI measurements could help detect changes in CBF between different measurement days and complement other conventional monitoring techniques in the NICU.
Collapse
Affiliation(s)
- Sofie Tapper
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Department of Medical Radiation Physics, Linköping University Hospital, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jan Hillman
- Department of Neurosurgery, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karin Wårdell
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
Holmes B, Sanampudi S, Ananthakrishnan L. Diagnostic CT cystography with diluted gadolinium-based contrast: A viable alternative to an iodinated contrast-based cystogram. Urol Case Rep 2024; 57:102856. [PMID: 39492844 PMCID: PMC11531629 DOI: 10.1016/j.eucr.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Patients with reported history of severe iodinated contrast reaction are not uncommon in daily practice. Iodinated contrast is most frequently administered intravenously (IV) for CT scans but is also used intraluminally during urologic procedures and postoperatively to assess for leaks. Providers often are unaware that patients with prior iodinated contrast allergy after IV administration are still at risk for a reaction during intraluminal administration. We present a case of a patient with history of iodinated severe contrast allergy, in which CT cystography using a gadolinium-based-contrast agent was safely performed as an alternative to iodinated-based-cystography to evaluate for a postoperative leak.
Collapse
Affiliation(s)
- Brian Holmes
- University of Texas Southwestern Medical Center, Department of Radiology, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Sreeja Sanampudi
- University of Texas Southwestern Medical Center, Department of Radiology, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| | - Lakshmi Ananthakrishnan
- University of Texas Southwestern Medical Center, Department of Radiology, 5323 Harry Hines Blvd, Dallas, TX 75390, United States
| |
Collapse
|
14
|
Wassenaar NPM, Gurney-Champion OJ, van Schelt AS, Bruijnen T, van Laarhoven HWM, Stoker J, Nederveen AJ, Runge JH, Schrauben EM. Optimizing pseudo-spiral sampling for abdominal DCE MRI using a digital anthropomorphic phantom. Magn Reson Med 2024; 92:2051-2064. [PMID: 39004838 DOI: 10.1002/mrm.30213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE For reliable DCE MRI parameter estimation, k-space undersampling is essential to meet resolution, coverage, and signal-to-noise requirements. Pseudo-spiral (PS) sampling achieves this by sampling k-space on a Cartesian grid following a spiral trajectory. The goal was to optimize PS k-space sampling patterns for abdomin al DCE MRI. METHODS The optimal PS k-space sampling pattern was determined using an anthropomorphic digital phantom. Contrast agent inflow was simulated in the liver, spleen, pancreas, and pancreatic ductal adenocarcinoma (PDAC). A total of 704 variable sampling and reconstruction approaches were created using three algorithms using different parametrizations to control sampling density, halfscan and compressed sensing regularization. The sampling patterns were evaluated based on image quality scores and the accuracy and precision of the DCE pharmacokinetic parameters. The best and worst strategies were assessed in vivo in five healthy volunteers without contrast agent administration. The best strategy was tested in a DCE scan of a PDAC patient. RESULTS The best PS reconstruction was found to be PS-diffuse based, with quadratic distribution of readouts on a spiral, without random shuffling, halfscan factor of 0.8, and total variation regularization of 0.05 in the spatial and temporal domains. The best scoring strategy showed sharper images with less prominent artifacts in healthy volunteers compared to the worst strategy. Our suggested DCE sampling strategy also showed high quality DCE images in the PDAC patient. CONCLUSION Using an anthropomorphic digital phantom, we identified an optimal PS sampling strategy for abdominal DCE MRI, and demonstrated feasibility in a PDAC patient.
Collapse
Affiliation(s)
- Nienke P M Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Oliver J Gurney-Champion
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Tom Bruijnen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MRI diagnostics and Therapy, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanneke W M van Laarhoven
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Zhang Z, Jiang W, Gu T, Guo N, Sun R, Zeng Y, Han Y, Yu K. Anthropogenic gadolinium contaminations in the marine environment and its ecological implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124740. [PMID: 39147221 DOI: 10.1016/j.envpol.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Due to the widespread application in medicine and industry of anthropogenic gadolinium (Gdanth), the widespread of Gd anomaly in surface water has leading to disruption of the natural Gd geochemical cycle. However, challenges related to the identification and quantification of Gdanth, assessment of its impacts on marine ecosystems, and exploration of strategies for mitigating its adverse effects still exist. Meanwhile, as the major source of the Gdanth, the environmental geochemical behavior of Gd-based contrast agents (GBCAs), which are used in medical diagnostics in magnetic resonance imaging (MRI), are still poorly understood. In this review, we 1) analyzed Gd anomalies in samples from published literature worldwide, confirmed their prevalence (81.25% for sea and lake water, 72.73% for river water), 2) demonstrated that the third-order polynomial method is the preferred approach for the detection of Gdanth in surface seawater, 3) outlined the species and applications of Gdanth and its impacts on marine environment, 4) explored the process of GBCAs influx into the ocean and demonstrated the concentration of Gdanth in coral samples was mainly affected by terrestrial input GBCAs (63.75%) through Pearson correlation analysis and principle component analysis, 5) proposed effective management strategies for GBCAs at all stages from production to release into the ocean, 6) formulated an expectation for future research on marine Gdanth.
Collapse
Affiliation(s)
- Zhaolin Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Wei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Tingwu Gu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ning Guo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruipeng Sun
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yang Zeng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yansong Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
16
|
Nowak S, Bischoff LM, Pennig L, Kaya K, Isaak A, Theis M, Block W, Pieper CC, Kuetting D, Zimmer S, Nickenig G, Attenberger UI, Sprinkart AM, Luetkens JA. Deep Learning Virtual Contrast-Enhanced T1 Mapping for Contrast-Free Myocardial Extracellular Volume Assessment. J Am Heart Assoc 2024; 13:e035599. [PMID: 39344639 DOI: 10.1161/jaha.124.035599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND The acquisition of contrast-enhanced T1 maps to calculate extracellular volume (ECV) requires contrast agent administration and is time consuming. This study investigates generative adversarial networks for contrast-free, virtual extracellular volume (vECV) by generating virtual contrast-enhanced T1 maps. METHODS AND RESULTS This retrospective study includes 2518 registered native and contrast-enhanced T1 maps from 1000 patients who underwent cardiovascular magnetic resonance at 1.5 Tesla. Recent hematocrit values of 123 patients (hold-out test) and 96 patients from a different institution (external evaluation) allowed for calculation of conventional ECV. A generative adversarial network was trained to generate virtual contrast-enhanced T1 maps from native T1 maps for vECV creation. Mean and SD of the difference per patient (ΔECV) were calculated and compared by permutation of the 2-sided t test with 10 000 resamples. For ECV and vECV, differences in area under the receiver operating characteristic curve (AUC) for discriminating hold-out test patients with normal cardiovascular magnetic resonance versus myocarditis or amyloidosis were tested with Delong's test. ECV and vECV showed a high agreement in patients with myocarditis (ΔECV: hold-out test, 2.0%±1.5%; external evaluation, 1.9%±1.7%) and normal cardiovascular magnetic resonance (ΔECV: hold-out test, 1.9%±1.4%; external evaluation, 1.5%±1.2%), but variations in amyloidosis were higher (ΔECV: hold-out test, 6.2%±6.0%; external evaluation, 15.5%±6.4%). In the hold-out test, ECV and vECV had a comparable AUC for the diagnosis of myocarditis (ECV AUC, 0.77 versus vECV AUC, 0.76; P=0.76) and amyloidosis (ECV AUC, 0.99 versus vECV AUC, 0.96; P=0.52). CONCLUSIONS Generation of vECV on the basis of native T1 maps is feasible. Multicenter training data are required to further enhance generalizability of vECV in amyloidosis.
Collapse
Affiliation(s)
- Sebastian Nowak
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
- Quantitative Imaging Laboratory Bonn (QILaB) University Hospital Bonn Bonn Germany
| | - Leon M Bischoff
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
- Quantitative Imaging Laboratory Bonn (QILaB) University Hospital Bonn Bonn Germany
| | - Lenhard Pennig
- Department of Diagnostic and Interventional Radiology University Hospital Cologne Cologne Germany
| | - Kenan Kaya
- Department of Diagnostic and Interventional Radiology University Hospital Cologne Cologne Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
- Quantitative Imaging Laboratory Bonn (QILaB) University Hospital Bonn Bonn Germany
| | - Maike Theis
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
- Quantitative Imaging Laboratory Bonn (QILaB) University Hospital Bonn Bonn Germany
| | - Wolfgang Block
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
- Quantitative Imaging Laboratory Bonn (QILaB) University Hospital Bonn Bonn Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
- Quantitative Imaging Laboratory Bonn (QILaB) University Hospital Bonn Bonn Germany
| | - Sebastian Zimmer
- Department of Internal Medicine II, Heart Center University Hospital Bonn Bonn Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Heart Center University Hospital Bonn Bonn Germany
| | - Ulrike I Attenberger
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
| | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
- Quantitative Imaging Laboratory Bonn (QILaB) University Hospital Bonn Bonn Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology University Hospital Bonn Bonn Germany
- Quantitative Imaging Laboratory Bonn (QILaB) University Hospital Bonn Bonn Germany
| |
Collapse
|
17
|
Cunningham A, Kirk M, Hong E, Yang J, Howard T, Brearley A, Sáenz-Trevizo A, Krawchuck J, Watt J, Henderson I, Dokladny K, DeAguero J, Escobar GP, Wagner B. The safety of magnetic resonance imaging contrast agents. FRONTIERS IN TOXICOLOGY 2024; 6:1376587. [PMID: 39188505 PMCID: PMC11345262 DOI: 10.3389/ftox.2024.1376587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/01/2024] [Indexed: 08/28/2024] Open
Abstract
Gadolinium-based contrast agents are increasingly used in clinical practice. While these pharmaceuticals are verified causal agents in nephrogenic systemic fibrosis, there is a growing body of literature supporting their role as causal agents in symptoms associated with gadolinium exposure after intravenous use and encephalopathy following intrathecal administration. Gadolinium-based contrast agents are multidentate organic ligands that strongly bind the metal ion to reduce the toxicity of the metal. The notion that cationic gadolinium dissociates from these chelates and causes the disease is prevalent among patients and providers. We hypothesize that non-ligand-bound (soluble) gadolinium will be exceedingly low in patients. Soluble, ionic gadolinium is not likely to be the initial step in mediating any disease. The Kidney Institute of New Mexico was the first to identify gadolinium-rich nanoparticles in skin and kidney tissues from magnetic resonance imaging contrast agents in rodents. In 2023, they found similar nanoparticles in the kidney cells of humans with normal renal function, likely from contrast agents. We suspect these nanoparticles are the mediators of chronic toxicity from magnetic resonance imaging contrast agents. This article explores associations between gadolinium contrast and adverse health outcomes supported by clinical reports and rodent models.
Collapse
Affiliation(s)
- Amy Cunningham
- School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Martin Kirk
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, United States
| | - Emily Hong
- School of Medicine, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, United States
| | - Tamara Howard
- Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM, United States
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Angelica Sáenz-Trevizo
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Jacob Krawchuck
- Sandia National Laboratory, Center for Integrated Nanotechnologies, Albuquerque, NM, United States
| | - John Watt
- Los Alamos National Laboratory, Center for Integrated Nanotechnologies, Albuquerque, NM, United States
| | | | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - G. Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Kidney Institute of New Mexico, Albuquerque, NM, United States
- New Mexico VA Healthcare System, Research Service, Albuquerque, NM, United States
| |
Collapse
|
18
|
Semelka RC, Ramalho M. Near-cure in patients with Gadolinium deposition disease undergoing intravenous DTPA chelation. FRONTIERS IN TOXICOLOGY 2024; 6:1371131. [PMID: 39118832 PMCID: PMC11306197 DOI: 10.3389/ftox.2024.1371131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose To demonstrate and evaluate factors contributing to near-cures in patients with Gadolinium Deposition Disease (GDD) undergoing intravenous (IV) DTPA chelation. Methods Patients who had undergone or are currently undergoing DTPA chelation for GDD were included in this report based on their medical records that showed their perceived improvement was at least 80% back to normal. A survey was developed that included factors commonly reported by patients treated in one clinic to determine if these 'near-cured' (pre-MRI baseline health) individuals possessed certain factors and lacked others. The anonymized survey was emailed to these individuals by the principal treating physician, the only investigator not blinded to the subjects. This report describes clinical documentation of patient status and their underlying factors in individuals treated by the primary author, and no research was performed. The survey was sent to sixteen individuals; Fourteen patients completed it (10 females; 41.1 ± 11.2 y/o). Results The most common factor was the administration of ≤5 lifetime doses of a Gadolinium-Based Contrast Agents (GBCA) (12/14). Unconfounded agents triggering GDD were seen in nine subjects. Most subjects (12/14) initiated chelation in the first year after the causative GBCA, and most (11/14) underwent ≤10 chelations with DTPA. Good healthcare status prior to MRI was observed in 5 subjects. The majority (11/14) described their immune status as strong. Severe physical disability prior to chelation was seen in 1. Conclusion Subjects with GDD can experience near-cure with IV DTPA chelation. Factors surveyed that predict near-cure include the start of chelation in the first year, few GBCA administrations, and good health status before MRI with GBCA injection. Nonetheless, a few patients with predictors of less successful outcomes still experienced near-cure.
Collapse
Affiliation(s)
| | - Miguel Ramalho
- Department of Radiology, Hospital da Luz, Lisbon, Portugal
| |
Collapse
|
19
|
Martín-Noguerol T, Santos-Armentia E, Fernandez-Palomino J, López-Úbeda P, Paulano-Godino F, Luna A. Role of advanced MRI sequences for thyroid lesions assessment. A narrative review. Eur J Radiol 2024; 176:111499. [PMID: 38735157 DOI: 10.1016/j.ejrad.2024.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Despite not being the first imaging modality for thyroid gland assessment, Magnetic Resonance Imaging (MRI), thanks to its optimal tissue contrast and spatial resolution, has provided some advancements in detecting and characterizing thyroid abnormalities. Recent research has been focused on improving MRI sequences and employing advanced techniques for a more comprehensive understanding of thyroid pathology. Although not yet standard practice, advanced MRI sequences have shown high accuracy in preliminary studies, correlating well with histopathological results. They particularly show promise in determining malignancy risk in thyroid lesions, which may reduce the need for invasive procedures like biopsies. In this line, functional MRI sequences like Diffusion Weighted Imaging (DWI), Dynamic Contrast-Enhanced MRI (DCE-MRI), and Arterial Spin Labeling (ASL) have demonstrated their potential usefulness in evaluating both diffuse thyroid conditions and focal lesions. Multicompartmental DWI models, such as Intravoxel Incoherent Motion (IVIM) and Diffusion Kurtosis Imaging (DKI), and novel methods like Amide Proton Transfer (APT) imaging or artificial intelligence (AI)-based analyses are being explored for their potential valuable insights into thyroid diseases. This manuscript reviews the critical physical principles and technical requirements for optimal functional MRI sequences of the thyroid and assesses the clinical utility of each technique. It also considers future prospects in the context of advanced MR thyroid imaging and analyzes the current role of advanced MRI sequences in routine practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Luna
- MRI unit, Radiology department. HT medica, Carmelo Torres 2, 23007 Jaén, Spain.
| |
Collapse
|
20
|
Moscatelli S, Avesani M, Borrelli N, Sabatino J, Pergola V, Leo I, Montanaro C, Contini FV, Gaudieri G, Ielapi J, Motta R, Merrone MA, Di Salvo G. Complete Transposition of the Great Arteries in the Pediatric Field: A Multimodality Imaging Approach. CHILDREN (BASEL, SWITZERLAND) 2024; 11:626. [PMID: 38929206 PMCID: PMC11202141 DOI: 10.3390/children11060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
The complete transposition of the great arteries (C-TGA) is a congenital cardiac anomaly characterized by the reversal of the main arteries. Early detection and precise management are crucial for optimal outcomes. This review emphasizes the integral role of multimodal imaging, including fetal echocardiography, transthoracic echocardiography (TTE), cardiovascular magnetic resonance (CMR), and cardiac computed tomography (CCT) in the diagnosis, treatment planning, and long-term follow-up of C-TGA. Fetal echocardiography plays a pivotal role in prenatal detection, enabling early intervention strategies. Despite technological advances, the detection rate varies, highlighting the need for improved screening protocols. TTE remains the cornerstone for initial diagnosis, surgical preparation, and postoperative evaluation, providing essential information on cardiac anatomy, ventricular function, and the presence of associated defects. CMR and CCT offer additional value in C-TGA assessment. CMR, free from ionizing radiation, provides detailed anatomical and functional insights from fetal life into adulthood, becoming increasingly important in evaluating complex cardiac structures and post-surgical outcomes. CCT, with its high-resolution imaging, is indispensable in delineating coronary anatomy and vascular structures, particularly when CMR is contraindicated or inconclusive. This review advocates for a comprehensive imaging approach, integrating TTE, CMR, and CCT to enhance diagnostic accuracy, guide therapeutic interventions, and monitor postoperative conditions in C-TGA patients. Such a multimodal strategy is vital for advancing patient care and improving long-term prognoses in this complex congenital heart disease.
Collapse
Affiliation(s)
- Sara Moscatelli
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London WC1N 3JH, UK
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 5NP, UK
| | - Martina Avesani
- Division of Paediatric Cardiology, Department of Women and Children’s Health, University Hospital of Padua, 35128 Padua, Italy
| | - Nunzia Borrelli
- Adult Congenital Heart Disease Unit, AO Dei Colli-Monaldi Hospital, 80131 Naples, Italy
| | - Jolanda Sabatino
- Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy (I.L.)
| | - Valeria Pergola
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, University Hospital of Padua, 35128 Padua, Italy; (V.P.)
| | - Isabella Leo
- Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy (I.L.)
| | - Claudia Montanaro
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 5NP, UK
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 5NP, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Francesca Valeria Contini
- Clinical Cardiology Unit, Department of Medical Sciences and Public Health, University Hospital of Cagliari, Strada Statale 554, Km 4.500, 09042 Monserrato, Italy
- Pediatric Cardiology and Congenital Heart Disease Unit, Brotzu Hospital, 09134 Cagliari, Italy
| | - Gabriella Gaudieri
- Adult Congenital Heart Disease Unit, AO Dei Colli-Monaldi Hospital, 80131 Naples, Italy
| | - Jessica Ielapi
- Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy (I.L.)
| | - Raffaella Motta
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, University Hospital of Padua, 35128 Padua, Italy; (V.P.)
| | - Marco Alfonso Merrone
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
- Division of Cardiology and Cardio Lab, Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women and Children’s Health, University Hospital of Padua, 35128 Padua, Italy
| |
Collapse
|
21
|
Alonso SM, Lersy F, Ardellier FD, Cebula H, Proust F, Onofrei A, Chammas A, Kremer S. Is non-contrast MRI sufficient to detect meningioma residue after surgery? J Neuroradiol 2024; 51:176-181. [PMID: 37598979 DOI: 10.1016/j.neurad.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Contrast-enhanced magnetic resonance imaging (MRI) is the imaging modality routinely used to follow up patients who have undergone surgical resection of brain meningiomas. There are growing concerns about the massive use of gadolinium-based contrast agents (GBCA). Our aim was to evaluate the performance of a new imaging protocol, performed without GBCA injection, in the detection of tumoral residue or local recurrence after surgery of parafalcine and convexity meningiomas. MATERIALS AND METHODS Only adult patients with a documented resected parafalcine or convexity meningioma were included. We performed a dedicated MRI protocol that included non-contrast and post-contrast sequences. The presence or absence of residue on the unenhanced sequences was independently recorded by three observers: first blindly, then in comparison with a baseline enhanced MRI examination. RESULTS A total of 51 patients were included. 37 of them featured a tumor residue on the reference enhanced sequence. Overall, an average of 32 of 37 (87%) residues were identified on the unenhanced sequences that were blindly reviewed; and more than 34 of 37 (93%) were identified with the help of the comparative baseline enhanced examination, with a high sensitivity. The missed cases were related to small residues. CONCLUSION Unenhanced MRI sequences are highly sensitive and specific in identifying a tumor residue or a local recurrence in the post operative follow up of brain meningiomas. Sensitivity is even higher with the help of a comparative baseline enhanced MRI examination, whatever the strength of magnetic field.
Collapse
Affiliation(s)
- S Motillon Alonso
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France.
| | - F Lersy
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France
| | - F D Ardellier
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France; Engineering science, computer science and imaging laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| | - H Cebula
- Engineering science, computer science and imaging laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France; Neurosurgery Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France
| | - F Proust
- Engineering science, computer science and imaging laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France; Neurosurgery Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France
| | - A Onofrei
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France
| | - A Chammas
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France
| | - S Kremer
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France; Engineering science, computer science and imaging laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| |
Collapse
|
22
|
Pierri G, Schettini R. Advances in MRI: Peptide and peptidomimetic-based contrast agents. J Pept Sci 2024; 30:e3544. [PMID: 37726947 DOI: 10.1002/psc.3544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Magnetic resonance imaging (MRI) is a common medical imaging technique that provides three-dimensional body images. MRI contrast agents improve image contrast by raising the rate of water proton relaxation in specific tissues. Peptides and peptidomimetics act as scaffolds for MRI imaging agents because of their increased size and offer the possibility to engine a higher hydration value within the design. The design of a new Gd-based contrast agent must take into account high stability constants to avoid free Gd(III), with the subsequent nephrotoxicity, and high relaxivity values. This review analyzes various synthetic approaches, reports studies of relaxometric parameters, and focuses on the description and application of Gd(III)-chelates based on peptide and peptidomimetic scaffolds. In addition, the X-ray molecular structures of three DOTA complexes will be reported to emphasize the necessity of using the X-ray diffraction analysis to identify the coordination sphere of the metals and the mechanism of action of the compounds.
Collapse
Affiliation(s)
- Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| | - Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Salerno, Italy
| |
Collapse
|
23
|
Falcão MBL, Mackowiak ALC, Rossi GMC, Prša M, Tenisch E, Rumac S, Bacher M, Rutz T, van Heeswijk RB, Speier P, Markl M, Bastiaansen JAM, Stuber M, Roy CW. Combined free-running four-dimensional anatomical and flow magnetic resonance imaging with native contrast using Synchronization of Neighboring Acquisitions by Physiological Signals. J Cardiovasc Magn Reson 2024; 26:101006. [PMID: 38309581 PMCID: PMC11211232 DOI: 10.1016/j.jocmr.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.
Collapse
Affiliation(s)
- Mariana B L Falcão
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Adèle L C Mackowiak
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Giulia M C Rossi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Milan Prša
- Woman, Mother, Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Estelle Tenisch
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Simone Rumac
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mario Bacher
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Siemens Healthcare GmbH, Erlangen, Germany
| | - Tobias Rutz
- Service of Cardiology, Centre de Resonance Magnétique Cardiaque (CRMC), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | | | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Christopher W Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
24
|
Gendron C, Bourrinet P, Dencausse A, Fretellier N. Preclinical Safety Assessment of Gadopiclenol: A High-Relaxivity Macrocyclic Gadolinium-Based MRI Contrast Agent. Invest Radiol 2024; 59:108-123. [PMID: 37921752 PMCID: PMC11441737 DOI: 10.1097/rli.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Gadopiclenol is a new high-relaxivity macrocyclic gadolinium-based contrast agent for magnetic resonance imaging of the central nervous system and other body regions. The product has been approved by US Food and Drug Administration and is currently being evaluated by European Medicines Agency. For risk assessment of the single diagnostic use in humans, the safety profile of gadopiclenol was evaluated with a series of preclinical studies. MATERIALS AND METHODS With exception of dose-ranging studies, all safety pharmacology and toxicology studies were performed in compliance with Good Laboratory Practice principles. Safety pharmacology studies were conducted to assess potential effects on cardiovascular (in vitro and in dogs), respiratory (in rats and guinea pigs), neurological (in rats), and renal endpoints (in rats). Toxicology studies were also performed to investigate acute toxicity (in rats and mice), extended single-dose (in rats and dogs) and repeated-dose toxicity (in rats and dogs), reproductive (in rats), developmental (in rats and rabbits) and juvenile toxicity (in rats), as well as genotoxicity (in vitro and in rats), local tolerance (in rabbits), potential immediate hypersensitivity (in guinea pigs), and potential tissue retention of gadolinium (in rats). RESULTS Safety pharmacology studies conducted at high intravenous (IV) doses showed a satisfactory tolerance of gadopiclenol in the main body systems. After either single or repeated IV dosing (14 and 28 days) in rats and dogs, gadopiclenol was well tolerated even at high doses. The no-observed-adverse-effect level values (ie, the highest experimental dose without adverse effects) representing between 8 times in rats and 44 times in dogs (based on the exposure), the exposure achieved in humans at the intended diagnostic dose, provide a high safety margin. No or only minor and reversible effects on body weight, food consumption, clinical signs, clinical pathology parameters, or histology were observed at the highest doses. The main histological finding consists in renal tubular vacuolations (exacerbated after repeated exposure), which supports a well-known finding for this class of compounds that has no physiological consequence on kidney function. Reproductive toxicity studies showed no evidence of effects on reproductive performance, fertility, perinatal and postnatal development in rats, or reproductive development in rats or rabbits. The safety profile of gadopiclenol in juvenile rats was satisfactory like in adults. Gadopiclenol was not genotoxic in vitro in the Ames test, a mouse lymphoma assay, and a rat in vivo micronucleus test. There were no signs of local intolerance at the injection site after IV and intra-arterial administration in rabbits. However, because of minor signs of intolerance after perivenous administration, misadministration must be avoided. Gadopiclenol exhibited no signs of potential to induce immediate hypersensitivity in guinea pigs. CONCLUSIONS High safety margins were observed between the single diagnostic dose of 0.05 mmol/kg in humans and the doses showing effects in animal studies. Gadopiclenol is, therefore, well tolerated in various species (mice, rats, dogs, rabbits, and guinea pigs). All observed preclinical data support the clinical approval.
Collapse
Affiliation(s)
- Célia Gendron
- From the Research and Innovation Department, Guerbet, Aulnay-sous-Bois, France
| | | | | | | |
Collapse
|
25
|
Moscatelli S, Leo I, Bianco F, Surkova E, Pezel T, Donald NA, Triumbari EKA, Bassareo PP, Pradhan A, Cimini A, Perrone MA. The Role of Multimodality Imaging in Patients with Congenital Heart Disease and Infective Endocarditis. Diagnostics (Basel) 2023; 13:3638. [PMID: 38132222 PMCID: PMC10742664 DOI: 10.3390/diagnostics13243638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Infective endocarditis (IE) represents an important medical challenge, particularly in patients with congenital heart diseases (CHD). Its early and accurate diagnosis is crucial for effective management to improve patient outcomes. Multimodality imaging is emerging as a powerful tool in the diagnosis and management of IE in CHD patients, offering a comprehensive and integrated approach that enhances diagnostic accuracy and guides therapeutic strategies. This review illustrates the utilities of each single multimodality imaging, including transthoracic and transoesophageal echocardiography, cardiac computed tomography (CCT), cardiovascular magnetic resonance imaging (CMR), and nuclear imaging modalities, in the diagnosis of IE in CHD patients. These imaging techniques provide crucial information about valvular and intracardiac structures, vegetation size and location, abscess formation, and associated complications, helping clinicians make timely and informed decisions. However, each one does have limitations that influence its applicability.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street Hospital, Children NHS Foundation Trust, London WC1N 3JH, UK; (S.M.); (N.A.D.)
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guys’ and St Thomas’ NHS Trust, London SW3 5NP, UK
| | - Francesco Bianco
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy;
| | - Elena Surkova
- Department of Echocardiography, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London SW3 5NP, UK;
| | - Théo Pezel
- Département de Cardiologie, Université Paris-Cité, Hôpital Universitaire de Lariboisière, Assistance Publique des Hôpitaux de Paris (APHP), Inserm UMRS 942, 75010 Paris, France;
| | - Natasha Alexandra Donald
- Inherited Cardiovascular Diseases, Great Ormond Street Hospital, Children NHS Foundation Trust, London WC1N 3JH, UK; (S.M.); (N.A.D.)
| | | | - Pier Paolo Bassareo
- School of Medicine, University College of Dublin, Mater Misericordiae University Hospital, Children’s Health Ireland Crumlin, D07 R2WY Dublin, Ireland;
| | - Akshyaya Pradhan
- Department of Cardiology, King George’s Medical University, Lucknow 226003, India;
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy
| | - Marco Alfonso Perrone
- Division of Cardiology and CardioLab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| |
Collapse
|
26
|
Maralani PJ, Pai V, Ertl-Wagner BB. Safety of Magnetic Resonance Imaging in Pregnancy. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:34-40. [PMID: 37747489 DOI: 10.1007/s00117-023-01207-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Magnetic resonance imaging is being increasingly used to diagnose and follow up a variety of medical conditions in pregnancy, both for maternal and fetal indications. However, limited data regarding its safe use in pregnancy may be a source of anxiety and avoidance for both patients and their healthcare providers. In this review, we critically discuss the main safety concerns of Magnetic Resonance Imaging (MRI) in pregnancy including energy deposition, acoustic noise, and use of contrast agents, supported by data from animal and human studies. Use of maternal sedatives and concerns related to occupational exposure in pregnant personnel are also addressed. Exposure to gadolinium-based contrast agents and sedation for MRI during pregnancy should be avoided whenever feasible.
Collapse
Affiliation(s)
- Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Bayview Avenue, Room AG270C, 2075, Toronto, Ontario, Canada.
| | - Vivek Pai
- Department of Medical Imaging, University of Toronto, The Hospital for Sick Children, 555 University Ave, M5G 1X8, Toronto, ON, Canada
| | - Birgit B Ertl-Wagner
- Department of Medical Imaging, University of Toronto, The Hospital for Sick Children, 555 University Ave, M5G 1X8, Toronto, ON, Canada
| |
Collapse
|
27
|
Moscatelli S, Pergola V, Motta R, Fortuni F, Borrelli N, Sabatino J, Leo I, Avesani M, Montanaro C, Surkova E, Mapelli M, Perrone MA, di Salvo G. Multimodality Imaging Assessment of Tetralogy of Fallot: From Diagnosis to Long-Term Follow-Up. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1747. [PMID: 38002838 PMCID: PMC10670209 DOI: 10.3390/children10111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023]
Abstract
Tetralogy of Fallot (TOF) is the most common complex congenital heart disease with long-term survivors, demanding serial monitoring of the possible complications that can be encountered from the diagnosis to long-term follow-up. Cardiovascular imaging is key in the diagnosis and serial assessment of TOF patients, guiding patients' management and providing prognostic information. Thorough knowledge of the pathophysiology and expected sequalae in TOF, as well as the advantages and limitations of different non-invasive imaging modalities that can be used for diagnosis and follow-up, is the key to ensuring optimal management of patients with TOF. The aim of this manuscript is to provide a comprehensive overview of the role of each modality and common protocols used in clinical practice in the assessment of TOF patients.
Collapse
Affiliation(s)
- Sara Moscatelli
- Centre for Inherited Cardiovascular Diseases, Great Ormond Street Hospital, London WC1N 3JH, UK
- Institute of Cardiovascular Sciences, University College London, London WC1E 6BT, UK
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Valeria Pergola
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità pubblica, University Hospital of Padua, 35128 Padua, Italy
| | - Raffaella Motta
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità pubblica, University Hospital of Padua, 35128 Padua, Italy
| | - Federico Fortuni
- Department of Cardiology, San Giovanni Battista Hospital, 06034 Foligno, Italy
- Department of Cardiology, Leiden University Medical Center, 2300 Leiden, The Netherlands
| | - Nunzia Borrelli
- Adult Congenital Heart Disease Unit, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy
| | - Jolanda Sabatino
- Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Leo
- Experimental and Clinical Medicine Department, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Martina Avesani
- Division of Paediatric Cardiology, Department of Women and Children's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Claudia Montanaro
- Adult Congenital Heart Centre and National Centre for Pulmonary Hypertension, Royal Brompton Hospital, Guy's and St. Thomas's NHS Foundation Trust, London SW3 5NP, UK
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 5NP, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Elena Surkova
- Department of Echocardiography, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Massimo Mapelli
- Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, 20122 Milan, Italy
| | - Marco Alfonso Perrone
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
- Division of Cardiology and Cardio Lab, Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giovanni di Salvo
- Division of Paediatric Cardiology, Department of Women and Children's Health, University Hospital of Padua, 35128 Padua, Italy
| |
Collapse
|
28
|
Cineus R, Abozeid SM, Sokolow GE, Spernyak JA, Morrow JR. Fe(III) T1 MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water. Inorg Chem 2023; 62:16513-16522. [PMID: 37748050 PMCID: PMC11706235 DOI: 10.1021/acs.inorgchem.3c02344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Fe(III) complexes containing a triamine framework and phenolate or hydroxypyridine donors are characterized and studied as T1 MRI probes. In contrast to most Fe(III) MRI probes of linear chelates reported to date, the ligands reported here are pentadentate to give six-coordinate complexes with a coordination site for inner-sphere water. The crystal structure of the complex containing unsubstituted phenolate donors, Fe(L1)Cl, shows a six-coordinate iron center and contains a chloride ligand that is displaced in water. Two additional derivatives are sufficiently water-soluble for study as MRI probes, including a complex with a hydroxypyridine group, Fe(L2), and a hydroxybenzoic acid group, Fe(L3). The pH potentiometric titrations give protonation constants of 7.2 and 7.5 for Fe(L2) and Fe(L3), respectively, which are assigned to deprotonation of the bound water. Changes in the electronic absorbance spectra of the complexes as a function of pH are consistent with the deprotonation of phenol pendants at acidic pH values. However, the inner-sphere water ligand of Fe(L2) and Fe(L3) does not exchange rapidly on the NMR timescale at pH 6.0 or 7.4, as shown by variable-temperature 17O NMR spectroscopy. The pH-dependent proton relaxivity profiles show a maximum in relaxivity at a near-neutral pH, suggesting that exchange of the protons of the bound water is an important contribution. Competitive binding studies with ethylenediaminetetraacetic acid (EDTA) show effective stability constants for Fe(L2) and Fe(L3) at pH 7.4 with log K values of 21.1 and 20.5, respectively. These two complexes are kinetically inert in carbonate phosphate buffer at 37 °C for several hours but transfer iron to transferrin. Fe(L2) and Fe(L3) show enhanced contrast in T1-weighted imaging analyses in BALB/c mice. These studies show that Fe(L2) clears through mixed renal and hepatobiliary routes, while Fe(L3) has a similar pharmacokinetic clearance profile to a macrocyclic Gd(III) contrast agent.
Collapse
Affiliation(s)
- Roy Cineus
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, New York 14260, United States
| | - Samira M Abozeid
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516 Mansoura, Egypt
| | - Gregory E Sokolow
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, New York 14260, United States
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, The State University of New York Amherst, New York 14260, United States
| |
Collapse
|
29
|
Azzawri AA, Yildirim IH, Yegin Z, Dusak A. Expression of GRP78 and its copartners in HEK293 and pancreatic cancer cell lines (BxPC-3/PANC-1) exposed to MRI and CT contrast agents. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:391-416. [PMID: 37787049 DOI: 10.1080/15257770.2023.2263496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
Endoplasmic reticulum (ER) stress-associated chaperones trigger a defense mechanism called as unfolded protein response (UPR) which can manage apoptosis and be determinative in cell fate. Both anticancer drug effects and potential toxicity effects of magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were aimed to be evaluated. For this purpose, we investigated expression profiles of endoplasmic reticulum stress-associated chaperone molecules in human pancreatic tumor lines BxPC-3 and PANC-1 and control human embryonic kidney cells 293 (HEK293) induced with a variety of gadolinium and iohexol contrast agents. Protein expression levels of ER stress-associated chaperones (master regulator: GRP78/Bip and its copartners: Calnexin, Ero1, PDI, CHOP, IRE1α and PERK) were evaluated with Western blotting. Expression levels at mRNA level were also assessed for GRP78/Bip and CHOP with real-time PCR. Induction of cells was carried out with four different Gd-based contrast agents (GBCAs): (Dotarem, Optimark, Primovist and Gadovist) and two different iohexol agents (Omnipol, Omnipaque). CT contrast agents tested in the study did not result in significant ER stress in HEK293 cells. However, they do not seem to have theranostic potential in pancreas cancer through ER pathway. The potential efficiency of macrocyclic MRI contrast agents to provoke apoptosis via ER stress-associated chaperones in BxPC-3 cells lends credibility for their future theranostic use in pancreas cancer as long as undesired toxicity effects were carefully considered. ER stress markers and/or contrast agents seem to have promising potential to be translated into the clinical practice to manage pancreas cancer progression.
Collapse
Affiliation(s)
| | | | - Zeynep Yegin
- Medical Laboratory Techniques Program, Vocational School of Health Services, Sinop University, Sinop, Turkey
| | | |
Collapse
|
30
|
Khan FA, Balbona J, Hernandez DJ. Exploring Gadolinium-Based Contrast Media for Retrograde Pyelography in the Context of Iodine Allergy. Cureus 2023; 15:e47439. [PMID: 38021763 PMCID: PMC10659587 DOI: 10.7759/cureus.47439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Iodinated contrast media can rarely cause severe allergic reactions during nonvascular urologic imaging procedures. Alternatives like gadolinium-based contrast may help mitigate this risk in susceptible patients. A 66-year-old woman with a documented iodine allergy presented with an obstructing stone in the right ureter. To avoid the risk of an allergic reaction, the decision was made to use an alternative non-iodinated contrast agent for retrograde pyelography prior to ureteral stent placement. Gadobenate dimeglumine, an MRI contrast agent, was diluted 50:50 with saline and utilized successfully to provide adequate opacification for safe stent placement without adverse reaction. The patient underwent repeat pyelography with gadobenate dimeglumine one month later during ureteroscopy without complication. This case demonstrates that diluted gadobenate can serve as an effective alternative to iodinated contrast media in patients at high risk of reaction to iodine-containing agents. While severe reactions to iodinated contrast are uncommon in nonvascular urologic procedures, they can still occur even with premedication. Gadolinium-based agents have been reported to provide sufficient opacification for most urologic interventions, though inferior radiographically to iodinated contrast. Further study on gadolinium efficacy and safety in this setting is warranted. However the present case supports gadobenate dimeglumine as a viable option for retrograde pyelography when allergy risk precludes iodinated contrast use.
Collapse
Affiliation(s)
- Firaas A Khan
- Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Joseph Balbona
- Department of Urology, University of South Florida, Tampa, USA
| | | |
Collapse
|
31
|
Moscatelli S, Leo I, Bianco F, Borrelli N, Beltrami M, Garofalo M, Milano EG, Bisaccia G, Iellamo F, Bassareo PP, Pradhan A, Cimini A, Perrone MA. The Role of Multimodality Imaging in Pediatric Cardiomyopathies. J Clin Med 2023; 12:4866. [PMID: 37510983 PMCID: PMC10381492 DOI: 10.3390/jcm12144866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of myocardial diseases representing the first cause of heart transplantation in children. Diagnosing and classifying the different phenotypes can be challenging, particularly in this age group, where cardiomyopathies are often overlooked until the onset of severe symptoms. Cardiovascular imaging is crucial in the diagnostic pathway, from screening to classification and follow-up assessment. Several imaging modalities have been proven to be helpful in this field, with echocardiography undoubtedly representing the first imaging approach due to its low cost, lack of radiation, and wide availability. However, particularly in this clinical context, echocardiography may not be able to differentiate from cardiomyopathies with similar phenotypes and is often complemented with cardiovascular magnetic resonance. The latter allows a radiation-free differentiation between different phenotypes with unique myocardial tissue characterization, thus identifying the presence and extent of myocardial fibrosis. Nuclear imaging and computed tomography have a complementary role, although they are less used in daily clinical practice due to the concern related to the use of radiation in pediatric patients. However, these modalities may have some advantages in evaluating children with cardiomyopathies. This paper aims to review the strengths and limitations of each imaging modality in evaluating pediatric patients with suspected or known cardiomyopathies.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
- Cardiology Department, CMR Unit, Royal Brompton and Harefield Hospitals, Guys’ and St. Thomas’ NHS Trust, London SW3 5NP, UK
| | - Francesco Bianco
- Cardiovascular Sciences Department—AOU “Ospedali Riuniti”, 60126 Ancona, Italy;
| | - Nunzia Borrelli
- Adult Congenital Heart Disease Unit, A.O. dei Colli, Monaldi Hospital, 80131 Naples, Italy;
| | | | - Manuel Garofalo
- Department of Clinical and Experimental Medicine, Careggi University Hospital, 50134 Florence, Italy;
| | - Elena Giulia Milano
- Centre for Cardiovascular Imaging, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK;
| | - Giandomenico Bisaccia
- Department of Neuroscience, Imaging and Clinical Sciences, “G.d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Ferdinando Iellamo
- Division of Cardiology and Cardio Lab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Pier Paolo Bassareo
- School of Medicine, University College of Dublin, Mater Misericordiae University Hospital and Children’s Health Ireland Crumlin, D07 R2WY Dublin, Ireland;
| | - Akshyaya Pradhan
- Department of Cardiology, King George’s Medical University, Lucknow 226003, India;
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Marco Alfonso Perrone
- Division of Cardiology and Cardio Lab, Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| |
Collapse
|
32
|
Friedli I, Baid-Agrawal S, Unwin R, Morell A, Johansson L, Hockings PD. Magnetic Resonance Imaging in Clinical Trials of Diabetic Kidney Disease. J Clin Med 2023; 12:4625. [PMID: 37510740 PMCID: PMC10380287 DOI: 10.3390/jcm12144625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic kidney disease (CKD) associated with diabetes mellitus (DM) (known as diabetic kidney disease, DKD) is a serious and growing healthcare problem worldwide. In DM patients, DKD is generally diagnosed based on the presence of albuminuria and a reduced glomerular filtration rate. Diagnosis rarely includes an invasive kidney biopsy, although DKD has some characteristic histological features, and kidney fibrosis and nephron loss cause disease progression that eventually ends in kidney failure. Alternative sensitive and reliable non-invasive biomarkers are needed for DKD (and CKD in general) to improve timely diagnosis and aid disease monitoring without the need for a kidney biopsy. Such biomarkers may also serve as endpoints in clinical trials of new treatments. Non-invasive magnetic resonance imaging (MRI), particularly multiparametric MRI, may achieve these goals. In this article, we review emerging data on MRI techniques and their scientific, clinical, and economic value in DKD/CKD for diagnosis, assessment of disease pathogenesis and progression, and as potential biomarkers for clinical trial use that may also increase our understanding of the efficacy and mode(s) of action of potential DKD therapeutic interventions. We also consider how multi-site MRI studies are conducted and the challenges that should be addressed to increase wider application of MRI in DKD.
Collapse
Affiliation(s)
- Iris Friedli
- Antaros Medical, BioVenture Hub, 43183 Mölndal, Sweden
| | - Seema Baid-Agrawal
- Transplant Center, Sahlgrenska University Hospital, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Robert Unwin
- AstraZeneca R&D BioPharmaceuticals, Translational Science and Experimental Medicine, Early Cardiovascular, Renal & Metabolic Diseases (CVRM), Granta Park, Cambridge CB21 6GH, UK
| | - Arvid Morell
- Antaros Medical, BioVenture Hub, 43183 Mölndal, Sweden
| | | | - Paul D Hockings
- Antaros Medical, BioVenture Hub, 43183 Mölndal, Sweden
- MedTech West, Chalmers University of Technology, 41345 Gothenburg, Sweden
| |
Collapse
|
33
|
Chalise SN, Palmer E, Pathak V. Fatal Allergic Reaction to Gadolinium Contrast. Cureus 2023; 15:e42455. [PMID: 37637616 PMCID: PMC10449612 DOI: 10.7759/cureus.42455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Gadolinium-based contrast agents (GBCA) have been used to enhance the sensitivity and specificity of disease diagnoses. They have excellent safety profiles. However, rare adverse events may happen. We present a case of severe fatal allergic reaction to GBCA in a 35-year-old patient.
Collapse
Affiliation(s)
- Som N Chalise
- Pulmonary and Critical Care, Riverside Health System, Newport News, USA
| | - Elizabeth Palmer
- Pulmonary and Critical Care, Riverside Health System, Newport News, USA
| | - Vikas Pathak
- Pulmonary and Critical Care, Riverside Health System, Yorktown, USA
| |
Collapse
|
34
|
Kang JH, Moon SG, Jung HG, Kwon EY. Fluid-Attenuated Inversion Recovery Sequence with Fat Suppression for Assessment of Ankle Synovitis without Contrast Enhancement: Comparison with Contrast-Enhanced MRI. Diagnostics (Basel) 2023; 13:diagnostics13111960. [PMID: 37296812 DOI: 10.3390/diagnostics13111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The purpose of this study was to investigate the feasibility of the fluid-attenuated inversion recovery sequence with fat suppression (FLAIR-FS) for the assessment of ankle synovitis without contrast enhancement. FLAIR-FS and contrast-enhanced, T1-weighted sequences (CE-T1) of 94 ankles were retrospectively reviewed by two radiologists. Grading of synovial visibility (four-point scale) and semi-quantitative scoring of synovial thickness (three-point scale) were performed in four compartments of the ankle in both sequences. Synovial visibility and thickness in FLAIR-FS and CE-T1 images were compared, and agreement between both sequences was assessed. Synovial visibility grades and synovial thickness scores for FLAIR-FS images were lower than those for CE-T1 images (reader 1, p = 0.016, p < 0.001; reader 2, p = 0.009, p < 0.001). Dichotomized synovial visibility grades (partial vs. full visibility) were not significantly different between both sequences. The agreement in synovial thickness scores between the FLAIR-FS and CE-T1 images was moderate to substantial (κ = 0.41-0.65). The interobserver agreement between the two readers was fair for synovial visibility (κ = 0.27-0.32) and moderate to substantial for synovial thickness (κ = 0.54-0.74). In conclusion, FLAIR-FS is a feasible MRI sequence for the evaluation of ankle synovitis without contrast enhancement.
Collapse
Affiliation(s)
- Ji Hee Kang
- Department of Radiology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
| | - Sung Gyu Moon
- Department of Radiology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
| | - Hong-Geun Jung
- Department of Orthopedic Surgery, Konkuk University Medical Center, Seoul 05030, Republic of Korea
| | - Eun Young Kwon
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| |
Collapse
|
35
|
Haubold J, Jost G, Theysohn JM, Ludwig JM, Li Y, Kleesiek J, Schaarschmidt BM, Forsting M, Nensa F, Pietsch H, Hosch R. Contrast Agent Dose Reduction in MRI Utilizing a Generative Adversarial Network in an Exploratory Animal Study. Invest Radiol 2023; 58:396-404. [PMID: 36728299 DOI: 10.1097/rli.0000000000000947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES The aim of this study is to use virtual contrast enhancement to reduce the amount of hepatobiliary gadolinium-based contrast agent in magnetic resonance imaging with generative adversarial networks (GANs) in a large animal model. METHODS With 20 healthy Göttingen minipigs, a total of 120 magnetic resonance imaging examinations were performed on 6 different occasions, 50% with reduced (low-dose; 0.005 mmol/kg, gadoxetate) and 50% standard dose (normal-dose; 0.025 mmol/kg). These included arterial, portal venous, venous, and hepatobiliary contrast phases (20 minutes, 30 minutes). Because of incomplete examinations, one animal had to be excluded. Randomly, 3 of 19 animals were selected and withheld for validation (18 examinations). Subsequently, a GAN was trained for image-to-image conversion from low-dose to normal-dose (virtual normal-dose) with the remaining 16 animals (96 examinations). For validation, vascular and parenchymal contrast-to-noise ratio (CNR) was calculated using region of interest measurements of the abdominal aorta, inferior vena cava, portal vein, hepatic parenchyma, and autochthonous back muscles. In parallel, a visual Turing test was performed by presenting the normal-dose and virtual normal-dose data to 3 consultant radiologists, blinded for the type of examination. They had to decide whether they would consider both data sets as consistent in findings and which images were from the normal-dose study. RESULTS The pooled dynamic phase vascular and parenchymal CNR increased significantly from low-dose to virtual normal-dose (pooled vascular: P < 0.0001, pooled parenchymal: P = 0.0002) and was found to be not significantly different between virtual normal-dose and normal-dose examinations (vascular CNR [mean ± SD]: low-dose 17.6 ± 6.0, virtual normal-dose 41.8 ± 9.7, and normal-dose 48.4 ± 12.2; parenchymal CNR [mean ± SD]: low-dose 20.2 ± 5.9, virtual normal-dose 28.3 ± 6.9, and normal-dose 29.5 ± 7.2). The pooled parenchymal CNR of the hepatobiliary contrast phases revealed a significant increase from the low-dose (22.8 ± 6.2) to the virtual normal-dose (33.2 ± 6.1; P < 0.0001) and normal-dose sequence (37.0 ± 9.1; P < 0.0001). In addition, there was no significant difference between the virtual normal-dose and normal-dose sequence. In the visual Turing test, on the median, the consultant radiologist reported that the sequences of the normal-dose and virtual normal-dose are consistent in findings in 100% of the examinations. Moreover, the consultants were able to identify the normal-dose series as such in a median 54.5% of the cases. CONCLUSIONS In this feasibility study in healthy Göttingen minipigs, it could be shown that GAN-based virtual contrast enhancement can be used to recreate the image impression of normal-dose imaging in terms of CNR and subjective image similarity in both dynamic and hepatobiliary contrast phases from low-dose data with an 80% reduction in gadolinium-based contrast agent dose. Before clinical implementation, further studies with pathologies are needed to validate whether pathologies are correctly represented by the network.
Collapse
Affiliation(s)
| | - Gregor Jost
- MR and CT Contrast Media Research, Bayer AG, Berlin, Germany
| | - Jens Matthias Theysohn
- From the Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen
| | - Johannes Maximilian Ludwig
- From the Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen
| | - Yan Li
- From the Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen
| | - Jens Kleesiek
- Institute of Artificial Intelligence in Medicine, University Hospital Essen, Essen
| | | | - Michael Forsting
- From the Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen
| | | | | | | |
Collapse
|
36
|
Lother D, Robert M, Elwood E, Smith S, Tunariu N, Johnston SRD, Parton M, Bhaludin B, Millard T, Downey K, Sharma B. Imaging in metastatic breast cancer, CT, PET/CT, MRI, WB-DWI, CCA: review and new perspectives. Cancer Imaging 2023; 23:53. [PMID: 37254225 DOI: 10.1186/s40644-023-00557-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer in women and remains the second leading cause of death in Western countries. It represents a heterogeneous group of diseases with diverse tumoral behaviour, treatment responsiveness and prognosis. While major progress in diagnosis and treatment has resulted in a decline in breast cancer-related mortality, some patients will relapse and prognosis in this cohort of patients remains poor. Treatment is determined according to tumor subtype; primarily hormone receptor status and HER2 expression. Menopausal status and site of disease relapse are also important considerations in treatment protocols. MAIN BODY Staging and repeated evaluation of patients with metastatic breast cancer are central to the accurate assessment of disease extent at diagnosis and during treatment; guiding ongoing clinical management. Advances have been made in the diagnostic and therapeutic fields, particularly with new targeted therapies. In parallel, oncological imaging has evolved exponentially with the development of functional and anatomical imaging techniques. Consistent, reproducible and validated methods of assessing response to therapy is critical in effectively managing patients with metastatic breast cancer. CONCLUSION Major progress has been made in oncological imaging over the last few decades. Accurate disease assessment at diagnosis and during treatment is important in the management of metastatic breast cancer. CT (and BS if appropriate) is generally widely available, relatively cheap and sufficient in many cases. However, several additional imaging modalities are emerging and can be used as adjuncts, particularly in pregnancy or other diagnostically challenging cases. Nevertheless, no single imaging technique is without limitation. The authors have evaluated the vast array of imaging techniques - individual, combined parametric and multimodal - that are available or that are emerging in the management of metastatic breast cancer. This includes WB DW-MRI, CCA, novel PET breast cancer-epitope specific radiotracers and radiogenomics.
Collapse
Affiliation(s)
| | - Marie Robert
- Institut de Cancérologie de l'Ouest, St Herblain, France
| | | | - Sam Smith
- The Royal Marsden Hospital, London & Sutton, UK
| | - Nina Tunariu
- The Royal Marsden Hospital, London & Sutton, UK
- The Institute of Cancer Research (ICR), London & Sutton, UK
| | - Stephen R D Johnston
- The Royal Marsden Hospital, London & Sutton, UK
- The Institute of Cancer Research (ICR), London & Sutton, UK
| | | | | | | | - Kate Downey
- The Royal Marsden Hospital, London & Sutton, UK
- The Institute of Cancer Research (ICR), London & Sutton, UK
| | - Bhupinder Sharma
- The Royal Marsden Hospital, London & Sutton, UK.
- The Institute of Cancer Research (ICR), London & Sutton, UK.
| |
Collapse
|
37
|
Moscatelli S, Leo I, Lisignoli V, Boyle S, Bucciarelli-Ducci C, Secinaro A, Montanaro C. Cardiovascular Magnetic Resonance from Fetal to Adult Life-Indications and Challenges: A State-of-the-Art Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050763. [PMID: 37238311 DOI: 10.3390/children10050763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging offers a comprehensive, non-invasive, and radiation-free imaging modality, which provides a highly accurate and reproducible assessment of cardiac morphology and functions across a wide spectrum of cardiac conditions spanning from fetal to adult life. It minimises risks to the patient, particularly the risks associated with exposure to ionising radiation and the risk of complications from more invasive haemodynamic assessments. CMR utilises high spatial resolution and provides a detailed assessment of intracardiac and extracardiac anatomy, ventricular and valvular function, and flow haemodynamic and tissue characterisation, which aid in the diagnosis, and, hence, with the management of patients with cardiac disease. This article aims to discuss the role of CMR and the indications for its use throughout the different stages of life, from fetal to adult life.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street, Children NHS Foundation Trust, London WC1N 3JH, UK
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Veronica Lisignoli
- Department of Cardiac Surgery, Cardiology, Heart and Lung Transplantation, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Siobhan Boyle
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Cardiology Department, Logan Hospital, Loganlea Rd, Meadowbrook, QLD 4131, Australia
| | - Chiara Bucciarelli-Ducci
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College University, London SW7 2BX, UK
| | - Aurelio Secinaro
- Radiology Department, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
| | - Claudia Montanaro
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- National Heart and Lung Institute, Imperial Collage London, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
38
|
Mnassri B, Echtioui A, Kallel F, Ben Hamida A, Dammak M, Mhiri C, Ben Mahfoudh K. New Contrast Enhancement Method for Multiple Sclerosis Lesion Detection. J Digit Imaging 2023; 36:468-485. [PMID: 36478312 PMCID: PMC10039218 DOI: 10.1007/s10278-022-00729-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is one of the most serious neurological diseases. It is the most frequent reason of non-traumatic disability among young adults. MS is an autoimmune disease wherein the central nervous system wrongly destructs the myelin sheath surrounding and protecting axons of nerve cells of the brain and the spinal cord which results in presence of lesions called plaques. The damage of myelin sheath alters the normal transmission of nerve flow at the plaques level, consequently, a loss of communication between the brain and other organs. The consequence of this poor transmission of nerve impulses is the occurrence of various neurological symptoms. MS lesions cause mobility, vision, cognitive, and memory disorders. Indeed, early detection of lesions provides an accurate MS diagnosis. Consequently, and with the adequate treatment, clinicians will be able to deal effectively with the disease and reduce the number of relapses. Therefore, the use of magnetic resonance imaging (MRI) is primordial which is proven as the relevant imaging tool for early diagnosis of MS patients. But, low contrast MRI images can hide important objects in the image such lesions. In this paper, we propose a new automated contrast enhancement (CE) method to ameliorate the low contrast of MRI images for a better enhancement of MS lesions. This step is very important as it helps radiologists in confirming their diagnosis. The developed algorithm called BDS is based on Brightness Preserving Dynamic Fuzzy Histogram Equalization (BPDFHE) and Singular Value Decomposition with Discrete Wavelet Transform (SVD-DWT) techniques. BDS is dedicated to improve the low quality of MRI images with preservation of the brightness level and the edge details from degradation and without added artifacts or noise. These features are essential in CE approaches for a better lesion recognition. A modified version of BDS called MBDS is also implemented in the second part of this paper wherein we have proposed a new method for computing the correction factor. Indeed, with the use of the new correction factor, the entropy has been increased and the contrast is greatly enhanced. MBDS is specially dedicated for very low contrast MRI images. The experimental results proved the effectiveness of developed methods in improving low contrast of MRI images with preservation of brightness level and edge information. Moreover, performances of both proposed BDS and MBDS algorithms exceeded conventional CE methods.
Collapse
Affiliation(s)
- Besma Mnassri
- Advanced Technologies for Medicine and Signals Laboratory 'ATMS', National Engineering School of Sfax, Sfax University, Sfax, Tunisia.
| | - Amira Echtioui
- Advanced Technologies for Medicine and Signals Laboratory 'ATMS', National Engineering School of Sfax, Sfax University, Sfax, Tunisia
| | - Fathi Kallel
- Advanced Technologies for Medicine and Signals Laboratory 'ATMS', National Engineering School of Sfax, Sfax University, Sfax, Tunisia
- National School of Electronics and Communications, Sfax University, Sfax, Tunisia
| | - Ahmed Ben Hamida
- Department IS, College of Computer Science, King Khalid University 'KKU', Abha, Saudi Arabia
| | - Mariem Dammak
- Department of Neurology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Chokri Mhiri
- Department of Neurology, CHU Habib Bourguiba, Sfax, Tunisia
| | | |
Collapse
|
39
|
Stroud J, Hao Y, Read TS, Hankiewicz JH, Bilski P, Klodowski K, Brown JM, Rogers K, Stoll J, Camley RE, Celinski Z, Przybylski M. Magnetic particle based MRI thermometry at 0.2 T and 3 T. Magn Reson Imaging 2023; 100:43-54. [PMID: 36933774 DOI: 10.1016/j.mri.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
This study provides insight into the advantages and disadvantages of using ferrite particles embedded in agar gel phantoms as MRI temperature indicators for low-magnetic field scanners. We compare the temperature-dependent intensity of MR images at low-field (0.2 T) to those at high-field (3.0 T). Due to a shorter T1 relaxation time at low-fields, MRI scanners operating at 0.2 T can use shorter repetition times and achieve a significant T2⁎ weighting, resulting in strong temperature-dependent changes of MR image brightness in short acquisition times. Although the signal-to-noise ratio for MR images at 0.2 T MR is much lower than at 3.0 T, it is sufficient to achieve a temperature measurement uncertainty of about ±1.0 °C at 37 °C for a 90 μg/mL concentration of magnetic particles.
Collapse
Affiliation(s)
- John Stroud
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States; Department of Physics and Energy Science, University of Colorado, Colorado Springs 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States
| | - Yu Hao
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States; Department of Physics and Energy Science, University of Colorado, Colorado Springs 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States
| | - Tim S Read
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States
| | - Janusz H Hankiewicz
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States
| | - Pawel Bilski
- Department of Physics, A. Mickiewicz University, Uniwersytetu Poznanskiego St. 2, 61-614 Poznan, Poland
| | - Krzysztof Klodowski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Kraków, Poland
| | - Jared M Brown
- Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Keegan Rogers
- Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Josh Stoll
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States; Department of Physics and Energy Science, University of Colorado, Colorado Springs 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States
| | - Robert E Camley
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States; Department of Physics and Energy Science, University of Colorado, Colorado Springs 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States
| | - Zbigniew Celinski
- UCCS BioFrontiers Center, University of Colorado, Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States; Department of Physics and Energy Science, University of Colorado, Colorado Springs 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, United States
| | - Marek Przybylski
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Kraków, Poland; Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Kraków, Poland.
| |
Collapse
|
40
|
Foster D, Larsen J. Polymeric Metal Contrast Agents for T 1-Weighted Magnetic Resonance Imaging of the Brain. ACS Biomater Sci Eng 2023; 9:1224-1242. [PMID: 36753685 DOI: 10.1021/acsbiomaterials.2c01386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Imaging plays an integral role in diagnostics and treatment monitoring for conditions affecting the brain; enhanced brain imaging capabilities will improve upon both while increasing the general understanding of how the brain works. T1-weighted magnetic resonance imaging is the preferred modality for brain imaging. Commercially available contrast agents, which are often required to render readable brain images, have considerable toxicity concerns. In recent years, much progress has been made in developing new contrast agents based on the magnetic features of gadolinium, iron, or magnesium. Nanotechnological approaches for these systems allow for the protected integration of potentially harmful metals with added benefits like reduced dosage and improved transport. Polymeric enhancement of each design further improves biocompatibility while allowing for specific brain targeting. This review outlines research on polymeric nanomedicine designs for T1-weighted contrast agents that have been evaluated for performance in the brain.
Collapse
|
41
|
Chen Q, Qian Q. A Grade Ⅲ Severe Hypersensitivity Caused by Gadopentatic Acid Injection: A Case Report. J Emerg Nurs 2023:S0099-1767(23)00038-7. [DOI: 10.1016/j.jen.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 04/03/2023]
|
42
|
Eck BL, Yim M, Hamilton JI, da Cruz GJL, Li X, Flamm SD, Tang WHW, Prieto C, Seiberlich N, Kwon DH. Cardiac Magnetic Resonance Fingerprinting: Potential Clinical Applications. Curr Cardiol Rep 2023; 25:119-131. [PMID: 36805913 PMCID: PMC10134477 DOI: 10.1007/s11886-022-01836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 02/21/2023]
Abstract
PURPOSE OF REVIEW Cardiac magnetic resonance fingerprinting (cMRF) has developed as a technique for rapid, multi-parametric tissue property mapping that has potential to both improve cardiac MRI exam efficiency and expand the information captured. In this review, we describe the cMRF technique, summarize technical developments and in vivo reports, and highlight potential clinical applications. RECENT FINDINGS Technical developments in cMRF continue to progress rapidly, including motion compensated reconstruction, additional tissue property quantification, signal time course analysis, and synthetic LGE image generation. Such technical developments can enable simplified CMR protocols by combining multiple evaluations into a single protocol and reducing the number of breath-held scans. cMRF continues to be reported for use in a range of pathologies; however barriers to clinical implementation remain. Technical developments are described in this review, followed by a focus on potential clinical applications that they may support. Clinical translation of cMRF could shorten protocols, improve CMR accessibility, and provide additional information as compared to conventional cardiac parametric mapping methods. Current needs for clinical implementation are discussed, as well as how those needs may be met in order to bring cMRF from its current research setting to become a viable tool for patient care.
Collapse
Affiliation(s)
- Brendan L Eck
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Yim
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jesse I Hamilton
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Gastao José Lima da Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, England, UK
| | - Xiaojuan Li
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Scott D Flamm
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - W H Wilson Tang
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, England, UK
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah H Kwon
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
43
|
DeAguero J, Howard T, Kusewitt D, Brearley A, Ali AM, Degnan JH, Jett S, Watt J, Escobar GP, Dokladny K, Wagner B. The onset of rare earth metallosis begins with renal gadolinium-rich nanoparticles from magnetic resonance imaging contrast agent exposure. Sci Rep 2023; 13:2025. [PMID: 36739294 PMCID: PMC9899216 DOI: 10.1038/s41598-023-28666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/06/2023] Open
Abstract
The leitmotifs of magnetic resonance imaging (MRI) contrast agent-induced complications range from acute kidney injury, symptoms associated with gadolinium exposure (SAGE)/gadolinium deposition disease, potentially fatal gadolinium encephalopathy, and irreversible systemic fibrosis. Gadolinium is the active ingredient of these contrast agents, a non-physiologic lanthanide metal. The mechanisms of MRI contrast agent-induced diseases are unknown. Mice were treated with a MRI contrast agent. Human kidney tissues from contrast-naïve and MRI contrast agent-treated patients were obtained and analyzed. Kidneys (human and mouse) were assessed with transmission electron microscopy and scanning transmission electron microscopy with X-ray energy-dispersive spectroscopy. MRI contrast agent treatment resulted in unilamellar vesicles and mitochondriopathy in renal epithelium. Electron-dense intracellular precipitates and the outer rim of lipid droplets were rich in gadolinium and phosphorus. We conclude that MRI contrast agents are not physiologically inert. The long-term safety of these synthetic metal-ligand complexes, especially with repeated use, should be studied further.
Collapse
Affiliation(s)
- Joshua DeAguero
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA.
- University of New Mexico Health Science Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA.
| | - Tamara Howard
- University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Donna Kusewitt
- University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Abdul-Mehdi Ali
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, USA
| | - James H Degnan
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - Stephen Jett
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - G Patricia Escobar
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA
- University of New Mexico Health Science Center, Albuquerque, NM, USA
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA
| | - Karol Dokladny
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA
- University of New Mexico Health Science Center, Albuquerque, NM, USA
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA
| | - Brent Wagner
- Kidney Institute of New Mexico, University of New Mexico Health Science Center, Albuquerque, NM, USA.
- University of New Mexico Health Science Center, Albuquerque, NM, USA.
- New Mexico Veterans Administration Health Care System, Albuquerque, NM, USA.
| |
Collapse
|
44
|
The Use of Stress Cardiovascular Imaging in Pediatric Population. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020218. [PMID: 36832347 PMCID: PMC9954485 DOI: 10.3390/children10020218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Although not frequent in the pediatric population, ischemia could occur in children due to several congenital and acquired disease. Stress imaging is key for the non-invasive evaluation of myocardial abnormalities and perfusion defect in this clinical setting. Moreover, beyond ischemia assessment, it can provide complementary diagnostic and prognostic information in valvular heart disease and cardiomyopathies. When performed using cardiovascular magnetic resonance, it could detect, in addition, myocardial fibrosis and infarction, increasing the diagnostic yield. Several imaging modalities are currently available for the evaluation of stress myocardial perfusion. Advances in technologies have also increased the feasibility, safety and availability of these modalities in the pediatric age group. However, despite the established role of stress imaging and its increasing use in daily clinical practice, there are currently no specific guidelines, and little data are available in the literature on this topic. The aim of this review is to summarize the most recent evidence on pediatric stress imaging and its clinical application with a focus on the advantages and limitations of each imaging modality currently available.
Collapse
|
45
|
Heavily Gd-Doped Non-Toxic Cerium Oxide Nanoparticles for MRI Labelling of Stem Cells. Molecules 2023; 28:molecules28031165. [PMID: 36770832 PMCID: PMC9920480 DOI: 10.3390/molecules28031165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Recently, human mesenchymal stem cells (hMSc) have attracted a great deal of attention as potential therapeutic agents in the treatment of socially significant diseases. Despite substantial advances in stem-cell therapy, the biological mechanisms of hMSc action after transplantation remain unclear. The use of magnetic resonance imaging (MRI) as a non-invasive method for tracking stem cells in the body is very important for analysing their distribution in tissues and organs, as well as for ensuring control of their lifetime after injection. Herein, detailed experimental data are reported on the biocompatibility towards hMSc of heavily gadolinium-doped cerium oxide nanoparticles (Ce0.8Gd0.2O2-x) synthesised using two synthetic protocols. The relaxivity of the nanoparticles was measured in a magnetic field range from 1 mT to 16.4 T. The relaxivity values (r1 = 11 ± 1.2 mM-1 s-1 and r1 = 7 ± 1.2 mM-1 s-1 in magnetic fields typical of 1.5 and 3 T MRI scanners, respectively) are considerably higher than those of the commercial Omniscan MRI contrast agent. The low toxicity of gadolinium-doped ceria nanoparticles to hMSc enables their use as an effective theranostic tool with improved MRI-contrasting properties.
Collapse
|
46
|
Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010236. [PMID: 36678868 PMCID: PMC9861355 DOI: 10.3390/pharmaceutics15010236] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/01/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Despite significant advances in cancer therapy over the years, its complex pathological process still represents a major health challenge when seeking effective treatment and improved healthcare. With the advent of nanotechnologies, nanomedicine-based cancer therapy has been widely explored as a promising technology able to handle the requirements of the clinical sector. Superparamagnetic iron oxide nanoparticles (SPION) have been at the forefront of nanotechnology development since the mid-1990s, thanks to their former role as contrast agents for magnetic resonance imaging. Though their use as MRI probes has been discontinued due to an unfavorable cost/benefit ratio, several innovative applications as therapeutic tools have prompted a renewal of interest. The unique characteristics of SPION, i.e., their magnetic properties enabling specific response when submitted to high frequency (magnetic hyperthermia) or low frequency (magneto-mechanical therapy) alternating magnetic field, and their ability to generate reactive oxygen species (either intrinsically or when activated using various stimuli), make them particularly adapted for cancer therapy. This review provides a comprehensive description of the fundamental aspects of SPION formulation and highlights various recent approaches regarding in vivo applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Thomas Vangijzegem
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Correspondence: (T.V.); (S.L.)
| | - Valentin Lecomte
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Levy Van Leuven
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Robert N. Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 7000 Mons, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Non-Ionizing Molecular Imaging Unit, 6041 Gosselies, Belgium
- Correspondence: (T.V.); (S.L.)
| |
Collapse
|
47
|
Yuan Y, Long H, Zhou Z, Fu Y, Jiang B. PI3K-AKT-Targeting Breast Cancer Treatments: Natural Products and Synthetic Compounds. Biomolecules 2023; 13:biom13010093. [PMID: 36671478 PMCID: PMC9856042 DOI: 10.3390/biom13010093] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women. The high incidence of breast cancer, which is continuing to rise, makes treatment a significant challenge. The PI3K-AKT pathway and its downstream targets influence various cellular processes. In recent years, mounting evidence has shown that natural products and synthetic drugs targeting PI3K-AKT signaling have the potential to treat breast cancer. In this review, we discuss the role of the PI3K-AKT signaling pathway in the occurrence and development of breast cancer and highlight PI3K-AKT-targeting natural products and drugs in clinical trials for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yeqin Yuan
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Huizhi Long
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ziwei Zhou
- School of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yuting Fu
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Department of Clinical Laboratory, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China
- Correspondence:
| |
Collapse
|
48
|
Munir M, Setiawan H, Awaludin R, Kett VL. Aerosolised micro and nanoparticle: formulation and delivery method for lung imaging. Clin Transl Imaging 2023; 11:33-50. [PMID: 36196096 PMCID: PMC9521863 DOI: 10.1007/s40336-022-00527-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
Purpose The application of contrast and tracing agents is essential for lung imaging, as indicated by the wide use in recent decades and the discovery of various new contrast and tracing agents. Different aerosol production and pulmonary administration methods have been developed to improve lung imaging quality. This review details and discusses the ideal characteristics of aerosol administered via pulmonary delivery for lung imaging and the methods for the production and pulmonary administration of dry or liquid aerosol. Methods We explored several databases, including PubMed, Scopus, and Google Scholar, while preparing this review to discover and obtain the abstracts, reports, review articles, and research papers related to aerosol delivery for lung imaging and the formulation and pulmonary delivery method of dry and liquid aerosol. The search terms used were "dry aerosol delivery", "liquid aerosol delivery", "MRI for lung imaging", "CT scan for lung imaging", "SPECT for lung imaging", "PET for lung imaging", "magnetic particle imaging", "dry powder inhalation", "nebuliser", and "pressurised metered-dose inhaler". Results Through the literature review, we found that the critical considerations in aerosol delivery for lung imaging are appropriate lung deposition of inhaled aerosol and avoiding toxicity. The important tracing agent was also found to be Technetium-99m (99mTc), Gallium-68 (68Ga) and superparamagnetic iron oxide nanoparticle (SPION), while the essential contrast agents are gold, iodine, silver gadolinium, iron and manganese-based particles. The pulmonary delivery of such tracing and contrast agents can be performed using dry formulation (graphite ablation, spark ignition and spray dried powder) and liquid aerosol (nebulisation, pressurised metered-dose inhalation and air spray). Conclusion A dual-imaging modality with the combination of different tracing or contrast agents is a future development of aerosolised micro and nanoparticles for lung imaging to improve diagnosis success. Graphical abstract
Collapse
Affiliation(s)
- Miftakul Munir
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, South Tangerang, 15345 Indonesia
| | - Herlan Setiawan
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, South Tangerang, 15345 Indonesia
| | - Rohadi Awaludin
- Research Center for Radioisotope Radiopharmaceutical and Biodosimetry Technology, National Research and Innovation Agency, South Tangerang, 15345 Indonesia
| | - Vicky L. Kett
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7BL UK
| |
Collapse
|
49
|
Guo XY, Kwon HJ, Rhee HY, Park S, Cho AR, Ryu CW, Jahng GH. Microvascular morphology alteration using relaxation rate change with gadolinium-based magnetic resonance imaging contrast agent in patients with Alzheimer's disease. Quant Imaging Med Surg 2023; 13:1-16. [PMID: 36620129 PMCID: PMC9816741 DOI: 10.21037/qims-22-524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Background Conventional magnetic resonance imaging (MRI) techniques cannot demonstrate microvascular alterations in mild Alzheimer's disease (AD). Thus, the diagnosis of microvascular pathology commonly relies on postmortem. The purpose of this study was to evaluate alterations of microvascular structures in patients with AD using a 3T clinical MRI system with a commercially available contrast agent. Methods Eleven patients with AD and 11 cognitively normal (CN) controls were included in this cross-sectional prospective study. R2 and R2* relaxation rate changes (∆R2 and ∆R2*) before and after a Gadolinium (Gd)-based contrast agent injection were calculated from images obtained with a multi-echo turbo spin-echo sequence and multi-echo gradient-echo sequence to obtain microvascular index maps of blood volume fraction (BVf), mean vessel diameter (mVD), vessel size index (VSI), mean vessel density (Q), and microvessel-weighted imaging (MvWI). Two-sample t-test was used to compare those values between the two groups. Correlation analysis was performed to evaluate the relationship between those values and age. Results BVfs at the corpus callosum and at the thalamus were significantly increased in the AD group (P=0.024 and P=0.005, respectively). BVf at the gray matter (P=0.020) and white matter area (P=0.012) were also significantly increased in the AD group compared with the CN group. MvWIs at the hippocampus and parahippocampal gyrus were significantly increased in the AD group compared with the CN group (P=0.020 and P=0.006, respectively). Voxel-based analysis showed both mVD and VSI were significantly decreased at the prefrontal lobe in the AD group. Q were not significant difference between CN and AD groups. MvWI were significantly positively correlated with age. Conclusions Microvascular index was a useful non-invasive method to evaluate microvascular morphology alteration. The microvascular morphology of AD was manifested as increasing BVf and microvessel-weighted.
Collapse
Affiliation(s)
- Xiao-Yi Guo
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyeok Jung Kwon
- Department of Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ah Rang Cho
- Department of Psychiatry, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Costello FE, Falardeau JM, Lee AG, Van Stavern GP. Is Gadolinium Staining of the Brain a Real Concern When Ordering Brain MRI?: Pro vs Con. J Neuroophthalmol 2022; 42:535-540. [PMID: 36394967 DOI: 10.1097/wno.0000000000001749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Fiona E Costello
- Departments of Clinical Neurosciences and Surgery (FC), Cumming School of Medicine, University of Calgary, Calgary, Canada; Casey Eye Institute (JF), Oregon Health and Science University, Portland, Oregon; Blanton Eye Institute (AGL), Houston Methodist Hospital, Houston, Texas; and Department of Ophthalmology and Visual Sciences (GPVS), Washington University in St. Louis School of Medicine, St Louis, Missouri
| | | | | | | |
Collapse
|