1
|
Aloliqi AA, Alnuqaydan AM, Albutti A, Alharbi BF, Rahmani AH, Khan AA. Current updates regarding biogenesis, functions and dysregulation of microRNAs in cancer: Innovative approaches for detection using CRISPR/Cas13‑based platforms (Review). Int J Mol Med 2025; 55:90. [PMID: 40242952 PMCID: PMC12021393 DOI: 10.3892/ijmm.2025.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are short non‑coding RNAs, which perform a key role in cellular differentiation and development. Most human diseases, particularly cancer, are linked to miRNA functional dysregulation implicated in the expression of tumor‑suppressive or oncogenic targets. Cancer hallmarks such as continued proliferative signaling, dodging growth suppressors, invasion and metastasis, triggering angiogenesis, and avoiding cell death have all been demonstrated to be affected by dysregulated miRNAs. Thus, for the treatment of different cancer types, the detection and quantification of this type of RNA is significant. The classical and current methods of RNA detection, including northern blotting, reverse transcription‑quantitative PCR, rolling circle amplification and next‑generation sequencing, may be effective but differ in efficiency and accuracy. Furthermore, these approaches are expensive, and require special instrumentation and expertise. Thus, researchers are constantly looking for more innovative approaches for miRNA detection, which can be advantageous in all aspects. In this regard, an RNA manipulation tool known as the CRISPR and CRISPR‑associated sequence 13 (CRISPR/Cas13) system has been found to be more advantageous in miRNA detection. The Cas13‑based miRNA detection approach is cost effective and requires no special instrumentation or expertise. However, more research and validation are required to confirm the growing body of CRISPR/Cas13‑based research that has identified miRNAs as possible cancer biomarkers for diagnosis and prognosis, and as targets for treatment. In the present review, current updates regarding miRNA biogenesis, structural and functional aspects, and miRNA dysregulation during cancer are described. In addition, novel approaches using the CRISPR/Cas13 system as a next‑generation tool for miRNA detection are discussed. Furthermore, challenges and prospects of CRISPR/Cas13‑based miRNA detection approaches are described.
Collapse
Affiliation(s)
- Abdulaziz A. Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Abdullah M. Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| |
Collapse
|
2
|
Mukherjee A, Samanta S, Das S, Haque MZ, Jana PS, Samanta I, Kar I, Das S, Nanda PK, Thomas P, Dandapat P. Leveraging CRISPR-Cas-Enhanced Isothermal Amplification Tools for Quick Identification of Pathogens Causing Livestock Diseases. Curr Microbiol 2025; 82:260. [PMID: 40274667 DOI: 10.1007/s00284-025-04226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Prompt and accurate diagnosis of infectious pathogens of livestock origin is of utmost importance for epidemiological surveillance and effective therapeutic strategy formulation. Among various methods, nucleic acid-based detection of pathogens is the most sensitive and specific; but the majority of these assays need expensive equipment and skilled workers. Due to the rapid advancement of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas)-based nucleic acid detection methods, these are now being widely used for pathogen detection. CRISPR-Cas is a bacterial counterpart of "adaptive immunity", generally used for editing genome. Many CRISPR systems have been modified for nucleic acid detection due to their excellent selectivity in detecting DNA and RNA sequences. The combination of CRISPR with suitable isothermal amplification technologies has made it more sensitive, specific, versatile, and reproducible for the detection of pathogen nucleic acids at the point of care. Amplification of pathogen nucleic acid by isothermal amplification followed by CRISPR-Cas-based detection has several advantages, including short sample-to-answer times and no requirement for laboratory set-up. They are also significantly less expensive than the existing nucleic acid detection methods. This review focuses on the recent trends in the use of this precision diagnostic method for diagnosis of a wide range of animal pathogens with or without zoonotic potential, particularly various isothermal amplification strategies, and visualization methods for sensing bacteria, viruses, and parasites of veterinary and public health importance.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India.
| | - Sukhen Samanta
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, 741 235, India
| | - Subhasree Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Molla Zakirul Haque
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Partha Sarathi Jana
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indranil Samanta
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indrajit Kar
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Srinibas Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
- Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700 094, West Bengal, India
| | - Pramod Kumar Nanda
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Prasad Thomas
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Premanshu Dandapat
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| |
Collapse
|
3
|
Menon AV, Song B, Chao L, Sriram D, Chansky P, Bakshi I, Ulianova J, Li W. Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology. Front Genome Ed 2025; 7:1565387. [PMID: 40292231 PMCID: PMC12021818 DOI: 10.3389/fgeed.2025.1565387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
The CRISPR system has transformed many research areas, including cancer and immunology, by providing a simple yet effective genome editing system. Its simplicity has facilitated large-scale experiments to assess gene functionality across diverse biological contexts, generating extensive datasets that boosted the development of computational methods and machine learning/artificial intelligence applications. Integrating CRISPR with single-cell technologies has further advanced our understanding of genome function and its role in many biological processes, providing unprecedented insights into human biology and disease mechanisms. This powerful combination has accelerated AI-driven analyses, enhancing disease diagnostics, risk prediction, and therapeutic innovations. This review provides a comprehensive overview of CRISPR-based genome editing systems, highlighting their advancements, current progress, challenges, and future opportunities, especially in cancer and immunology.
Collapse
Affiliation(s)
- A. Vipin Menon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Lumen Chao
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Diksha Sriram
- The George Washington University, Washington, DC, DC, United States
| | - Pamela Chansky
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Ishnoor Bakshi
- The George Washington University, Washington, DC, DC, United States
| | - Jane Ulianova
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| |
Collapse
|
4
|
Huang L, Zhang W, Liu M, Gong Y, Tang Q, Wang K, Liao X, Zhang K, Wei J. Entropy-driven amplification reaction and the CRISPR/Cas12a system form the basis of an electrochemical biosensor for E.coli-specific detection. Bioelectrochemistry 2025; 161:108815. [PMID: 39305726 DOI: 10.1016/j.bioelechem.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 12/08/2024]
Abstract
We present an innovative biosensor designed for the precise identification of Escherichia coli (E.coli), a predominant pathogen responsible for gastrointestinal infections. E.coli is prevalent in environments characterized by substandard water quality and can lead to severe diarrhea, especially in hospital settings. The device employs entropy-driven reactions to synthesize copious amounts of double-stranded DNA (dsDNA), which, upon binding with crRNA, triggers the CRISPR/Cas12a system's cleavage mechanism. This process results in the separation of a ferrocene (Fc)-tagged DNA strand from the electrode, enhancing the electrochemical signal for E.coli's rapid and accurate detection. Our tests confirm the biosensor's ability to quantify E.coli across a dynamic range from 100 to 10 million CFU/mL, achieving a detection threshold of just over 5 CFU/mL. The development of this electrochemical biosensor highlights its exceptional selectivity, high sensitivity, and user-friendly interface for E.coli detection. It stands as a significant step forward in pathogen detection technology, promising new directions for identifying various bacterial infections through the CRISPR/Cas mechanism.
Collapse
Affiliation(s)
- Longjian Huang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China; West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Wenzhao Zhang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Mingxuan Liu
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Kaihua Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China.
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, China.
| | - Jihua Wei
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| |
Collapse
|
5
|
Amoah P, Oumarou Mahamane AR, Byiringiro MH, Mahula NJ, Manneh N, Oluwasegun YR, Assfaw AT, Mukiti HM, Garba AD, Chiemeke FK, Bernard Ojuederie O, Olasanmi B. Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture. GM CROPS & FOOD 2024; 15:279-302. [PMID: 39481911 PMCID: PMC11533803 DOI: 10.1080/21645698.2024.2411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
Collapse
Affiliation(s)
- Peter Amoah
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | | | - Moise Hubert Byiringiro
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Neo Jeremiah Mahula
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Nyimasata Manneh
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Yetunde Ruth Oluwasegun
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abebawork Tilahun Assfaw
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Hellen Mawia Mukiti
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Abubakar Danlami Garba
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Felicity Kido Chiemeke
- Plant Breeding Programme, Pan African University Life and Earth Sciences Institute (Including Health and Agriculture), Ibadan, Nigeria
| | - Omena Bernard Ojuederie
- Department of Biological Sciences, Biotechnology Unit, Faculty of Science, Kings University, Ode-Omu, Nigeria
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Science, Faculty of Agriculture, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Karmakar S, Panda D, Behera D, Saha R, Baig MJ, Molla KA. Adaptation of bacterial natural single guide RNA (tracr-L) for efficient plant genome editing. PLANT CELL REPORTS 2024; 43:291. [PMID: 39579214 DOI: 10.1007/s00299-024-03371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
KEY MESSAGE A long tracrRNA (tracr-L), which naturally act as single guide RNA, and its truncated version, Δtracr-L, from S. pyogenes, efficiently induce Cas9-mediated double-strand breaks (DSBs) in plant genomic loci, as demonstrated by in vitro cleavage assay and protoplast transfection. CRISPR-Cas system provides a form of immune memory in prokaryotes and archaea, protecting them against viruses and foreign genetic elements. In Streptococcus pyogenes, this system includes the pre-crRNA along with another non-coding RNA, tracrRNA, which aids in CRISPR-based immunity. In S. pyogenes, two distinct tracrRNAs are produced: a long form (tracr-L) and a short form (tracr-S). The tracr-S regulates crRNA biogenesis and Cas9 cleavage, while tracr-L suppresses CRISPR-Cas expression by targeting the Cas9 promoter to prevent autoimmunity. Deleting 79 nucleotides from tracr-L results in Δtracr-L, which retains similar functionality in gene repression. This study investigates, for the first time, the effectiveness of tracr-L, and Δtracr-L in genome editing within plant systems. In vitro cleavage assays using purified Cas9 and synthesized sgRNAs targeting the Cas9 gene, OsPDS, and the OsSWEET11 promoter revealed that across all target sites, tracr-S demonstrated the highest cleavage efficiency compared to tracr-L and Δtracr-L. For in vivo genome editing, we transfected rice protoplasts with tracr-L, Δtracr-L, and tracr-S, targeting three rice genes: OsPDS, OsSPL14, and the promoter of OsSWEET14. Amplicon deep sequencing revealed various types of indels at the target regions across all three tracrRNA versions, indicating comparable levels of efficiency. This study establishes the utility of both the long-form tracrRNA (tracr-L) and its truncated variant (Δtracr-L) in eukaryote genome editing. These two new forms of tracrRNA provide proof of concept and expand the CRISPR-Cas toolkit for plant genome editing applications, and for eukaryotes more broadly.
Collapse
Affiliation(s)
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack, 753006, India
- Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Deeptirekha Behera
- ICAR-National Rice Research Institute, Cuttack, 753006, India
- Quality Evaluation and Improvement Division, ICAR- National Institute of Natural Fibre Engineering and Technology, Kolkata-700040, India
| | - Romio Saha
- ICAR-National Rice Research Institute, Cuttack, 753006, India
- Department of Botany, Ravenshaw University, Cuttack, 753003, India
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack, 753006, India.
| | | |
Collapse
|
7
|
Tang Z, Gao M, Gong F, Shan X, Yang Y, Zhang Y, Chen L, Wang F, Ji X, Zhou F, He Z. Quantum Dot Reporters Designed for CRISPR-Based Detection of Viral Nucleic Acids. Anal Chem 2024; 96:16017-16026. [PMID: 39324802 DOI: 10.1021/acs.analchem.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Diagnostic methods based on CRISPR technology have shown great potential due to their highly specific, efficient, and sensitive detection capabilities. Although the majority of the current studies rely on fluorescent dye-quencher reporters, the limitations of fluorescent dyes, such as poor photostability and small Stokes shifts, urgently necessitate the optimization of reporters. In this study, we developed innovative quantum dot (QD) reporters for the CRISPR/Cas systems, which not only leveraged the advantages of high photoluminescence quantum yield and large Stokes shifts of QDs but were also easily synthesized through a simple one-step hydrothermal method. Based on the trans-cleavage characteristics of Cas12a and Cas13a, two types of QD reporters were designed, the short DNA strand and the hybridization-based QD reporters, achieving the detection of DNA and RNA at the pM level, respectively, and validating the performance in the analysis of clinical samples. Furthermore, based on the unique property of QDs that allowed multicolor emission under one excitation, the application potential for simultaneous detection of diseases was further investigated. Taken together, this work proposed novel QD reporters that could be applied to the various CRISPR/Cas systems, providing a new toolbox to expand the diagnosis of bioanalytical and biomedical fields.
Collapse
Affiliation(s)
- Ziwen Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Menglu Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Shan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yeling Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
8
|
Mathuria A, Vora C, Ali N, Mani I. Advances in CRISPR-Cas systems for human bacterial disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:19-41. [PMID: 39266183 DOI: 10.1016/bs.pmbts.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.
Collapse
Affiliation(s)
- Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Chaitali Vora
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
9
|
Tripathi L, Ntui VO, Tripathi JN. Application of CRISPR/Cas-based gene-editing for developing better banana. Front Bioeng Biotechnol 2024; 12:1395772. [PMID: 39219618 PMCID: PMC11362101 DOI: 10.3389/fbioe.2024.1395772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Banana (Musa spp.), including plantain, is one of the major staple food and cash crops grown in over 140 countries in the subtropics and tropics, with around 153 million tons annual global production, feeding about 400 million people. Despite its widespread cultivation and adaptability to diverse environments, banana production faces significant challenges from pathogens and pests that often coexist within agricultural landscapes. Recent advancements in CRISPR/Cas-based gene editing offer transformative solutions to enhance banana resilience and productivity. Researchers at IITA, Kenya, have successfully employed gene editing to confer resistance to diseases such as banana Xanthomonas wilt (BXW) by targeting susceptibility genes and banana streak virus (BSV) by disrupting viral sequences. Other breakthroughs include the development of semi-dwarf plants, and increased β-carotene content. Additionally, non-browning banana have been developed to reduce food waste, with regulatory approval in the Philippines. The future prospects of gene editing in banana looks promising with CRISPR-based gene activation (CRISPRa) and inhibition (CRISPRi) techniques offering potential for improved disease resistance. The Cas-CLOVER system provides a precise alternative to CRISPR/Cas9, demonstrating success in generating gene-edited banana mutants. Integration of precision genetics with traditional breeding, and adopting transgene-free editing strategies, will be pivotal in harnessing the full potential of gene-edited banana. The future of crop gene editing holds exciting prospects for producing banana that thrives across diverse agroecological zones and offers superior nutritional value, ultimately benefiting farmers and consumers. This article highlights the pivotal role of CRISPR/Cas technology in advancing banana resilience, yield and nutritional quality, with significant implications for global food security.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | | |
Collapse
|
10
|
Wang H, Cheng Z, Luo R, Yang Q, Zeng Y, Yang Y, Chen Y, Li W, Liu X. RPA-CRISPR-Cas13a-assisted detection method of transmissible gastroenteritis virus. Front Vet Sci 2024; 11:1428591. [PMID: 39015106 PMCID: PMC11249537 DOI: 10.3389/fvets.2024.1428591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Background and aim Transmissible gastroenteritis virus (TGEV) is a highly contagious gastrointestinal virus that causes diarrhea, vomiting, anorexia, dehydration, and weight loss in piglets. In clinical practice, it often occurs in mixed infections with other pathogens, and is therefore difficult to diagnose and prevent. It mainly harms piglets of about 2 weeks old, causing huge losses on farms. The clinical confirmation of TGEV usually requires a laboratory diagnosis, but traditional PCR and immunofluorescence assays have some limitations. Moreover, most farms in China are ill-equipped to accurately diagnose the disease. Therefore, a new detection method with high sensitivity and specificity and less dependence on instrumentation is required. Methods We used recombinase polymerase amplification (RPA), combined with the nuclease characteristics of the activated Cas13a protein to establish a visual CRISPR-Cas13a-assisted detection method for TGEV by adding a reporter RNA with fluorescent and quenching moieties to the system. Result We selected the optimal RPA primer and best CRISPR RNA (crRNA). The reaction system was optimized and its repeatability, specificity, and sensitivity verified. The TGEV detection system did not cross-react with other common diarrhea viruses, and its detection limit was 101 copies, which is similar with the sensitivity of qPCR. We successfully established an RPA-CRISPR-Cas13a-assisted detection method, and used this detection system to analyze 123 pig blood samples. qPCR was used as the gold standard method. The sensitivity, specificity, positive coincidence rate, and negative coincidence rate of the new method were 100, 98.93, 96.66, and 100%, respectively.
Collapse
Affiliation(s)
- Haoyu Wang
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Zhimeng Cheng
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ran Luo
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Qiyue Yang
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Yongping Zeng
- Southwest University, College of Veterinary Medicine, Chongqing, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yuankun Chen
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao Liu
- Southwest University, College of Veterinary Medicine, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Chongqing, China
| |
Collapse
|
11
|
Dimitrievska M, Bansal D, Vitale M, Strouboulis J, Miccio A, Nicolaides KH, El Hoss S, Shangaris P, Jacków-Malinowska J. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease. Blood Rev 2024; 65:101185. [PMID: 38493007 DOI: 10.1016/j.blre.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Recent advancements in gene editing illuminate new potential therapeutic approaches for Sickle Cell Disease (SCD), a debilitating monogenic disorder caused by a point mutation in the β-globin gene. Despite the availability of several FDA-approved medications for symptomatic relief, allogeneic hematopoietic stem cell transplantation (HSCT) remains the sole curative option, underscoring a persistent need for novel treatments. This review delves into the growing field of gene editing, particularly the extensive research focused on curing haemoglobinopathies like SCD. We examine the use of techniques such as CRISPR-Cas9 and homology-directed repair, base editing, and prime editing to either correct the pathogenic variant into a non-pathogenic or wild-type one or augment fetal haemoglobin (HbF) production. The article elucidates ways to optimize these tools for efficacious gene editing with minimal off-target effects and offers insights into their effective delivery into cells. Furthermore, we explore clinical trials involving alternative SCD treatment strategies, such as LentiGlobin therapy and autologous HSCT, distilling the current findings. This review consolidates vital information for the clinical translation of gene editing for SCD, providing strategic insights for investigators eager to further the development of gene editing for SCD.
Collapse
Affiliation(s)
- Marija Dimitrievska
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Dravie Bansal
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Marta Vitale
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - John Strouboulis
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France
| | - Kypros H Nicolaides
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Sara El Hoss
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| | - Panicos Shangaris
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
12
|
Sharma AK, Giri AK. Engineering CRISPR/Cas9 therapeutics for cancer precision medicine. Front Genet 2024; 15:1309175. [PMID: 38725484 PMCID: PMC11079134 DOI: 10.3389/fgene.2024.1309175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) technology has revolutionized field of cancer treatment. This review explores usage of CRISPR/Cas9 for editing and investigating genes involved in human carcinogenesis. It provides insights into the development of CRISPR as a genetic tool. Also, it explores recent developments and tools available in designing CRISPR/Cas9 systems for targeting oncogenic genes for cancer treatment. Further, we delve into an overview of cancer biology, highlighting key genetic alterations and signaling pathways whose deletion prevents malignancies. This fundamental knowledge enables a deeper understanding of how CRISPR/Cas9 can be tailored to address specific genetic aberrations and offer personalized therapeutic approaches. In this review, we showcase studies and preclinical trials that show the utility of CRISPR/Cas9 in disrupting oncogenic targets, modulating tumor microenvironment and increasing the efficiency of available anti treatments. It also provides insight into the use of CRISPR high throughput screens for cancer biomarker identifications and CRISPR based screening for drug discovery. In conclusion, this review offers an overview of exciting developments in engineering CRISPR/Cas9 therapeutics for cancer treatment and highlights the transformative potential of CRISPR for innovation and effective cancer treatments.
Collapse
Affiliation(s)
- Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Anil K. Giri
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| |
Collapse
|
13
|
Schüler MA, Daniel R, Poehlein A. Novel insights into phage biology of the pathogen Clostridioides difficile based on the active virome. Front Microbiol 2024; 15:1374708. [PMID: 38577680 PMCID: PMC10993401 DOI: 10.3389/fmicb.2024.1374708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
The global pathogen Clostridioides difficile is a well-studied organism, and researchers work on unraveling its fundamental virulence mechanisms and biology. Prophages have been demonstrated to influence C. difficile toxin expression and contribute to the distribution of advantageous genes. All these underline the importance of prophages in C. difficile virulence. Although several C. difficile prophages were sequenced and characterized, investigations on the entire active virome of a strain are still missing. Phages were mainly isolated after mitomycin C-induction, which does not resemble a natural stressor for C. difficile. We examined active prophages from different C. difficile strains after cultivation in the absence of mitomycin C by sequencing and characterization of particle-protected DNA. Phage particles were collected after standard cultivation, or after cultivation in the presence of the secondary bile salt deoxycholate (DCA). DCA is a natural stressor for C. difficile and a potential prophage-inducing agent. We also investigated differences in prophage activity between clinical and non-clinical C. difficile strains. Our experiments demonstrated that spontaneous prophage release is common in C. difficile and that DCA presence induces prophages. Fourteen different, active phages were identified by this experimental procedure. We could not identify a definitive connection between clinical background and phage activity. However, one phage exhibited distinctively higher activity upon DCA induction in the clinical strain than in the corresponding non-clinical strain, although the phage is identical in both strains. We recorded that enveloped DNA mapped to genome regions with characteristics of mobile genetic elements other than prophages. This pointed to mechanisms of DNA mobility that are not well-studied in C. difficile so far. We also detected phage-mediated lateral transduction of bacterial DNA, which is the first described case in C. difficile. This study significantly contributes to our knowledge of prophage activity in C. difficile and reveals novel aspects of C. difficile (phage) biology.
Collapse
Affiliation(s)
| | | | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Iqbal S, Begum F. Identification and characterization of integrated prophages and CRISPR-Cas system in Bacillus subtilis RS10 genome. Braz J Microbiol 2024; 55:537-542. [PMID: 38216797 PMCID: PMC10920515 DOI: 10.1007/s42770-024-01249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Bacteriophages have been extensively investigated due to their prominent role in the virulence and resistance of pathogenic bacteria. However, little attention has been given to the non-pathogenic Bacillus phages, and their role in the ecological bacteria genome is overlooked. In the present study, we characterized two Bacillus phages with a linear DNA genome of 33.6 kb with 44.83% GC contents and 129.3 kb with 34.70% GC contents. A total of 46 and 175 putative coding DNA sequences (CDS) were identified in prophage 1 (P1) and prophage 2 (P2), respectively, with no tRNA genes. Comparative genome sequence analysis revealed that P1 shares eight CDS with phage Jimmer 2 (NC-041976), and phage Osiris (NC-028969), and six with phage phi CT9441A (NC-029022). On the other hand, P2 showed high similarity with Bacill_SPbeta_NC_001884 and Bacillus phage phi 105. Further, genome analysis indicates several horizontal gene transfer events in both phages during the evolution process. In addition, we detected two CRISPR-Cas systems for the first time in B. subtilis. The identified CRISPR system consists of 24 and 25 direct repeats and integrase coding genes, while the cas gene which encodes Cas protein involved in the cleavage of a target sequence is missing. These findings will expand the current knowledge of soil phages as well as help to develop a new perspective for investigating more ecological phages to understand their role in bacterial communities and diversity.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| |
Collapse
|
15
|
Nweze JE, Schweichhart JS, Angel R. Viral communities in millipede guts: Insights into the diversity and potential role in modulating the microbiome. Environ Microbiol 2024; 26:e16586. [PMID: 38356108 DOI: 10.1111/1462-2920.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Millipedes are important detritivores harbouring a diverse microbiome. Previous research focused on bacterial and archaeal diversity, while the virome remained neglected. We elucidated the DNA and RNA viral diversity in the hindguts of two model millipede species with distinct microbiomes: the tropical Epibolus pulchripes (methanogenic, dominated by Bacillota) and the temperate Glomeris connexa (non-methanogenic, dominated by Pseudomonadota). Based on metagenomic and metatranscriptomic assembled viral genomes, the viral communities differed markedly and preferentially infected the most abundant prokaryotic taxa. The majority of DNA viruses were Caudoviricetes (dsDNA), Cirlivirales (ssDNA) and Microviridae (ssDNA), while RNA viruses consisted of Leviviricetes (ssRNA), Potyviridae (ssRNA) and Eukaryotic viruses. A high abundance of subtypes I-C, I-B and II-C CRISPR-Cas systems was found, primarily from Pseudomonadota, Bacteroidota and Bacillota. In addition, auxiliary metabolic genes that modulate chitin degradation, vitamins and amino acid biosynthesis and sulphur metabolism were also detected. Lastly, we found low virus-to-microbe-ratios and a prevalence of lysogenic viruses, supporting a Piggyback-the-Winner dynamic in both hosts.
Collapse
Affiliation(s)
- Julius Eyiuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Johannes Sergej Schweichhart
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Roey Angel
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| |
Collapse
|
16
|
Bhushan B, Singh K, Kumar S, Bhardwaj A. Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. Curr Gene Ther 2024; 25:34-45. [PMID: 38738727 DOI: 10.2174/0115665232292246240426125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anjali Bhardwaj
- Department of Pharmaceutics, Durga College of Pharmacy, Sambhal, Uttar Pradesh, India
| |
Collapse
|
17
|
Duan C, Liu Y, Liu Y, Liu L, Cai M, Zhang R, Zeng Q, Koonin EV, Krupovic M, Li M. Diversity of Bathyarchaeia viruses in metagenomes and virus-encoded CRISPR system components. ISME COMMUNICATIONS 2024; 4:ycad011. [PMID: 38328448 PMCID: PMC10848311 DOI: 10.1093/ismeco/ycad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Bathyarchaeia represent a class of archaea common and abundant in sedimentary ecosystems. Here we report 56 metagenome-assembled genomes of Bathyarchaeia viruses identified in metagenomes from different environments. Gene sharing network and phylogenomic analyses led to the proposal of four virus families, including viruses of the realms Duplodnaviria and Adnaviria, and archaea-specific spindle-shaped viruses. Genomic analyses uncovered diverse CRISPR elements in these viruses. Viruses of the proposed family "Fuxiviridae" harbor an atypical Type IV-B CRISPR-Cas system and a Cas4 protein that might interfere with host immunity. Viruses of the family "Chiyouviridae" encode a Cas2-like endonuclease and two mini-CRISPR arrays, one with a repeat identical to that in the host CRISPR array, potentially allowing the virus to recruit the host CRISPR adaptation machinery to acquire spacers that could contribute to competition with other mobile genetic elements or to inhibit host defenses. These findings present an outline of the Bathyarchaeia virome and offer a glimpse into their counter-defense mechanisms.
Collapse
Affiliation(s)
- Changhai Duan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Ying Liu
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris 75015, France
| | - Lirui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mingwei Cai
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Rui Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris 75015, France
| | - Meng Li
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
18
|
Liau KM, Ooi AG, Mah CH, Yong P, Kee LS, Loo CZ, Tay MY, Foo JB, Hamzah S. The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects. Curr Pharm Biotechnol 2024; 25:1500-1522. [PMID: 37921129 DOI: 10.2174/0113892010258617231020062637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
Collapse
Affiliation(s)
- Kah Man Liau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - An Gie Ooi
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chian Huey Mah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Penny Yong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ling Siik Kee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Cheng Ze Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ming Yu Tay
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
19
|
Gunitseva N, Evteeva M, Korzhenkov A, Patrushev M. A New RNA-Dependent Cas12g Nuclease. Int J Mol Sci 2023; 24:17105. [PMID: 38069429 PMCID: PMC10707612 DOI: 10.3390/ijms242317105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The development of RNA-targeting CRISPR-Cas systems represents a major step forward in the field of gene editing and regulation. RNA editing presents a viable alternative to genome editing in certain scenarios as it offers a reversible and manageable approach, reducing the likelihood of runaway mutant variants. One of the most promising applications is in the treatment of genetic disorders caused by mutations in RNA molecules. In this study, we investigate a previously undescribed Cas12g nuclease which was found in metagenomes from promising thermophilic microbial communities during the expedition to the Republic of North Ossetia-Alania in 2020. The method outlined in this study can be applied to other Cas orthologs and variants, leading to a better understanding of the CRISPR-Cas system and its enzymatic activities. The cis-cleavage activity of the new type V-G Cas effector was indicated by in vitro RNA cleavage experiments. While CRISPR-Cas systems are known for their high specificity, there is still a risk of unintended cleavage of nontargeted RNA molecules. Ultimately, the search for new genome editing tools and the study of their properties will remove barriers to research in this area. With continued research and development, we may be able to unlock their full potential.
Collapse
Affiliation(s)
- Natalia Gunitseva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia (M.P.)
| | - Martha Evteeva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia (M.P.)
| | | | | |
Collapse
|
20
|
Kannadasan AB, Sumantran VN, Vaidyanathan R. A Global Comprehensive Study of the Distribution of Type I-E and Type I-E* CRISPR-Cas Systems in Klebsiella pneumoniae. Indian J Community Med 2023; 48:567-572. [PMID: 37662134 PMCID: PMC10470566 DOI: 10.4103/ijcm.ijcm_486_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/03/2023] [Indexed: 09/05/2023] Open
Abstract
Background The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems are the short DNA sequences and RNA-dependent nuclease involved in the adaptive immunity in bacteria and archaea. The type of CRISPR-Cas system influences antibiotic susceptibility in Klebsiella pneumoniae. Here, our objective was to study the diversity of CRISPR-Cas system in the genome of K. pneumoniae from the available whole genome sequencing (WGS) data. Material and Methods We identified the CRISPR-Cas systems of K. pneumoniae using the CRISPR-CasFinder database. The complete genome sequence and its submission details were obtained from the National Center for Biotechnology Information (NCBI) database. Results A total of 1607 K. pneumoniae whole genome sequences were analyzed. The major contributors of WGS data of K. pneumoniae were China (26.6%), United States (21.5%), Australia (10%), South Korea (8%), India (5.5%), and United Kingdom (4.9%). Out of 1607 genomes analyzed, almost one-fourth were CRISPR-Cas positive (403/1607) and three-fourth were CRISPR-Cas negative (1204/1607). Among CRISPR-Cas positive strains, 220 belonged to type I-E* and 183 were type I-E. Furthermore, type I-E* CRISPR-Cas systems were significantly higher in Asia (P < 0.001), whereas type I-E were significantly higher in Europe (P < 0.01). Among countries, typically, type I-E* strains were found to be higher in China (P < 0.01) and India (P < 0.01), whereas type I-E strains were higher in Germany (P < 0.01). Conclusion Hence, it is important to know the type of CRISPR-Cas systems in K. pneumoniae strains across the countries and it can help to understand the diversity of CRISPR-Cas systems worldwide.
Collapse
Affiliation(s)
- Anand Babu Kannadasan
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. MGR Educational and Research Institute, Adayalampattu, Chennai, Tamil Nadu, India
| | - Venil Naranan Sumantran
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. MGR Educational and Research Institute, Adayalampattu, Chennai, Tamil Nadu, India
| | - Rama Vaidyanathan
- Dr. A.P.J. Abdul Kalam Center of Excellence in Innovation and Entrepreneurship, Dr. MGR Educational and Research Institute, Adayalampattu, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Bauer R, Haider D, Grempels A, Roscher R, Mauerer S, Spellerberg B. Diversity of CRISPR-Cas type II-A systems in Streptococcus anginosus. Front Microbiol 2023; 14:1188671. [PMID: 37396379 PMCID: PMC10310304 DOI: 10.3389/fmicb.2023.1188671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Streptococcus anginosus is a commensal Streptococcal species that is often associated with invasive bacterial infections. However, little is known about its molecular genetic background. Many Streptococcal species, including S. anginosus, harbor clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. A CRISPR-Cas type II-A system as well as a type II-C system have been reported for this species. To characterize the CRISPR-Cas type II systems of S. anginosus in more detail, we conducted a phylogenetic analysis of Cas9 sequences from CRISPR-Cas type II systems with a special focus on streptococci and S. anginosus. In addition, a phylogenetic analysis of S. anginosus strains based on housekeeping genes included in MLST analysis, was performed. All analyzed Cas9 sequences of S. anginosus clustered with the Cas9 sequences of CRISPR type II-A systems, including the Cas9 sequences of S. anginosus strains reported to harbor a type II-C system. The Cas9 genes of the CRISPR-Cas type II-C systems of other bacterial species separated into a different cluster. Moreover, analyzing the CRISPR loci found in S. anginosus, two distinct csn2 genes could be detected, a short form showing high similarity to the canonical form of the csn2 gene present in S. pyogenes. The second CRISPR type II locus of S. anginosus contained a longer variant of csn2 with close similarities to a csn2 gene that has previously been described in Streptococcus thermophilus. Since CRISPR-Cas type II-C systems do not contain a csn2 gene, the S. anginosus strains reported to have a CRISPR-Cas type II-C system appear to carry a variation of CRISPR-Cas type II-A harboring a long variant of csn2.
Collapse
|
22
|
Alalmaie A, Diaf S, Khashan R. Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system. J Genet Eng Biotechnol 2023; 21:60. [PMID: 37191877 DOI: 10.1186/s43141-023-00507-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
CRISPR-Cas9 is a popular gene-editing tool that allows researchers to introduce double-strand breaks to edit parts of the genome. CRISPR-Cas9 system is used more than other gene-editing tools because it is simple and easy to customize. However, Cas9 may produce unintended double-strand breaks in DNA, leading to off-target effects. There have been many improvements in the CRISPR-Cas system to control the off-target effect and improve the efficiency. The presence of a nuclease-deficient CRISPR-Cas system in several bacterial Tn7-like transposons inspires researchers to repurpose to direct the insertion of Tn7-like transposons instead of cleaving the target DNA, which will eventually limit the risk of off-target effects. Two transposon-encoded CRISPR-Cas systems have been experimentally confirmed. The first system, found in Tn7 like-transposon (Tn6677), is associated with the variant type I-F CRISPR-Cas system. The second one, found in Tn7 like-transposon (Tn5053), is related to the variant type V-K CRISPR-Cas system. This review describes the molecular and structural mechanisms of DNA targeting by the transposon-encoded type I-F CRISPR-Cas system, from assembly around the CRISPR-RNA (crRNA) to the initiation of transposition.
Collapse
Affiliation(s)
- Amnah Alalmaie
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Saousen Diaf
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph University, Philadelphia, PA, 19131, USA
| | - Raed Khashan
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Sciences, Long Island University, Brooklyn, NY, 11201, USA.
| |
Collapse
|
23
|
Das T, Anand U, Pal T, Mandal S, Kumar M, Radha, Gopalakrishnan AV, Lastra JMPDL, Dey A. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches. Biotechnol Bioeng 2023; 120:1215-1228. [PMID: 36740587 DOI: 10.1002/bit.28344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/12/2022] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Vegetables provide many nutrients in the form of fiber, vitamins, and minerals, which make them an important part of our diet. Numerous biotic and abiotic stresses can affect crop growth, quality, and yield. Traditional and modern breeding strategies to improve plant traits are slow and resource intensive. Therefore, it is necessary to find new approaches for crop improvement. Clustered regularly interspaced short palindromic repeats/CRISPR associated 9 (CRISPR/Cas9) is a genome editing tool that can be used to modify targeted genes for desirable traits with greater efficiency and accuracy. By using CRISPR/Cas9 editing to precisely mutate key genes, it is possible to rapidly generate new germplasm resources for the promotion of important agronomic traits. This is made possible by the availability of whole genome sequencing data and information on the function of genes responsible for important traits. In addition, CRISPR/Cas9 systems have revolutionized agriculture, making genome editing more versatile. Currently, genome editing of vegetable crops is limited to a few vegetable varieties (tomato, sweet potato, potato, carrot, squash, eggplant, etc.) due to lack of regeneration protocols and sufficient genome sequencing data. In this article, we summarize recent studies on the application of CRISPR/Cas9 in improving vegetable trait development and the potential for future improvement.
Collapse
Affiliation(s)
- Tuyelee Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Tarun Pal
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Tenerife, Spain
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
24
|
Cerbino GN, Traglia GM, Ayala Nuñez T, Parmeciano Di Noto G, Ramírez MS, Centrón D, Iriarte A, Quiroga C. Comparative genome analysis of the genus Shewanella unravels the association of key genetic traits with known and potential pathogenic lineages. Front Microbiol 2023; 14:1124225. [PMID: 36925471 PMCID: PMC10011109 DOI: 10.3389/fmicb.2023.1124225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Shewanella spp. are Gram-negative rods widely disseminated in aquatic niches that can also be found in human-associated environments. In recent years, reports of infections caused by these bacteria have increased significantly. Mobilome and resistome analysis of a few species showed that they are versatile; however, comprehensive comparative studies in the genus are lacking. Here, we analyzed the genetic traits of 144 genomes from Shewanella spp. isolates focusing on the mobilome, resistome, and virulome to establish their evolutionary relationship and detect unique features based on their genome content and habitat. Shewanella spp. showed a great diversity of mobile genetic elements (MGEs), most of them associated with monophyletic lineages of clinical isolates. Furthermore, 79/144 genomes encoded at least one antimicrobial resistant gene with their highest occurrence in clinical-related lineages. CRISPR-Cas systems, which confer immunity against MGEs, were found in 41 genomes being I-E and I-F the more frequent ones. Virulome analysis showed that all Shewanella spp. encoded different virulence genes (motility, quorum sensing, biofilm, adherence, etc.) that may confer adaptive advantages for survival against hosts. Our data revealed that key accessory genes are frequently found in two major clinical-related groups, which encompass the opportunistic pathogens Shewanella algae and Shewanella xiamenensis together with several other species. This work highlights the evolutionary nature of Shewanella spp. genomes, capable of acquiring different key genetic traits that contribute to their adaptation to different niches and facilitate the emergence of more resistant and virulent isolates that impact directly on human and animal health.
Collapse
Affiliation(s)
- Gabriela N Cerbino
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - German M Traglia
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Teolincacihuatl Ayala Nuñez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Gisela Parmeciano Di Noto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University, Fullerton, Fullerton, CA, United States
| | - Daniela Centrón
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
25
|
Wang J, Wei J, Li H, Li Y. High-efficiency genome editing of an extreme thermophile Thermus thermophilus using endogenous type I and type III CRISPR-Cas systems. MLIFE 2022; 1:412-427. [PMID: 38818488 PMCID: PMC10989782 DOI: 10.1002/mlf2.12045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/01/2024]
Abstract
Thermus thermophilus is an attractive species in the bioindustry due to its valuable natural products, abundant thermophilic enzymes, and promising fermentation capacities. However, efficient and versatile genome editing tools are not available for this species. In this study, we developed an efficient genome editing tool for T. thermophilus HB27 based on its endogenous type I-B, I-C, and III-A/B CRISPR-Cas systems. First, we systematically characterized the DNA interference capabilities of the different types of the native CRISPR-Cas systems in T. thermophilus HB27. We found that genomic manipulations such as gene deletion, mutation, and in situ tagging could be easily implemented by a series of genome-editing plasmids carrying an artificial self-targeting mini-CRISPR and a donor DNA responsible for the recombinant recovery. We also compared the genome editing efficiency of different CRISPR-Cas systems and the editing plasmids with donor DNAs of different lengths. Additionally, we developed a reporter gene system for T. thermophilus based on a heat-stable β-galactosidase gene TTP0042, and constructed an engineered strain with a high production capacity of superoxide dismutases by genome modification.
Collapse
Affiliation(s)
- Jinting Wang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Junwei Wei
- State Key Laboratory of Agricultural Microbiology and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Haijuan Li
- College of Biological and Environmental EngineeringXi'an UniversityXi'anChina
| | - Yingjun Li
- State Key Laboratory of Agricultural Microbiology and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhenChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
26
|
Xie J, Liu M, Zhou L. CRISPR-OTE: Prediction of CRISPR On-Target Efficiency Based on Multi-Dimensional Feature Fusion. Ing Rech Biomed 2022. [DOI: 10.1016/j.irbm.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Abstract
Terpenoids represent the largest group of secondary metabolites with variable structures and functions. Terpenoids are well known for their beneficial application in human life, such as pharmaceutical products, vitamins, hormones, anticancer drugs, cosmetics, flavors and fragrances, foods, agriculture, and biofuels. Recently, engineering microbial cells have been provided with a sustainable approach to produce terpenoids with high yields. Noticeably, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has emerged as one of the most efficient genome-editing technologies to engineer microorganisms for improving terpenoid production. In this review, we summarize the application of the CRISPR-Cas system for the production of terpenoids in microbial hosts such as Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Pseudomonas putida. CRISPR-Cas9 deactivated Cas9 (dCas9)-based CRISPR (CRISPRi), and the dCas9-based activator (CRISPRa) have been used in either individual or combinatorial systems to control the metabolic flux for enhancing the production of terpenoids. Finally, the prospects of using the CRISPR-Cas system in terpenoid production are also discussed.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam.,Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| |
Collapse
|
28
|
Schwarz TS, Schreiber SS, Marchfelder A. CRISPR Interference as a Tool to Repress Gene Expression in Haloferax volcanii. Methods Mol Biol 2022; 2522:57-85. [PMID: 36125743 DOI: 10.1007/978-1-0716-2445-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, a plethora of tools for molecular biology have been developed on the basis of the CRISPR-Cas system. Almost all use the class 2 systems since here the setup is the simplest with only one protein and one guide RNA, allowing for easy transfer to and expression in other organisms. However, the CRISPR-Cas components harnessed for applications are derived from mesophilic bacteria and are not optimal for use in extremophilic archaea.Here, we describe the application of an endogenous CRISPR-Cas system as a tool for silencing gene expression in a halophilic archaeon. Haloferax volcanii has a CRISPR-Cas system of subtype I-B, which can be easily used to repress the transcription of endogenous genes, allowing to study the effects of their depletion. This article gives a step-by-step introduction on how to use the implemented system for any gene of interest in Haloferax volcanii. The concept of CRISPRi described here for Haloferax can be transferred to any other archaeon, that is genetically tractable and has an endogenous CRISPR-Cas I systems.
Collapse
|
29
|
Sarmiento ME, Chin KL, Lau NS, Aziah I, Ismail N, Norazmi MN, Acosta A, Yaacob NS. Comparative transcriptome profiling of horseshoe crab Tachypleus gigas hemocytes in response to lipopolysaccharides. FISH & SHELLFISH IMMUNOLOGY 2021; 117:148-156. [PMID: 34358702 DOI: 10.1016/j.fsi.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Horseshoe crabs (HSCs) are living fossil species of marine arthropods with a long evolutionary history spanning approximately 500 million years. Their survival is helped by their innate immune system that comprises cellular and humoral immune components to protect them against invading pathogens. To help understand the genetic mechanisms involved, the present study utilised the Illumina HiSeq platform to perform transcriptomic analysis of hemocytes from the HSC, Tachypleus gigas, that were challenged with lipopolysaccharides (LPS). The high-throughput sequencing resulted in 352,077,208 and 386,749,136 raw reads corresponding to 282,490,910 and 305,709,830 high-quality mappable reads for the control and LPS-treated hemocyte samples, respectively. Based on the log-fold change of > 0.3 or < -0.3, 1338 genes were significantly upregulated and 215 genes were significantly downregulated following LPS stimulation. The differentially expressed genes (DEGs) were further identified to be associated with multiple pathways such as those related to immune defence, stress response, cytoskeleton function and signal transduction. This study provides insights into the underlying molecular and regulatory mechanisms in hemocytes exposed to LPS, which has relevance for the study of the immune response of HSCs to infection.
Collapse
Affiliation(s)
- Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nyok Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
30
|
Efficient genome editing of an extreme thermophile, Thermus thermophilus, using a thermostable Cas9 variant. Sci Rep 2021; 11:9586. [PMID: 33953310 PMCID: PMC8100143 DOI: 10.1038/s41598-021-89029-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Thermophilic organisms are extensively studied in industrial biotechnology, for exploration of the limits of life, and in other contexts. Their optimal growth at high temperatures presents a challenge for the development of genetic tools for their genome editing, since genetic markers and selection substrates are often thermolabile. We sought to develop a thermostable CRISPR-Cas9 based system for genome editing of thermophiles. We identified CaldoCas9 and designed an associated guide RNA and showed that the pair have targetable nuclease activity in vitro at temperatures up to 65 °C. We performed a detailed characterization of the protospacer adjacent motif specificity of CaldoCas9, which revealed a preference for 5'-NNNNGNMA. We constructed a plasmid vector for the delivery and use of the CaldoCas9 based genome editing system in the extreme thermophile Thermus thermophilus at 65 °C. Using the vector, we generated gene knock-out mutants of T. thermophilus, targeting genes on the bacterial chromosome and megaplasmid. Mutants were obtained at a frequency of about 90%. We demonstrated that the vector can be cured from mutants for a subsequent round of genome editing. CRISPR-Cas9 based genome editing has not been reported previously in the extreme thermophile T. thermophilus. These results may facilitate development of genome editing tools for other extreme thermophiles and to that end, the vector has been made available via the plasmid repository Addgene.
Collapse
|
31
|
Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing. Sci Rep 2020; 10:15479. [PMID: 32968153 PMCID: PMC7512022 DOI: 10.1038/s41598-020-72484-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
The gram-negative, aerobic, rod-shaped bacterium Aeromonas hydrophila, the causative agent of motile aeromonad septicaemia, has attracted increasing attention due to its high pathogenicity. Here, we constructed the complete genome sequence of a virulent strain, A. hydrophila HX-3 isolated from Pseudosciaena crocea and performed comparative genomics to investigate its virulence factors and quorum sensing features in comparison with those of other Aeromonas isolates. HX-3 has a circular chromosome of 4,941,513 bp with a 61.0% G + C content encoding 4483 genes, including 4318 protein-coding genes, and 31 rRNA, 127 tRNA and 7 ncRNA operons. Seventy interspersed repeat and 153 tandem repeat sequences, 7 transposons, 8 clustered regularly interspaced short palindromic repeats, and 39 genomic islands were predicted in the A. hydrophila HX-3 genome. Phylogeny and pan-genome were also analyzed herein to confirm the evolutionary relationships on the basis of comparisons with other fully sequenced Aeromonas genomes. In addition, the assembled HX-3 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database (76.03%), Gene Ontology database (18.13%), and Kyoto Encyclopedia of Genes and Genome pathway database (59.68%). Two-component regulatory systems in the HX-3 genome and virulence factors profiles through comparative analysis were predicted, providing insights into pathogenicity. A large number of genes related to the AHL-type 1 (ahyI, ahyR), LuxS-type 2 (luxS, pfs, metEHK, litR, luxOQU) and QseBC-type 3 (qseB, qseC) autoinducer systems were also identified. As a result of the expression of the ahyI gene in Escherichia coli BL21 (DE3), combined UPLC-MS/MS profiling led to the identification of several new N-acyl-homoserine lactone compounds synthesized by AhyI. This genomic analysis determined the comprehensive QS systems of A. hydrophila, which might provide novel information regarding the mechanisms of virulence signatures correlated with QS.
Collapse
|
32
|
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18:2401-2415. [PMID: 33005303 PMCID: PMC7508700 DOI: 10.1016/j.csbj.2020.08.031] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advantages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems have become the most widely used genome editing technology in molecular biology laboratories all around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including the innovations, the applications in human disease research and gene therapy, as well as the challenges and opportunities that will be faced in the practical application of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
33
|
Cui Y, Liao X, Peng S, Tang T, Huang C, Yang C. OffScan: a universal and fast CRISPR off-target sites detection tool. BMC Genomics 2020; 21:872. [PMID: 32138651 PMCID: PMC7057453 DOI: 10.1186/s12864-019-6241-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The Type II clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) is a powerful genome editing technology, which is more and more popular in gene function analysis. In CRISPR/Cas, RNA guides Cas nuclease to the target site to perform DNA modification. RESULTS The performance of CRISPR/Cas depends on well-designed single guide RNA (sgRNA). However, the off-target effect of sgRNA leads to undesired mutations in genome and limits the use of CRISPR/Cas. Here, we present OffScan, a universal and fast CRISPR off-target detection tool. CONCLUSIONS OffScan is not limited by the number of mismatches and allows custom protospacer-adjacent motif (PAM), which is the target site by Cas protein. Besides, OffScan adopts the FM-index, which efficiently improves query speed and reduce memory consumption.
Collapse
Affiliation(s)
- Yingbo Cui
- School of Computer, National University of Defense Technology, Changsha,, 410073 China
| | - Xiangke Liao
- School of Computer, National University of Defense Technology, Changsha,, 410073 China
| | - Shaoliang Peng
- National Supercomputing Center, Changsha, 410082 China
- College of Information Science and Engineering, Hunan University, Changsha, 410006 China
| | - Tao Tang
- School of Computer, National University of Defense Technology, Changsha,, 410073 China
| | - Chun Huang
- School of Computer, National University of Defense Technology, Changsha,, 410073 China
| | - Canqun Yang
- School of Computer, National University of Defense Technology, Changsha,, 410073 China
| |
Collapse
|
34
|
Wang J, Zhang X, Cheng L, Luo Y. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. RNA Biol 2020; 17:13-22. [PMID: 31533522 PMCID: PMC6948960 DOI: 10.1080/15476286.2019.1669406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/14/2019] [Indexed: 12/18/2022] Open
Abstract
The CRISPR-Cas9 system has become the most promising and versatile tool for genetic manipulation applications. Albeit the technology has been broadly adopted by both academic and pharmaceutic societies, the activity (on-target) and specificity (off-target) of CRISPR-Cas9 are decisive factors for any application of the technology. Several in silico gRNA activity and specificity predicting models and web tools have been developed, making it much more convenient and precise for conducting CRISPR gene editing studies. In this review, we present an overview and comparative analysis of machine and deep learning (MDL)-based algorithms, which are believed to be the most effective and reliable methods for the prediction of CRISPR gRNA on- and off-target activities. As an increasing number of sequence features and characteristics are discovered and are incorporated into the MDL models, the prediction outcome is getting closer to experimental observations. We also introduced the basic principle of CRISPR activity and specificity and summarized the challenges they faced, aiming to facilitate the CRISPR communities to develop more accurate models for applying.
Collapse
Affiliation(s)
- Jun Wang
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Xiuqing Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Lixin Cheng
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Yonglun Luo
- BGI-Shenzhen, Shenzhen, China
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Department of Biomedicine, Aarhus University, Denmark
| |
Collapse
|
35
|
Shen W, Zhang J, Geng B, Qiu M, Hu M, Yang Q, Bao W, Xiao Y, Zheng Y, Peng W, Zhang G, Ma L, Yang S. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis. Microb Cell Fact 2019; 18:162. [PMID: 31581942 PMCID: PMC6777028 DOI: 10.1186/s12934-019-1219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Efficient and convenient genome-editing toolkits can expedite genomic research and strain improvement for desirable phenotypes. Zymomonas mobilis is a highly efficient ethanol-producing bacterium with a small genome size and desirable industrial characteristics, which makes it a promising chassis for biorefinery and synthetic biology studies. While classical techniques for genetic manipulation are available for Z. mobilis, efficient genetic engineering toolkits enabling rapidly systematic and high-throughput genome editing in Z. mobilis are still lacking. RESULTS Using Cas12a (Cpf1) from Francisella novicida, a recombinant strain with inducible cas12a expression for genome editing was constructed in Z. mobilis ZM4, which can be used to mediate RNA-guided DNA cleavage at targeted genomic loci. gRNAs were then designed targeting the replicons of native plasmids of ZM4 with about 100% curing efficiency for three native plasmids. In addition, CRISPR-Cas12a recombineering was used to promote gene deletion and insertion in one step efficiently and precisely with efficiency up to 90%. Combined with single-stranded DNA (ssDNA), CRISPR-Cas12a system was also applied to introduce minor nucleotide modification precisely into the genome with high fidelity. Furthermore, the CRISPR-Cas12a system was employed to introduce a heterologous lactate dehydrogenase into Z. mobilis with a recombinant lactate-producing strain constructed. CONCLUSIONS This study applied CRISPR-Cas12a in Z. mobilis and established a genome editing tool for efficient and convenient genome engineering in Z. mobilis including plasmid curing, gene deletion and insertion, as well as nucleotide substitution, which can also be employed for metabolic engineering to help divert the carbon flux from ethanol production to other products such as lactate demonstrated in this work. The CRISPR-Cas12a system established in this study thus provides a versatile and powerful genome-editing tool in Z. mobilis for functional genomic research, strain improvement, as well as synthetic microbial chassis development for economic biochemical production.
Collapse
Affiliation(s)
- Wei Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Mengyue Qiu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Mimi Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Qing Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Weiwei Bao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yubei Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
36
|
Scrascia M, D'Addabbo P, Roberto R, Porcelli F, Oliva M, Calia C, Dionisi AM, Pazzani C. Characterization of CRISPR-Cas Systems in Serratia marcescens Isolated from Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Microorganisms 2019; 7:microorganisms7090368. [PMID: 31546915 PMCID: PMC6780938 DOI: 10.3390/microorganisms7090368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
The CRISPR-Cas adaptive immune system has been attracting increasing scientific interest for biological functions and biotechnological applications. Data on the Serratia marcescens system are scarce. Here, we report a comprehensive characterisation of CRISPR-Cas systems identified in S. marcescens strains isolated as secondary symbionts of Rhynchophorus ferrugineus, also known as Red Palm Weevil (RPW), one of the most invasive pests of major cultivated palms. Whole genome sequencing was performed on four strains (S1, S5, S8, and S13), which were isolated from the reproductive apparatus of RPWs. Subtypes I-F and I-E were harboured by S5 and S8, respectively. No CRISPR-Cas system was detected in S1 or S13. Two CRISPR arrays (4 and 51 spacers) were detected in S5 and three arrays (11, 31, and 30 spacers) were detected in S8. The CRISPR-Cas systems were located in the genomic region spanning from ybhR to phnP, as if this were the only region where CRISPR-Cas loci were acquired. This was confirmed by analyzing the S. marcescens complete genomes available in the NCBI database. This region defines a genomic hotspot for horizontally acquired genes and/or CRISPR-Cas systems. This study also supplies the first identification of subtype I-E in S. marcescens.
Collapse
Affiliation(s)
- Maria Scrascia
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Pietro D'Addabbo
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Roberta Roberto
- Department of Plants, Food, and Soil Sciences, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Francesco Porcelli
- Department of Plants, Food, and Soil Sciences, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marta Oliva
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Carla Calia
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Anna Maria Dionisi
- Department of Infectious diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Carlo Pazzani
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
37
|
|
38
|
Mougari S, Abrahao J, Oliveira GP, Bou Khalil JY, La Scola B. Role of the R349 Gene and Its Repeats in the MIMIVIRE Defense System. Front Microbiol 2019; 10:1147. [PMID: 31178847 PMCID: PMC6538805 DOI: 10.3389/fmicb.2019.01147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 01/16/2023] Open
Abstract
MIMIVIRE is a defense system described in lineage A Mimivirus (Mimiviridae family) that mediates resistance against Zamilon virophage. It is composed of putative helicase and nuclease associated with a gene of unknown function called R349, which contains four 15 bp repeats homologous to the virophage sequence. In a previous study, the silencing of such genes restored virophage susceptibility. Moreover, the CRISPR Cas-4 like activity of the nuclease has recently been characterized. In this study, a recently isolated Mimivirus of lineage A with R349 gene lacking 3 of 4 repeats was demonstrated to be susceptible to Zamilon. To reinforce the importance of the R349 gene in the MIMIVIRE system, we developed and presented, for the first time to our knowledge, a protocol for Mimivirus genomic editing. By knocking out R349 gene in a Mimivirus lineage A, we observed the replication of Zamilon, indicating that this gene is critical in the resistance against this specific group of virophages.
Collapse
Affiliation(s)
- Said Mougari
- Unité MEPHI, Aix Marseille Université, IHU Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Jonatas Abrahao
- Unité MEPHI, Aix Marseille Université, IHU Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France.,Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Graziele P Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacques Y Bou Khalil
- Unité MEPHI, Aix Marseille Université, IHU Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Unité MEPHI, Aix Marseille Université, IHU Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
39
|
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180087. [PMID: 30905284 PMCID: PMC6452270 DOI: 10.1098/rstb.2018.0087] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CRISPR-Cas, the bacterial and archaeal adaptive immunity systems, encompass a complex machinery that integrates fragments of foreign nucleic acids, mostly from mobile genetic elements (MGE), into CRISPR arrays embedded in microbial genomes. Transcripts of the inserted segments (spacers) are employed by CRISPR-Cas systems as guide (g)RNAs for recognition and inactivation of the cognate targets. The CRISPR-Cas systems consist of distinct adaptation and effector modules whose evolutionary trajectories appear to be at least partially independent. Comparative genome analysis reveals the origin of the adaptation module from casposons, a distinct type of transposons, which employ a homologue of Cas1 protein, the integrase responsible for the spacer incorporation into CRISPR arrays, as the transposase. The origin of the effector module(s) is far less clear. The CRISPR-Cas systems are partitioned into two classes, class 1 with multisubunit effectors, and class 2 in which the effector consists of a single, large protein. The class 2 effectors originate from nucleases encoded by different MGE, whereas the origin of the class 1 effector complexes remains murky. However, the recent discovery of a signalling pathway built into the type III systems of class 1 might offer a clue, suggesting that type III effector modules could have evolved from a signal transduction system involved in stress-induced programmed cell death. The subsequent evolution of the class 1 effector complexes through serial gene duplication and displacement, primarily of genes for proteins containing RNA recognition motif domains, can be hypothetically reconstructed. In addition to the multiple contributions of MGE to the evolution of CRISPR-Cas, the reverse flow of information is notable, namely, recruitment of minimalist variants of CRISPR-Cas systems by MGE for functions that remain to be elucidated. Here, we attempt a synthesis of the diverse threads that shed light on CRISPR-Cas origins and evolution. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | | |
Collapse
|
40
|
O'Brien SJ, Ekman MB, Manek S, Galandiuk S. CRISPR-mediated gene editing for the surgeon scientist. Surgery 2019; 166:129-137. [PMID: 30922545 DOI: 10.1016/j.surg.2019.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Tremendous advances have occurred in gene editing during the past 20 years with the development of a number of systems. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9) system represents an exciting area of research. This review examines both the relevant studies pertaining to the history, current status, and modifications of this system, in comparison with other gene-editing systems and future applications, and limitations of the CRISPR-Cas9 gene-editing system, with a focus on applications of relevance to the surgeon scientist. The CRISPR-Cas9 system was described initially in 2012 for gene editing in bacteria and then in human cells, and since then, a number of modifications have improved the efficiency and specificity of gene editing. Clinical studies have been limited because further research is required to verify its safety in patients. Some clinical trials in oncology have opened, and early studies have shown that gene editing may have a particular role in the field of organ transplantation and in the care of trauma patients. Gene editing is likely to play an important role in future research in many aspects of the surgery arena.
Collapse
Affiliation(s)
- Stephen J O'Brien
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Matthew B Ekman
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Stephen Manek
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY
| | - Susan Galandiuk
- Price Institute of Surgical Research, The Hiram C. Polk Jr MD Department of Surgery, University of Louisville, Louisville, KY.
| |
Collapse
|
41
|
McDonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics 2019; 20:105. [PMID: 30717668 PMCID: PMC6360697 DOI: 10.1186/s12864-019-5439-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background Bacteria are prey for many viruses that hijack the bacterial cell in order to propagate, which can result in bacterial cell lysis and death. Bacteria have developed diverse strategies to counteract virus predation, one of which is the clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR associated (Cas) proteins immune defense system. Species within the bacterial family Vibrionaceae are marine organisms that encounter large numbers of phages. Our goal was to determine the significance of CRISPR-Cas systems as a mechanism of defense in this group by investigating their prevalence, phylogenetic distribution, and genome context. Results Herein, we describe all the CRISPR-Cas system types and their distribution within the family Vibrionaceae. In Vibrio cholerae genomes, we identified multiple variant type I-F systems, which were also present in 41 additional species. In a large number of Vibrio species, we identified a mini type I-F system comprised of tniQcas5cas7cas6f, which was always associated with Tn7-like transposons. The Tn7-like elements, in addition to the CRISPR-Cas system, also contained additional cargo genes such as restriction modification systems and type three secretion systems. A putative hybrid CRISPR-Cas system was identified containing type III-B genes followed by a type I-F cas6f and a type I-F CRISPR that was associated with a prophage in V. cholerae and V. metoecus strains. Our analysis identified CRISPR-Cas types I-C, I-E, I-F, II-B, III-A, III-B, III-D, and the rare type IV systems as well as cas loci architectural variants among 70 species. All systems described contained a CRISPR array that ranged in size from 3 to 179 spacers. The systems identified were present predominantly within mobile genetic elements (MGEs) such as genomic islands, plasmids, and transposon-like elements. Phylogenetic analysis of Cas proteins indicated that the CRISPR-Cas systems were acquired by horizontal gene transfer. Conclusions Our data show that CRISPR-Cas systems are phylogenetically widespread but sporadic in occurrence, actively evolving, and present on MGEs within Vibrionaceae. Electronic supplementary material The online version of this article (10.1186/s12864-019-5439-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathan D McDonald
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA
| | - Abish Regmi
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA
| | - Daniel P Morreale
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA
| | - Joseph D Borowski
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, 328 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
42
|
Abstract
Though making up nearly half of the known CRISPR-Cas9 family of enzymes, the Type II-C CRISPR-Cas9 has been underexplored for their molecular mechanisms and potential in safe gene editing applications. In comparison with the more popular Type II-A CRISPR-Cas9, the Type II-C enzymes are generally smaller in size and utilize longer base pairing in identification of their DNA substrates. These characteristics suggest easier portability and potentially less off-targets for Type II-C in gene editing applications. We describe identification and biochemical characterization of a thermophilic Type II-C CRISPR-Cas from Acidothermus cellulolyticus (AceCas9). We describe several library-based methods that enabled us to identify the PAM sequence and elements critical to protospacer mismatch surveillance of AceCas9.
Collapse
|
43
|
Sahay S, Shome R, Sankarasubramanian J, Vishnu US, Prajapati A, Natesan K, Shome BR, Rahman H, Rajendhran J. Genome sequence analysis of the Indian strain Mannheimia haemolytica serotype A2 from ovine pneumonic pasteurellosis. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
44
|
Cui Y, Xu J, Cheng M, Liao X, Peng S. Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip Sci 2018; 10:455-465. [PMID: 29644494 DOI: 10.1007/s12539-018-0298-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
The adaptive immunity system in bacteria and archaea, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-associate (CRISPR/Cas), has been adapted as a powerful gene editing tool and got a broad application in genome research field due to its ease of use and cost-effectiveness. The performance of CRISPR/Cas relies on well-designed single-guide RNA (sgRNA), so a lot of bioinformatic tools have been developed to assist the design of highly active and specific sgRNA. These tools vary in design specifications, parameters, genomes and so on. To help researchers to choose their proper tools, we reviewed various sgRNA design tools, mainly focusing on their on-target efficiency prediction model and off-target detection algorithm.
Collapse
Affiliation(s)
- Yingbo Cui
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - Jiaming Xu
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - Minxia Cheng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Xiangke Liao
- College of Computer, National University of Defense Technology, Changsha, 410073, China
| | - Shaoliang Peng
- College of Computer, National University of Defense Technology, Changsha, 410073, China.
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
- National Supercomputing Center in Changsha, Changsha, 410082, China.
| |
Collapse
|
45
|
Shtratnikova VY, Belalov I, Kasianov AS, Schelkunov MI, Logacheva Maria DA, Novikov AD, Shatalov AA, Gerasimova TV, Yanenko AS, Makeev VJ. The complete genome of the oil emulsifying strain Thalassolituus oleivorans K-188 from the Barents Sea. Mar Genomics 2018; 37:18-20. [PMID: 33250120 DOI: 10.1016/j.margen.2017.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/17/2017] [Indexed: 11/16/2022]
Abstract
Gammaproteobacterium Thalassolituus oleivorans plays an important role in oil degradation in sea water through emulsifying crude oil and alkanes at low temperatures in polar sea environment. Here we report the complete genome sequence of K-188 strain (VKPM B-9394) isolated in the Barents Sea and compare it with other known Thalassolituus oleivorans strains. The Thalassolituus strains are differed in orthologs number of the genes of alkane degradation, transport proteins, genes of sugar utilization, endonucleases, signaling proteins, transcriptional regulators and presence of CRISPR/Cas locus. Also only the genome of K-188 contains the 3-hydroxyalkanoate synthetase.
Collapse
Affiliation(s)
- Victoria Yu Shtratnikova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye gory, h. 1, b. 40, Moscow 119991, Russian Federation.
| | - Ilya Belalov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave., h. 33, b. 2, Moscow 119071, Russian Federation.
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Gubkina str., h. 3, Moscow 119991, Russian Federation.
| | - Mikhail I Schelkunov
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye gory, h. 1, b. 40, Moscow 119991, Russian Federation; Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per., h. 19, b. 1, Moscow 127051, Russian Federation.
| | - D A Logacheva Maria
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskye gory, h. 1, b. 40, Moscow 119991, Russian Federation.
| | - Andrey D Novikov
- State Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., h. 1, Moscow 117545, Russian Federation.
| | - Alexey A Shatalov
- State Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., h. 1, Moscow 117545, Russian Federation.
| | - Tatyana V Gerasimova
- State Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., h. 1, Moscow 117545, Russian Federation
| | - Alexander S Yanenko
- State Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., h. 1, Moscow 117545, Russian Federation.
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Gubkina str., h. 3, Moscow 119991, Russian Federation; State Institute for Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., h. 1, Moscow 117545, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russian Federation.
| |
Collapse
|
46
|
Koonin EV, Makarova KS. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Genome Biol Evol 2017; 9:2812-2825. [PMID: 28985291 PMCID: PMC5737515 DOI: 10.1093/gbe/evx192] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2017] [Indexed: 12/13/2022] Open
Abstract
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin-antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the "guns for hire" paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Janga MR, Campbell LM, Rathore KS. CRISPR/Cas9-mediated targeted mutagenesis in upland cotton (Gossypium hirsutum L.). PLANT MOLECULAR BIOLOGY 2017; 94:349-360. [PMID: 28258551 DOI: 10.1007/s11103-017-0599-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/23/2017] [Indexed: 05/18/2023]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR associated (Cas)9 protein system has emerged as a simple and efficient tool for genome editing in eukaryotic cells. It has been shown to be functional in several crop species, yet there are no reports on the application of this or any other genome editing technologies in the cotton plant. Cotton is an important crop that is grown mainly for its fiber, but its seed also serves as a useful source of edible oil and feed protein. Most of the commercially-grown cotton is tetraploid, thus making it much more difficult to target both sets of homeologous alleles. Therefore, in order to understand the efficacy of the CRISPR/Cas9 system to target a gene within the genome of cotton, we made use of a transgenic cotton line previously generated in our laboratory that had a single copy of the green fluorescent protein (GFP) gene integrated into its genome. We demonstrate, for the first time, the use of this powerful new tool in targeted knockout of a gene residing in the cotton genome. By following the loss of GFP fluorescence, we were able to observe the cells that had undergone targeted mutations as a result of CRISPR/Cas9 activity. In addition, we provide examples of the different types of indels obtained by Cas9-mediated cleavage of the GFP gene, guided by three independent sgRNAs. The results provide useful information that will help us target important native genes in the cotton plant in future.
Collapse
Affiliation(s)
- Madhusudhana R Janga
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843-2123, USA
| | - LeAnne M Campbell
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843-2123, USA
| | - Keerti S Rathore
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, 77843-2123, USA.
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2474, USA.
| |
Collapse
|
48
|
Abstract
Evolution of bacteria and archaea involves an incessant arms race against an enormous diversity of genetic parasites. Accordingly, a substantial fraction of the genes in most bacteria and archaea are dedicated to antiparasite defense. The functions of these defense systems follow several distinct strategies, including innate immunity; adaptive immunity; and dormancy induction, or programmed cell death. Recent comparative genomic studies taking advantage of the expanding database of microbial genomes and metagenomes, combined with direct experiments, resulted in the discovery of several previously unknown defense systems, including innate immunity centered on Argonaute proteins, bacteriophage exclusion, and new types of CRISPR-Cas systems of adaptive immunity. Some general principles of function and evolution of defense systems are starting to crystallize, in particular, extensive gain and loss of defense genes during the evolution of prokaryotes; formation of genomic defense islands; evolutionary connections between mobile genetic elements and defense, whereby genes of mobile elements are repeatedly recruited for defense functions; the partially selfish and addictive behavior of the defense systems; and coupling between immunity and dormancy induction/programmed cell death.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894;
| |
Collapse
|
49
|
Casey A, Jordan K, Coffey A, Fox EM, McAuliffe O. Comparative Genomic Analysis of Two Serotype 1/2b Listeria monocytogenes Isolates from Analogous Environmental Niches Demonstrates the Influence of Hypervariable Hotspots in Defining Pathogenesis. Front Nutr 2016; 3:54. [PMID: 28066772 PMCID: PMC5174086 DOI: 10.3389/fnut.2016.00054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022] Open
Abstract
The vast majority of clinical human listeriosis cases are caused by serotype 1/2a, 1/2b, 1/2c, and 4b isolates of Listeria monocytogenes. The ability of L. monocytogenes to establish a systemic listeriosis infection within a host organism relies on a combination of genes that are involved in cell recognition, internalization, evasion of host defenses, and in vitro survival and growth. Recently, whole genome sequencing and comparative genomic analysis have proven to be powerful tools for the identification of these virulence-associated genes in L. monocytogenes. In this study, two serotype 1/2b strains of L. monocytogenes with analogous isolation sources, but differing infection abilities, were subjected to comparative genomic analysis. The results from this comparison highlight the importance of accessory genes (genes that are not part of the conserved core genome) in L. monocytogenes pathogenesis. In addition, a number of factors, which may account for the perceived inability of one of the strains to establish a systemic infection within its host, have been identified. These factors include the notable absence of the Listeria pathogenicity island 3 and the stress survival islet, of which the latter has been demonstrated to enhance the survival ability of L. monocytogenes during its passage through the host intestinal tract, leading to a higher infection rate. The findings from this research demonstrate the influence of hypervariable hotspots in defining the physiological characteristics of a L. monocytogenes strain and indicate that the emergence of a non-pathogenic isolate of L. monocytogenes may result from a cumulative loss of functionality rather than by a single isolated genetic event.
Collapse
Affiliation(s)
- Aidan Casey
- Teagasc Food Research Centre, Fermoy, Ireland; Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland
| | | | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology , Bishopstown , Ireland
| | - Edward M Fox
- CSIRO Agriculture and Food , Werribee, VIC , Australia
| | | |
Collapse
|
50
|
|