1
|
Zhang A, Liu Q, Du X, Xing B, Zhang S, Li Y, Hao L, Wei Y, Liu Y, Li P, Hu S, Peng R. Tissue-Specific RNA-Seq Analysis of Cotton Roots' Response to Compound Saline-Alkali Stress and the Functional Validation of the Key Gene GhERF2. PLANTS (BASEL, SWITZERLAND) 2025; 14:756. [PMID: 40094772 PMCID: PMC11901839 DOI: 10.3390/plants14050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Saline-alkali stress is one of the major abiotic stresses threatening crop growth. Cotton, as a "pioneer crop" that can grow in saline and alkali lands, is of great significance for understanding the regulatory mechanisms of plant response to stresses. Upland cotton has thus become a model plant for researchers to explore plant responses to saline-alkali stresses. In this study, RNA sequencing was employed to analyze tissue-specific expression of root tissues of TM-1 seedlings 20 min after exposure to compound saline-alkali stress. The RNA-Seq results revealed significant molecular differences in the responses of different root regions to the stress treatment. A total of 3939 differentially expressed genes (DEGs) were identified from pairwise comparisons between the non-root tip and root tip samples, which were primarily enriched in pathways including plant hormone signal transduction, MAPK signaling, and cysteine and methionine metabolism. Combined with the expression pattern investigation by quantitative real-time PCR (qRT-PCR) experiments, a key gene, GhERF2 (GH_A08G1918, ethylene-responsive transcription factor 2-like), was identified to be associated with saline-alkali tolerance. Through virus-induced gene silencing (VIGS), the GhERF2-silenced plants exhibited a more severe wilting phenotype under combined salt-alkali stress, along with a significant reduction in leaf chlorophyll content and fresh weights of plants and roots. Additionally, these plants showed greater cellular damage and a lower ability to scavenge reactive oxygen species (ROS) when exposed to the stress. These findings suggest that the GhERF2 gene may play a positive regulatory role in cotton responses to salt-alkali stress. These findings not only enhance our understanding of the molecular mechanisms underlying cotton response to compound saline-alkali stress, but also provide a foundation for future molecular breeding efforts aimed at improving cotton saline-alkali tolerance.
Collapse
Affiliation(s)
- Aiming Zhang
- College of Agricultural, Tarim University, Alar 843300, China; (A.Z.); (B.X.); (S.Z.); (Y.L.); (L.H.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Qiankun Liu
- The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Xue Du
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Baoguang Xing
- College of Agricultural, Tarim University, Alar 843300, China; (A.Z.); (B.X.); (S.Z.); (Y.L.); (L.H.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Shaoliang Zhang
- College of Agricultural, Tarim University, Alar 843300, China; (A.Z.); (B.X.); (S.Z.); (Y.L.); (L.H.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Yanfang Li
- College of Agricultural, Tarim University, Alar 843300, China; (A.Z.); (B.X.); (S.Z.); (Y.L.); (L.H.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Liuan Hao
- College of Agricultural, Tarim University, Alar 843300, China; (A.Z.); (B.X.); (S.Z.); (Y.L.); (L.H.)
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Yangyang Wei
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Yuling Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| | - Shoulin Hu
- College of Agricultural, Tarim University, Alar 843300, China; (A.Z.); (B.X.); (S.Z.); (Y.L.); (L.H.)
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (X.D.); (Y.W.); (Y.L.)
| |
Collapse
|
2
|
Wang D, Zheng K, Long W, Zhao L, Li W, Xue X, Han S. Cytosolic and Nucleosolic Calcium-Regulated Long Non-Coding RNAs and Their Target Protein-Coding Genes in Response to Hyperosmolarity and Salt Stresses in Arabidopsis thaliana. Int J Mol Sci 2025; 26:2086. [PMID: 40076708 PMCID: PMC11900983 DOI: 10.3390/ijms26052086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in plant biotic and abiotic stress responses, in which Ca2+ also plays a significant role. There is diversity in the regulation of different gene expressions by cytosolic Ca2+ ([Ca2+]cyt) and nucleosolic Ca2+ ([Ca2+]nuc). However, no studies have yet explored the interrelationship between lncRNAs and calcium signaling, nor how calcium signaling regulates the expression of lncRNAs. Here, we use transgenic materials PV-NES and NLS-PV, which simulate [Ca2+]cyt- and [Ca2+]nuc-deficient mutants, respectively, and wild type (WT) materials in response to hyperosmolarity (250 mM sorbitol) or salt stresses (125 mM NaCl) at different time points to obtain RNA-seq data, respectively. Then, we proceed with the screening of lncRNAs, adding 688 new lncRNAs to the known Arabidopsis lncRNA database. Subsequently, through the analysis of differentially expressed lncRNA genes, it was found that cytosolic or nucleosolic calcium signals have distinct regulatory effects on differentially expressed lncRNAs (DElncRNAs) and differentially expressed protein-coding genes (DEPCGs) treated with high-concentration NaCl and sorbitol at different times. Furthermore, through weighted correlation network analysis (WGCNA), it is discovered that under hyperosmolarity and salt stresses, lncRNA-associated PCGs are related to the cell wall structure, the plasma membrane component, and osmotic substances through trans-regulation. In addition, by screening for cis-regulatory target PCGs of Ca2+-regulated lncRNAs related to osmotic stress, we obtain a series of lncRNA-PCG pairs related to water transport, cell wall components, and lateral root formation. Therefore, we expand the existing Arabidopsis lncRNA database and obtain a series of lncRNAs and PCGs regulated by [Ca2+]cyt or [Ca2+]nuc in response to salt and hyperosmolarity stress, providing a new perspective for subsequent research on lncRNAs. We also explore the trans- and cis-regulated target PCGs of lncRNAs regulated by calcium signaling, providing new insights for further studying salt stress and osmotic stress.
Collapse
Affiliation(s)
- Doudou Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Wenfen Long
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Liang Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (D.W.); (K.Z.); (W.L.); (L.Z.); (W.L.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
3
|
Sotta N, Li W, Fujiwara T. Efficient production system for hydrogel-based transparent soil for plant root observation. Biotechniques 2025; 77:35-39. [PMID: 39886808 DOI: 10.1080/07366205.2025.2457892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Observation of plant root morphology in soil is of fundamental importance in plant research, but the lack of transparency of the soil hampers direct observation of roots. One of the approaches to overcome this technical limitation is the use of "transparent soil" (TS), hydrogel-based beads produced by spherification of gelling agents. However, the production of TS by natural dripping of gelling solution can be labor intensive, time consuming and difficult to maintain consistent product quality. Here we present a semi-automated system for TS production. A three-channel peristatic pump controls the critical parameters for spherification, such as drop height and ionic strength, allowing larger-scale TS production with less manual operation. This system improves the efficiency of experiments using TS and enables large-scale experiments requiring large amounts of TS.
Collapse
Affiliation(s)
- Naoyuki Sotta
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenhao Li
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Pradhan S, Bhattacharjee A, Dubey S, Sharma S. Ameliorating salt stress in tomato by a top-down approach of acclimatizing the rhizosphere microbiome. PHYSIOLOGIA PLANTARUM 2025; 177:e70071. [PMID: 39868677 DOI: 10.1111/ppl.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
Soil salinization adversely impacts plant and soil health. While amendment with chemicals is not sustainable, the application of bioinoculants suffers from competition with indigenous microbes. Hence, microbiome-based rhizosphere engineering, focussing on acclimatization of rhizosphere microbiome under selection pressure to facilitate plant growth, exhibits promise. This study aimed to acclimatize a salt-susceptible tomato cultivar to high salt concentration through a microbiome-based top-down approach of rhizosphere engineering. Multiple passaging of the rhizosphere microbiome of the cultivar was performed for twelve plant growth cycles in the presence of increasing salt stress. The rhizosphere microbiome of the phenotypically best-grown plant under stress was transferred as inoculum to the next plant growth cycle. Plant growth attributes and stress marker levels were assessed, expression levels of plant salt stress-responsive genes were examined, and the bacterial community composition in the initial and final plant growth cycles was analysed. Rhizosphere microbiome inoculation promoted plant growth under increasing salt concentrations. Stress markers were reduced in plants inoculated with an acclimatized microbiome, while the root architecture was enhanced, indicating salt tolerance. The salt stress-responsive genes were downregulated in salt-treated plants, whereas upregulation of these genes was observed upon microbiome inoculation. The relative abundance of Exiguobacterium, Arthrobacter, and Lysobacter was higher in microbiome-treated plants under salt stress compared to the salt-treated plants without microbiome inoculation. The strategy of acclimatizing the rhizosphere microbiome of a salt-susceptible tomato cultivar was successfully implemented for stress amelioration and plant growth promotion, thereby offering a sustainable means with immense potential for application in other crops.
Collapse
Affiliation(s)
- Salila Pradhan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Annapurna Bhattacharjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shubham Dubey
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
5
|
Ali S, Tyagi A, Park S, Varshney RK, Bae H. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly. J Adv Res 2024:S2090-1232(24)00494-6. [PMID: 39505145 DOI: 10.1016/j.jare.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Roots perform multifaceted functions in plants such as movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Despite the enormous advancements in crop improvement, the majority of recent efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle which has made it difficult to identify desired root traits for the crop improvement. However, with the aid of high-throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrate on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. AIM OF THE REVIEW The goal of this review is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and stress adaptation. KEY SCIENTIFIC CONCEPTS OF REVIEW In plants, FER is a unique RLK because it can act as a multitasking sensor and regulates diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving Rapid Alkalinization Factor (RALF) peptides, calcium, reactive oxygen species (ROS) and hormonal signaling pathways.. We also highlight number of outstanding questions in FER mediated root responses that warrants future investigation. To sum up, this review provides a comprehsive information on the role of FER in root biology which can be utilized for the development of future climate resilient and high yielding crops based on the modified root system.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Rajeev K Varshney
- Center of Excellence in Genomics &, Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
6
|
Beckers A, Mamiya A, Furutani M, Bennett MJ, Fukaki H, Sawa S, Gantet P, Laplaze L, Guyomarc'h S. Multiple layers of regulators emerge in the network controlling lateral root organogenesis. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00268-1. [PMID: 39455398 DOI: 10.1016/j.tplants.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Lateral root (LR) formation is a postembryonic organogenesis process that is crucial for plant root system development and adaptation to heterogenous soil environments. Since the early 1990s, a wealth of experimental data on arabidopsis (Arabidopsis thaliana) has helped reveal the LR formation regulatory network, in which dynamic auxin distribution and transcriptional cascades direct root cells through their organogenesis pathway. Some parts of this network appear conserved across diverse plant species or distinct developmental contexts. Recently, our knowledge of this process dramatically expanded thanks to technical advances, from single cell profiling to whole-root system phenotyping. Interestingly, new players are now emerging in this network, such as fatty acids and reactive oxygen species (ROS), transforming our knowledge of this hidden half of plant biology.
Collapse
Affiliation(s)
- Antoine Beckers
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Akihito Mamiya
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiko Furutani
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan; Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shinichiro Sawa
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto, Japan; Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Pascal Gantet
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Laurent Laplaze
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Soazig Guyomarc'h
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| |
Collapse
|
7
|
Wang Z, Yung WS, Gao Y, Huang C, Zhao X, Chen Y, Li MW, Lam HM. From phenotyping to genetic mapping: identifying water-stress adaptations in legume root traits. BMC PLANT BIOLOGY 2024; 24:749. [PMID: 39103780 DOI: 10.1186/s12870-024-05477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions. RESULTS This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed. CONCLUSIONS This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.
Collapse
Affiliation(s)
- Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Yamin Gao
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cheng Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Key Laboratory of the Ministry of Education for Crop Physiology and Molecular Biology, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xusheng Zhao
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, & School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
8
|
Zhu C, Yu H, Lu T, Li Y, Jiang W, Li Q. Deep learning-based association analysis of root image data and cucumber yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:696-716. [PMID: 38193347 DOI: 10.1111/tpj.16627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The root system is important for the absorption of water and nutrients by plants. Cultivating and selecting a root system architecture (RSA) with good adaptability and ultrahigh productivity have become the primary goals of agricultural improvement. Exploring the correlation between the RSA and crop yield is important for cultivating crop varieties with high-stress resistance and productivity. In this study, 277 cucumber varieties were collected for root system image analysis and yield using germination plates and greenhouse cultivation. Deep learning tools were used to train ResNet50 and U-Net models for image classification and segmentation of seedlings and to perform quality inspection and productivity prediction of cucumber seedling root system images. The results showed that U-Net can automatically extract cucumber root systems with high quality (F1_score ≥ 0.95), and the trained ResNet50 can predict cucumber yield grade through seedling root system image, with the highest F1_score reaching 0.86 using 10-day-old seedlings. The root angle had the strongest correlation with yield, and the shallow- and steep-angle frequencies had significant positive and negative correlations with yield, respectively. RSA and nutrient absorption jointly affected the production capacity of cucumber plants. The germination plate planting method and automated root system segmentation model used in this study are convenient for high-throughput phenotypic (HTP) research on root systems. Moreover, using seedling root system images to predict yield grade provides a new method for rapidly breeding high-yield RSA in crops such as cucumbers.
Collapse
Affiliation(s)
- Cuifang Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjun Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Lu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weijie Jiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qiang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
9
|
Tyagi A, Ali S, Park S, Bae H. Deciphering the role of mechanosensitive channels in plant root biology: perception, signaling, and adaptive responses. PLANTA 2023; 258:105. [PMID: 37878056 DOI: 10.1007/s00425-023-04261-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
MAIN CONCLUSION Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.
Collapse
Affiliation(s)
- Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
10
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
11
|
Zhang X, Wang H, Yang M, Liu R, Zhang X, Jia Z, Li P. Natural variation in ZmNAC087 contributes to total root length regulation in maize seedlings under salt stress. BMC PLANT BIOLOGY 2023; 23:392. [PMID: 37580686 PMCID: PMC10424409 DOI: 10.1186/s12870-023-04393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Soil salinity poses a significant challenge to crop growth and productivity, particularly affecting the root system, which is vital for water and nutrient uptake. To identify genetic factors that influence root elongation in stressful environments, we conducted a genome-wide association study (GWAS) to investigate the natural variation associated with total root length (TRL) under salt stress and normal conditions in maize seedlings. Our study identified 69 genetic variants associated with 38 candidate genes, among which a specific single nucleotide polymorphism (SNP) in ZmNAC087 was significantly associated with TRL under salt stress. Transient expression and transactivation assays revealed that ZmNAC087 encodes a nuclear-localized protein with transactivation activity. Further candidate gene association analysis showed that non-coding variations in ZmNAC087 promoter contribute to differential ZmNAC087 expression among maize inbred lines, potentially influencing the variation in salt-regulated TRL. In addition, through nucleotide diversity analysis, neutrality tests, and coalescent simulation, we demonstrated that ZmNAC087 underwent selection during maize domestication and improvement. These findings highlight the significance of natural variation in ZmNAC087, particularly the favorable allele, in maize salt tolerance, providing theoretical basis and valuable genetic resources for the development of salt-tolerant maize germplasm.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Yang S, Lee H. Salinity-Triggered Responses in Plant Apical Meristems for Developmental Plasticity. Int J Mol Sci 2023; 24:ijms24076647. [PMID: 37047619 PMCID: PMC10095309 DOI: 10.3390/ijms24076647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Salt stress severely affects plant growth and development. The plant growth and development of a sessile organism are continuously regulated and reformed in response to surrounding environmental stress stimuli, including salinity. In plants, postembryonic development is derived mainly from primary apical meristems of shoots and roots. Therefore, to understand plant tolerance and adaptation under salt stress conditions, it is essential to determine the stress response mechanisms related to growth and development based on the primary apical meristems. This paper reports that the biological roles of microRNAs, redox status, reactive oxygen species (ROS), nitric oxide (NO), and phytohormones, such as auxin and cytokinin, are important for salt tolerance, and are associated with growth and development in apical meristems. Moreover, the mutual relationship between the salt stress response and signaling associated with stem cell homeostasis in meristems is also considered.
Collapse
Affiliation(s)
- Soeun Yang
- Department of Biotechnology, Duksung Women’s University, Seoul 03169, Republic of Korea
| | - Horim Lee
- Department of Biotechnology, Duksung Women’s University, Seoul 03169, Republic of Korea
| |
Collapse
|
13
|
Shelden MC, Munns R. Crop root system plasticity for improved yields in saline soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1120583. [PMID: 36909408 PMCID: PMC9999379 DOI: 10.3389/fpls.2023.1120583] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Crop yields must increase to meet the demands of a growing world population. Soil salinization is increasing due to the impacts of climate change, reducing the area of arable land for crop production. Plant root systems are plastic, and their architecture can be modulated to (1) acquire nutrients and water for growth, and (2) respond to hostile soil environments. Saline soils inhibit primary root growth and alter root system architecture (RSA) of crop plants. In this review, we explore how crop root systems respond and adapt to salinity, focusing predominately on the staple cereal crops wheat, maize, rice, and barley, that all play a major role in global food security. Cereal crops are classified as glycophytes (salt-sensitive) however salt-tolerance can differ both between species and within a species. In the past, due to the inherent difficulties associated with visualising and measuring root traits, crop breeding strategies have tended to focus on optimising shoot traits. High-resolution phenotyping techniques now make it possible to visualise and measure root traits in soil systems. A steep, deep and cheap root ideotype has been proposed for water and nitrogen capture. Changes in RSA can be an adaptive strategy to avoid saline soils whilst optimising nutrient and water acquisition. In this review we propose a new model for designing crops with a salt-tolerant root ideotype. The proposed root ideotype would exhibit root plasticity to adapt to saline soils, root anatomical changes to conserve energy and restrict sodium (Na+) uptake, and transport mechanisms to reduce the amount of Na+ transported to leaves. In the future, combining high-resolution root phenotyping with advances in crop genetics will allow us to uncover root traits in complex crop species such as wheat, that can be incorporated into crop breeding programs for yield stability in saline soils.
Collapse
Affiliation(s)
- Megan C. Shelden
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
14
|
Abbas M, Abid MA, Meng Z, Abbas M, Wang P, Lu C, Askari M, Akram U, Ye Y, Wei Y, Wang Y, Guo S, Liang C, Zhang R. Integrating advancements in root phenotyping and genome-wide association studies to open the root genetics gateway. PHYSIOLOGIA PLANTARUM 2022; 174:e13787. [PMID: 36169590 DOI: 10.1111/ppl.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plant adaptation to challenging environmental conditions around the world has made root growth and development an important research area for plant breeders and scientists. Targeted manipulation of root system architecture (RSA) to increase water and nutrient use efficiency can minimize the adverse effects of climate change on crop production. However, phenotyping of RSA is a major bottleneck since the roots are hidden in the soil. Recently the development of 2- and 3D root imaging techniques combined with the genome-wide association studies (GWASs) have opened up new research tools to identify the genetic basis of RSA. These approaches provide a comprehensive understanding of the RSA, by accelerating the identification and characterization of genes involved in root growth and development. This review summarizes the latest developments in phenotyping techniques and GWAS for RSA, which are used to map important genes regulating various aspects of RSA under varying environmental conditions. Furthermore, we discussed about the state-of-the-art image analysis tools integrated with various phenotyping platforms for investigating and quantifying root traits with the highest phenotypic plasticity in both artificial and natural environments which were used for large scale association mapping studies, leading to the identification of RSA phenotypes and their underlying genetics with the greatest potential for RSA improvement. In addition, challenges in root phenotyping and GWAS are also highlighted, along with future research directions employing machine learning and pan-genomics approaches.
Collapse
Affiliation(s)
- Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Ali Abid
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Peilin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Askari
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Umar Akram
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Ye
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunxiao Wei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Urfan M, Sharma S, Hakla HR, Rajput P, Andotra S, Lehana PK, Bhardwaj R, Khan MS, Das R, Kumar S, Pal S. Recent trends in root phenomics of plant systems with available methods- discrepancies and consonances. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1311-1321. [PMID: 35910442 PMCID: PMC9334470 DOI: 10.1007/s12298-022-01209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 06/03/2023]
Abstract
The phenotyping of plant roots is a challenging task and poses a major lacuna in plant root research. Roots rhizospheric zone is affected by several environmental cues among which salinity, drought, heavy metal and soil pH are key players. Among biological factors, fungal, nematode and bacterial interactions with roots are vital for improving nutrient uptake efficiency in plants. The subterranean nature of a plant root and the limited number of approaches for root phenotyping offers a great challenge to the plant breeders to select a desirable root trait under different stress conditions. Identification of key root traits can provide a basic understanding for generating crop plants with enhanced ability to withstand various biotic or abiotic stresses. For instance, crops with improved soil exploration potential, phosphate uptake efficiency, water use efficiency and others. Laboratory methods such as hydroponics, rhizotron, rhizoslide and luminescence observatory for roots do not provide precise and desired root quantification attributes. Though 3D imaging by X-ray computed tomography (X-ray-CT) and magnetic resonance imaging techniques are complex, however, it provides the most applicable and practically relevant data for quantifying root system architecture traits. This review outlines the current developments in root studies including recent approaches viz. X-ray-CT, MRI, thermal infrared imaging and minirhizotron. Although root phenotyping is a laborious procedure, it offers multiple advantages by removing discrepancies and providing the actual practical significance of plant roots for breeding programs.
Collapse
Affiliation(s)
- Mohammad Urfan
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Shubham Sharma
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Haroon Rashid Hakla
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Prakriti Rajput
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | - Sonali Andotra
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| | | | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143001 India
| | - M Suhail Khan
- USBT, Guru Gobind Singh Indraprastha University, Dwarka, 110 078 New Delhi India
| | - Ranjan Das
- Department of Crop Physiology, Assam Agricultural University, Jorhat, 785013 India
| | - Sunil Kumar
- Department of Statistics, University of Jammu, Jammu, 180006 India
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu, 180006 India
| |
Collapse
|
16
|
Zou Y, Zhang Y, Testerink C. Root dynamic growth strategies in response to salinity. PLANT, CELL & ENVIRONMENT 2022; 45:695-704. [PMID: 34716934 PMCID: PMC9298695 DOI: 10.1111/pce.14205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 05/25/2023]
Abstract
Increasing soil salinization largely impacts crop yield worldwide. To deal with salinity stress, plants exhibit an array of responses, including root system architecture remodelling. Here, we review recent progress in physiological, developmental and cellular mechanisms of root growth responses to salinity. Most recent research in modulation of root branching, root tropisms, as well as in root cell wall modifications under salinity stress, is discussed in the context of the contribution of these responses to overall plant performance. We highlight the power of natural variation approaches revealing novel potential pathways responsible for differences in root salt stress responses. Together, these new findings promote our understanding of how salt shapes the root phenotype, which may provide potential avenues for engineering crops with better yield and survival in saline soils.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
17
|
González Guzmán M, Cellini F, Fotopoulos V, Balestrini R, Arbona V. New approaches to improve crop tolerance to biotic and abiotic stresses. PHYSIOLOGIA PLANTARUM 2022; 174:e13547. [PMID: 34480798 PMCID: PMC9290814 DOI: 10.1111/ppl.13547] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 05/24/2023]
Abstract
During the last years, a great effort has been dedicated at the development and employment of diverse approaches for achieving more stress-tolerant and climate-flexible crops and sustainable yield increases to meet the food and energy demands of the future. The ongoing climate change is in fact leading to more frequent extreme events with a negative impact on food production, such as increased temperatures, drought, and soil salinization as well as invasive arthropod pests and diseases. In this review, diverse "green strategies" (e.g., chemical priming, root-associated microorganisms), and advanced technologies (e.g., genome editing, high-throughput phenotyping) are described on the basis of the most recent research evidence. Particularly, attention has been focused on the potential use in a context of sustainable and climate-smart agriculture (the so called "next agriculture generation") to improve plant tolerance and resilience to abiotic and biotic stresses. In addition, the gap between the results obtained in controlled experiments and those from application of these technologies in real field conditions (lab to field step) is also discussed.
Collapse
Affiliation(s)
- Miguel González Guzmán
- Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume ICastelló de la PlanaSpain
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
| | - Francesco Cellini
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Agenzia Lucana di Sviluppo e di Innovazione in Agricoltura (ALSIA)MetapontoItaly
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante (CNR, IPSP)TorinoItaly
| | - Vasileios Fotopoulos
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Department of Agricultural Sciences, Biotechnology & Food ScienceCyprus University of TechnologyLemesosCyprus
| | - Raffaella Balestrini
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante (CNR, IPSP)TorinoItaly
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume ICastelló de la PlanaSpain
- The OPTIMUS PRIME consortium, European Union Partnership for Research and Innovation in the Mediterranean Area (PRIMA) Program
| |
Collapse
|
18
|
Karlova R, Boer D, Hayes S, Testerink C. Root plasticity under abiotic stress. PLANT PHYSIOLOGY 2021; 187:1057-1070. [PMID: 34734279 PMCID: PMC8566202 DOI: 10.1093/plphys/kiab392] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Abiotic stresses increasingly threaten existing ecological and agricultural systems across the globe. Plant roots perceive these stresses in the soil and adapt their architecture accordingly. This review provides insights into recent discoveries showing the importance of root system architecture (RSA) and plasticity for the survival and development of plants under heat, cold, drought, salt, and flooding stress. In addition, we review the molecular regulation and hormonal pathways involved in controlling RSA plasticity, main root growth, branching and lateral root growth, root hair development, and formation of adventitious roots. Several stresses affect root anatomy by causing aerenchyma formation, lignin and suberin deposition, and Casparian strip modulation. Roots can also actively grow toward favorable soil conditions and avoid environments detrimental to their development. Recent advances in understanding the cellular mechanisms behind these different root tropisms are discussed. Understanding root plasticity will be instrumental for the development of crops that are resilient in the face of abiotic stress.
Collapse
Affiliation(s)
- Rumyana Karlova
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Damian Boer
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Scott Hayes
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
19
|
Nature and Nurture: Genotype-Dependent Differential Responses of Root Architecture to Agar and Soil Environments. Genes (Basel) 2021; 12:genes12071028. [PMID: 34356045 PMCID: PMC8303133 DOI: 10.3390/genes12071028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022] Open
Abstract
Root development is crucial for plant growth and therefore a key factor in plant performance and food production. Arabidopsis thaliana is the most commonly used system to study root system architecture (RSA). Growing plants on agar-based media has always been routine practice, but this approach poorly reflects the natural situation, which fact in recent years has led to a dramatic shift toward studying RSA in soil. Here, we directly compare RSA responses to agar-based medium (plates) and potting soil (rhizotrons) for a set of redundant loss-of-function plethora (plt) CRISPR mutants with variable degrees of secondary root defects. We demonstrate that plt3plt7 and plt3plt5plt7 plants, which produce only a handful of emerged secondary roots, can be distinguished from other genotypes based on both RSA shape and individual traits on plates and rhizotrons. However, in rhizotrons the secondary root density and the total contribution of the side root system to the RSA is increased in these two mutants, effectively rendering their phenotypes less distinct compared to WT. On the other hand, plt3, plt3plt5, and plt5plt7 mutants showed an opposite effect by having reduced secondary root density in rhizotrons. This leads us to believe that plate versus rhizotron responses are genotype dependent, and these differential responses were also observed in unrelated mutants short-root and scarecrow. Our study demonstrates that the type of growth system affects the RSA differently across genotypes, hence the optimal choice of growth conditions to analyze RSA phenotype is not predetermined.
Collapse
|