1
|
Wu X, Ye Y, Sun M, Mei Y, Ji B, Wang M, Song E. Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics. CYBORG AND BIONIC SYSTEMS 2025; 6:0192. [PMID: 40302943 PMCID: PMC12038164 DOI: 10.34133/cbsystems.0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 05/02/2025] Open
Abstract
Materials that establish functional, stable interfaces to targeted tissues for long-term monitoring/stimulation equipped with diagnostic/therapeutic capabilities represent breakthroughs in biomedical research and clinical medicine. A fundamental challenge is the mechanical and chemical mismatch between tissues and implants that ultimately results in device failure for corrosion by biofluids and associated foreign body response. Of particular interest is in the development of bioactive materials at the level of chemistry and mechanics for high-performance, minimally invasive function, simultaneously with tissue-like compliance and in vivo biocompatibility. This review summarizes the most recent progress for these purposes, with an emphasis on material properties such as foreign body response, on integration schemes with biological tissues, and on their use as bioelectronic platforms. The article begins with an overview of emerging classes of material platforms for bio-integration with proven utility in live animal models, as high performance and stable interfaces with different form factors. Subsequent sections review various classes of flexible, soft tissue-like materials, ranging from self-healing hydrogel/elastomer to bio-adhesive composites and to bioactive materials. Additional discussions highlight examples of active bioelectronic systems that support electrophysiological mapping, stimulation, and drug delivery as treatments of related diseases, at spatiotemporal resolutions that span from the cellular level to organ-scale dimension. Envisioned applications involve advanced implants for brain, cardiac, and other organ systems, with capabilities of bioactive materials that offer stability for human subjects and live animal models. Results will inspire continuing advancements in functions and benign interfaces to biological systems, thus yielding therapy and diagnostics for human healthcare.
Collapse
Affiliation(s)
- Xiaojun Wu
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
| | - Yuanming Ye
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mubai Sun
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yongfeng Mei
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bowen Ji
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ming Wang
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Frontier Institute of Chip and System,
Fudan University, Shanghai 200433, China
| | - Enming Song
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Li H, Zhang Z, Liu J, Wang H. Antioxidant scaffolds for enhanced bone regeneration: recent advances and challenges. Biomed Eng Online 2025; 24:41. [PMID: 40200302 PMCID: PMC11980302 DOI: 10.1186/s12938-025-01370-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Bone regeneration is integral to maintaining bone function and integrity in the body, as well as treating bone diseases, such as osteoporosis and defects. However, oxidative stress often poses a significant obstacle during bone regeneration, leading to cell damage, inflammatory responses, and subsequent impediment of normal bone tissue formation. Therefore, to maintain bone regeneration, antioxidant therapy is essential. Bone scaffolds, serving as a temporary support for bone tissue, can provide an ideal microenvironment for cell proliferation and differentiation, effectively promoting bone tissue formation. In recent years, with in-depth research on antioxidants and their mechanisms of action, the development and application of antioxidant bone scaffolds have shown tremendous potential. These antioxidant bone scaffolds not only promote osteogenic differentiation and angiogenesis, but also effectively inhibit the inflammatory response and osteoclast formation, significantly improving the efficiency of bone regeneration. Notably, with the rapid development of nanotechnology, nanozymes with multi-enzyme-like activities have been successfully constructed and encapsulated within bone scaffolds, leading to the proposal of multifunctional antioxidant strategies. Therefore, this review summarizes recent research progress, categorically introducing types of bone scaffolds and antioxidants, elucidating therapeutic strategies of antioxidant bone scaffolds, and identifying current challenges, aiming to provide valuable guidance for subsequent research.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jing Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Huiwen Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
3
|
Xing Y, Jing R, Kang J, Li Y, Zhang H, Tang X, Jiang Z. Carbon-based Nanomaterials in Photothermal Therapy Guided by Photoacoustic Imaging: State of Knowledge and Recent Advances. Curr Med Chem 2025; 32:238-257. [PMID: 38529603 DOI: 10.2174/0109298673287448240311112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 03/27/2024]
Abstract
Carbon-based nanomaterials (CBNM) have been widely used in various fields due to their excellent physicochemical properties. In particular, in the area of tumor diagnosis and treatment, researchers have frequently reported them for their potential fluorescence, photoacoustic (PA), and ultrasound imaging performance, as well as their photothermal, photodynamic, sonodynamic, and other therapeutic properties. As the functions of CBNM are increasingly developed, their excellent imaging properties and superior tumor treatment effects make them extremely promising theranostic agents. This review aims to integrate the considered and researched information in a specific field of this research topic and systematically present, summarize, and comment on the efforts made by authoritative scholars. In this review, we summarized the work exploring carbon-based materials in the field of tumor imaging and therapy, focusing on PA imaging-guided photothermal therapy (PTT) and discussing their imaging and therapeutic mechanisms and developments. Finally, the current challenges and potential opportunities of carbon-based materials for PA imaging-guided PTT are presented, and issues that researchers should be aware of when studying CBNM are provided.
Collapse
Affiliation(s)
- Yan Xing
- Department of Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Rui Jing
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Kang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuwen Li
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Zhang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Medical Technology, Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Pan P, Hu Y, Wang C, Liu Q, Hu L, Yu H, Fan Y, Chen L, Chen J. Abalone shells bioenhanced carboxymethyl chitosan/collagen/PLGA bionic hybrid scaffolds achieving biomineralization and osteogenesis for bone regeneration. Int J Biol Macromol 2024; 279:135018. [PMID: 39208911 DOI: 10.1016/j.ijbiomac.2024.135018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Inspired by the formation of natural abalone shells (AS) similar to calcium salt deposition in human orthodontics, AS is used as an emulsifier in the scaffold to solve the problem of coexistence of natural and synthetic polymers and promote new bone formation. In this study, AS-stabilized and reinforced carboxymethyl chitosan/collagen/PLGA porous bionic composite scaffolds (AS/CMCS/Col/PLGA) were fabricated through the emulsion polymerization and bionic hybrid technology. As the addition of AS increased from 0.75 to 3.0 wt%, homogeneous distribution of flower-like particles could be observed on the inner surface of the scaffold, and its mechanical properties were improved. Particularly, 3.0 wt% AS-doped scaffolds (S3 and C + S3) exhibited excellent inorganic mineral deposition and osteoblast proliferation and differentiation abilities in vitro. In a SD rat calvarial defect model, they effectively promoted new bone formation in the defect and accelerated expression of osteogenic-angiogenic related proteins (COLI, OCN, VEGF). By virtue of its combined merits including good mechanical properties, inducing mineralization crystallization and facilitating osteogenesis, the 3.0 wt% AS-doped scaffold promises to be employed as a novel bone repair material for bone tissue regeneration.
Collapse
Affiliation(s)
- Panpan Pan
- Marine College, Shandong University, Weihai 264209, China
| | - Yimin Hu
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Hui Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China
| | - Li Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; State Key Laboratory of Mineral Processing, Beijing 100160, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China.
| |
Collapse
|
5
|
Khan NU, Chengfeng X, Jiang MQ, Akram W, Khan ZU, Razzaq A, Guohua M, Rui Z, Ni J, Ullah A, Iqbal H, Jin ZM. α-Lactalbumin based scaffolds for infected wound healing and tissue regeneration. Int J Pharm 2024; 663:124578. [PMID: 39153643 DOI: 10.1016/j.ijpharm.2024.124578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Interruption of wound healing by multi-drug resistant-bacterial infection is a harmful issue for the worldwide health care system, and conventional treatment approaches may not resolve this issue due to antimicrobial resistance. So, there is an unmet need to develop scaffolds with intrinsic wound healing properties to combat bacterial-infected wounds. Inspired by the α-lactalbumin's (Lalb's) ability to promote collagen synthesis, we herein electrospun Lalb with cephalexin (CPL) and epigallocatechin (EP) to produce nanofibers (CE-Lalb NFs) to solve this issue. The CE-Lalb NFs were prepared using the electrospinning technique and subjected to physicochemical characterizations, in vitro, and in vivo assessments. The CE-Lalb NFs promoted fibroblast migration, proliferation, and collagen synthesis, while CPL/EP annihilated MRSA and E. coli infections. Physicochemical characterizations proved the successful fabrication and doping of CE-Lalb NFs. Antimicrobial assays and fractional inhibitory concentration index (FICI) declared synergistic antibacterial activity of CE-Lalb NFs against MRSA and E. coli. The in vivo and immunohistochemical data evidenced its exceptional potential for wound healing, promoting growth factor, collagen synthesis, and reduced scar formation. The presence of mature collagen, fewer inflammatory cytokines, increased expression of blood vessels, and low expression of IL-6 at the wound site support in vitro and in vivo results. In our view, the tailored scaffold is the next step for personalized wound dressings that could meet patients with infected wounds' unmet needs by the subscription of noninvasive and easily navigable therapeutic options.
Collapse
Affiliation(s)
- Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Xie Chengfeng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Meng-Qin Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123 China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Meng Guohua
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Zhang Rui
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Jiang Ni
- Pathology Department & Department of Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Asmat Ullah
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Zhi Min Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China.
| |
Collapse
|
6
|
Sarmadi A, Razavi ZS, van Wijnen AJ, Soltani M. Comparative analysis of vision transformers and convolutional neural networks in osteoporosis detection from X-ray images. Sci Rep 2024; 14:18007. [PMID: 39097627 PMCID: PMC11297930 DOI: 10.1038/s41598-024-69119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Within the scope of this investigation, we carried out experiments to investigate the potential of the Vision Transformer (ViT) in the field of medical image analysis. The diagnosis of osteoporosis through inspection of X-ray radio-images is a substantial classification problem that we were able to address with the assistance of Vision Transformer models. In order to provide a basis for comparison, we conducted a parallel analysis in which we sought to solve the same problem by employing traditional convolutional neural networks (CNNs), which are well-known and commonly used techniques for the solution of image categorization issues. The findings of our research led us to conclude that ViT is capable of achieving superior outcomes compared to CNN. Furthermore, provided that methods have access to a sufficient quantity of training data, the probability increases that both methods arrive at more appropriate solutions to critical issues.
Collapse
Affiliation(s)
- Ali Sarmadi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Zahra Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran
- Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada.
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada.
- Centre for Sustainable Business, International Business University, Toronto, Canada.
| |
Collapse
|
7
|
Wang Z, Gao H, Wang X, Grzegorzek M, Li J, Sun H, Ma Y, Zhang X, Zhang Z, Dekker A, Traverso A, Zhang Z, Qian L, Xiao M, Feng Y. A multi-Task Learning based applicable AI model simultaneously predicts stage, histology, grade and LNM for cervical cancer before surgery. BMC Womens Health 2024; 24:425. [PMID: 39060940 PMCID: PMC11282769 DOI: 10.1186/s12905-024-03270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE To build an Mult-Task Learning (MTL) based Artificial Intelligence(AI) model that can simultaneously predict clinical stage, histology, grade and LNM for cervical cancer before surgery. METHODS This retrospective and prospective cohort study was conducted from January 2001 to March 2014 for the training set and from January 2018 to November 2021 for the validation set at Beijing Chaoyang Hospital, Capital Medical University. Preoperative clinical information of cervical cancer patients was used. An Artificial Neural Network (ANN) algorithm was used to build the MTL-based AI model. Accuracy and weighted F1 scores were calculated as evaluation indicators. The performance of the MTL model was compared with Single-Task Learning (STL) models. Additionally, a Turing test was performed by 20 gynecologists and compared with this AI model. RESULTS A total of 223 cervical cancer cases were retrospectively enrolled into the training set, and 58 cases were prospectively collected as independent validation set. The accuracy of this cervical cancer AI model constructed with ANN algorithm in predicting stage, histology, grade and LNM were 75%, 95%, 86% and 76%, respectively. And the corresponding weighted F1 score were 70%, 94%, 86%, and 76%, respectively. The average time consumption of AI simultaneously predicting stage, histology, grade and LNM for cervical cancer was 0.01s (95%CI: 0.01-0.01) per 20 patients. The mean time consumption doctor and doctor with AI were 581.1s (95%CI: 300.0-900.0) per 20 patients and 534.8s (95%CI: 255.0-720.0) per 20 patients, respectively. Except for LNM, both the accuracy and F-score of the AI model were significantly better than STL AI, doctors and AI-assisted doctors in predicting stage, grade and histology. (P < 0.05) The time consumption of AI was significantly less than that of doctors' prediction and AI-assisted doctors' results. (P < 0.05 CONCLUSION: A multi-task learning AI model can simultaneously predict stage, histology, grade, and LNM for cervical cancer preoperatively with minimal time consumption. To improve the conditions and use of the beneficiaries, the model should be integrated into routine clinical workflows, offering a decision-support tool for gynecologists. Future studies should focus on refining the model for broader clinical applications, increasing the diversity of the training datasets, and enhancing its adaptability to various clinical settings. Additionally, continuous feedback from clinical practice should be incorporated to ensure the model's accuracy and reliability, ultimately improving personalized patient care and treatment outcomes.
Collapse
Affiliation(s)
- Zhixiang Wang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Huiqiao Gao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xinghao Wang
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Institute for Medical Informatics, University of Luebeck, 23562, Luebeck, Germany
| | - Marcin Grzegorzek
- Institute for Medical Informatics, University of Luebeck, 23562, Luebeck, Germany
- German Research Center for Artificial Intelligence, (DFKI), Lübeck, Germany
| | - Jinfeng Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yidi Ma
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xuefang Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhen Zhang
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro), GROW-School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meizhu Xiao
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Ying Feng
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Ryabov NA, Volova LT, Alekseev DG, Kovaleva SA, Medvedeva TN, Vlasov MY. Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material. Polymers (Basel) 2024; 16:1895. [PMID: 39000751 PMCID: PMC11244277 DOI: 10.3390/polym16131895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
The current paper highlights the active development of tissue engineering in the field of the biofabrication of living tissue analogues through 3D-bioprinting technology. The implementation of the latter is impossible without important products such as bioinks and their basic components, namely, hydrogels. In this regard, tissue engineers are searching for biomaterials to produce hydrogels with specified properties both in terms of their physical, mechanical and chemical properties and in terms of local biological effects following implantation into an organism. One of such effects is the provision of the optimal conditions for physiological reparative regeneration by the structural components that form the basis of the biomaterial. Therefore, qualitative assessment of the composition of the protein component of a biomaterial is a significant task in tissue engineering and bioprinting. It is important for predicting the behaviour of printed constructs in terms of their gradual resorption followed by tissue regeneration due to the formation of a new extracellular matrix. One of the most promising natural biomaterials with significant potential in the production of hydrogels and the bioinks based on them is the polymer collagen of allogeneic origin, which plays an important role in maintaining the structural and biological integrity of the extracellular matrix, as well as in the morphogenesis and cellular metabolism of tissues, giving them the required mechanical and biochemical properties. In tissue engineering, collagen is widely used as a basic biomaterial because of its availability, biocompatibility and facile combination with other materials. This manuscript presents the main results of a mass spectrometry analysis (proteomic assay) of the lyophilized hydrogel produced from the registered Lyoplast® bioimplant (allogeneic human bone tissue), which is promising in the field of biotechnology. Proteomic assays of the investigated lyophilized hydrogel sample showed the presence of structural proteins (six major collagen fibers of types I, II, IV, IX, XXVII, XXVIII were identified), extracellular matrix proteins, and mRNA-stabilizing proteins, which participate in the regulation of transcription, as well as inducer proteins that mediate the activation of regeneration, including the level of circadian rhythm. The research results offer a new perspective and indicate the significant potential of the lyophilized hydrogels as an effective alternative to synthetic and xenogeneic materials in regenerative medicine, particularly in the field of biotechnology, acting as a matrix and cell-containing component of bioinks for 3D bioprinting.
Collapse
Affiliation(s)
- Nikolay A. Ryabov
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Larisa T. Volova
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Denis G. Alekseev
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Svetlana A. Kovaleva
- Core Shared Research Facility “Industrial Biotechnologies”, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Tatyana N. Medvedeva
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Mikhail Yu. Vlasov
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| |
Collapse
|
9
|
Soo XYD, Muiruri JK, Wu WY, Yeo JCC, Wang S, Tomczak N, Thitsartarn W, Tan BH, Wang P, Wei F, Suwardi A, Xu J, Loh XJ, Yan Q, Zhu Q. Bio-Polyethylene and Polyethylene Biocomposites: An Alternative toward a Sustainable Future. Macromol Rapid Commun 2024; 45:e2400064. [PMID: 38594967 DOI: 10.1002/marc.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Polyethylene (PE), a highly prevalent non-biodegradable polymer in the field of plastics, presents a waste management issue. To alleviate this issue, bio-based PE (bio-PE), derived from renewable resources like corn and sugarcane, offers an environmentally friendly alternative. This review discusses various production methods of bio-PE, including fermentation, gasification, and catalytic conversion of biomass. Interestingly, the bio-PE production volumes and market are expanding due to the growing environmental concerns and regulatory pressures. Additionally, the production of PE and bio-PE biocomposites using agricultural waste as filler materials, highlights the growing demand for sustainable alternatives to conventional plastics. According to previous studies, addition of ≈50% defibrillated corn and abaca fibers into bio-PE matrix and a compatibilizer, results in the highest Young's modulus of 4.61 and 5.81 GPa, respectively. These biocomposites have potential applications in automotive, building construction, and furniture industries. Moreover, the advancement made in abiotic and biotic degradation of PE and PE biocomposites is elucidated to address their environmental impacts. Finally, the paper concludes with insights into the opportunities, challenges, and future perspectives in the sustainable production and utilization of PE and bio-PE biocomposites. In summary, production of PE and bio-PE biocomposites can contribute to a cleaner and sustainable future.
Collapse
Affiliation(s)
- Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Wen-Ya Wu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Nikodem Tomczak
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Pei Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Fengxia Wei
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| | - Qingyu Yan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
10
|
Liu P, Wang J, Wang Y, Bai Y, Zhou H, Yang L. Pregelatinized hydroxypropyl distarch phosphate-reinforced calcium sulfate bone cement for bleeding bone treatment. Biomater Sci 2024; 12:3193-3201. [PMID: 38747322 DOI: 10.1039/d4bm00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Considering the shortcomings of known medical hemostatic materials such as bone wax for bleeding bone management, it is essential to develop alternative bone materials capable of efficient hemostasis and bone regeneration and adaptable to clinical surgical needs. Thus, in the current work, a calcium sulfate hemihydrate and starch-based composite paste was developed and optimized. Firstly, it was found that the use of hydroxypropyl distarch phosphate (HDP) coupled with pregelatinization could generate an injectable, malleable and self-hardening paste with impressive anti-collapse ability in a dynamic aqueous environment, suggesting its potential applicability in both open and minimally invasive clinical practice. The as-hardened matrix exhibited a compressive strength of up to 61.68 ± 5.13 MPa compared to calcium sulfate cement with a compressive strength of 15.16 ± 2.42 MPa, making it a promising candidate for the temporary mechanical stabilization of bone defects. Secondly, the as-prepared paste revealed superior hemostasis and bone regenerative capabilities compared to calcium sulfate cement and bone wax, with greatly enhanced bleeding management and bone healing outcomes when subjected to testing in in vitro and in vivo models. In summary, our results confirmed that calcium sulfate bone cement reinforced with the selected starch can act as a reliable platform for bleeding bone treatment, overcoming the limitations of traditional bone hemostatic agents.
Collapse
Affiliation(s)
- Peng Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jinwen Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Yinan Wang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Yanjie Bai
- Department of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
11
|
Liang W, Zhou C, Zhang H, Bai J, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Pioneering nanomedicine in orthopedic treatment care: a review of current research and practices. Front Bioeng Biotechnol 2024; 12:1389071. [PMID: 38860139 PMCID: PMC11163052 DOI: 10.3389/fbioe.2024.1389071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
A developing use of nanotechnology in medicine involves using nanoparticles to administer drugs, genes, biologicals, or other materials to targeted cell types, such as cancer cells. In healthcare, nanotechnology has brought about revolutionary changes in the treatment of various medical and surgical conditions, including in orthopedic. Its clinical applications in surgery range from developing surgical instruments and suture materials to enhancing imaging techniques, targeted drug delivery, visualization methods, and wound healing procedures. Notably, nanotechnology plays a significant role in preventing, diagnosing, and treating orthopedic disorders, which is crucial for patients' functional rehabilitation. The integration of nanotechnology improves standards of patient care, fuels research endeavors, facilitates clinical trials, and eventually improves the patient's quality of life. Looking ahead, nanotechnology holds promise for achieving sustained success in numerous surgical disciplines, including orthopedic surgery, in the years to come. This review aims to focus on the application of nanotechnology in orthopedic surgery, highlighting the recent development and future perspective to bridge the bridge for clinical translation.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
12
|
Yang X, Zhao L, Pang Y. cGAS-STING pathway in pathogenesis and treatment of osteoarthritis and rheumatoid arthritis. Front Immunol 2024; 15:1384372. [PMID: 38765007 PMCID: PMC11099256 DOI: 10.3389/fimmu.2024.1384372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Osteoarthritis (OA) and Rheumatoid Arthritis (RA) are significant health concerns with notable prevalence and economic impact. RA, affecting 0.5% to 1.0% of the global population, leads to chronic joint damage and comorbidities. OA, primarily afflicting the elderly, results in joint degradation and severe pain. Both conditions incur substantial healthcare expenses and productivity losses. The cGAS-STING pathway, consisting of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), is a crucial component of mammalian immunity. This pathway is responsible for detecting foreign DNA, particularly double-stranded DNA (dsDNA), triggering innate immune defense responses. When cGAS recognizes dsDNA, it catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which then binds to and activates STING. Activated STING, in turn, initiates downstream signaling events leading to the production of interferons and other immune mediators. The cGAS-STING pathway is essential for defending against viral infections and maintaining cellular balance. Dysregulation of this pathway has been implicated in various inflammatory diseases, including arthritis, making it a target for potential therapeutic interventions. Understanding the intricate molecular signaling network of cGAS-STING in these arthritis forms offers potential avenues for targeted therapies. Addressing these challenges through improved early detection, comprehensive management, and interventions targeting the cGAS-STING pathway is crucial for alleviating the impact of OA and RA on individuals and healthcare systems. This review offers an up-to-date comprehension of the cGAS-STING pathway's role in the development and therapeutic approaches for these arthritis types.
Collapse
Affiliation(s)
- XiCheng Yang
- Graduate School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - LiLi Zhao
- Orthopedics and Arthrology, People Hospital of Xingtai, Xingtai, Hebei, China
| | - YinQuan Pang
- Graduate School, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
13
|
Mohammadzadeh M, Zarei M, Abbasi H, Webster TJ, Beheshtizadeh N. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms. J Biol Eng 2024; 18:29. [PMID: 38649969 PMCID: PMC11036660 DOI: 10.1186/s13036-024-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
There is an increasing demand for innovative strategies that effectively promote osteogenesis and enhance bone regeneration. The critical process of bone regeneration involves the transformation of mesenchymal stromal cells into osteoblasts and the subsequent mineralization of the extracellular matrix, making up the complex mechanism of osteogenesis. Icariin's diverse pharmacological properties, such as anti-inflammatory, anti-oxidant, and osteogenic effects, have attracted considerable attention in biomedical research. Icariin, known for its ability to stimulate bone formation, has been found to encourage the transformation of mesenchymal stromal cells into osteoblasts and improve the subsequent process of mineralization. Several studies have demonstrated the osteogenic effects of icariin, which can be attributed to its hormone-like function. It has been found to induce the expression of BMP-2 and BMP-4 mRNAs in osteoblasts and significantly upregulate Osx at low doses. Additionally, icariin promotes bone formation by stimulating the expression of pre-osteoblastic genes like Osx, RUNX2, and collagen type I. However, icariin needs to be effectively delivered to bone to perform such promising functions.Encapsulating icariin within nanoplatforms holds significant promise for promoting osteogenesis and bone regeneration through a range of intricate biological effects. When encapsulated in nanofibers or nanoparticles, icariin exerts its effects directly at the cellular level. Recalling that inflammation is a critical factor influencing bone regeneration, icariin's anti-inflammatory effects can be harnessed and amplified when encapsulated in nanoplatforms. Also, while cell adhesion and cell migration are pivotal stages of tissue regeneration, icariin-loaded nanoplatforms contribute to these processes by providing a supportive matrix for cellular attachment and movement. This review comprehensively discusses icariin-loaded nanoplatforms used for bone regeneration and osteogenesis, further presenting where the field needs to go before icariin can be used clinically.
Collapse
Affiliation(s)
- Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Zarei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Abbasi
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|