1
|
Risvas K, Stanev D, Moustakas K. Can lateral tenodesis improve the rotational stability of the ACL reconstruction? A finite element analysis. PLoS One 2024; 19:e0293161. [PMID: 38412190 PMCID: PMC10898738 DOI: 10.1371/journal.pone.0293161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024] Open
Abstract
One of the most common knee injuries is the Anterior Cruciate Ligament (ACL) rupture with severe implications on knee stability. The usual treatment is the ACL Reconstruction (ACLR) surgery where the surgeon replaces the torn ligament with a graft in an effort to restore knee kinematics. In case of excessive rotatory instability, Lateral Extra-Articular Tenodesis (LET) can be performed in combination with ACLR. Additionally, LET appears to reduce ACLR graft forces minimizing graft failure chances. However, there are concerns about overconstraining physiological rotation. To gain insight in this controversial topic, we developed an automatic, open-source tool to create a series of Finite Element (FE) models attempting to investigate the interactions of ACLR and LET through simulation. We started by creating a validated model of the healthy knee joint that served as reference for subsequent FE simulations. Then, we created FE models of standalone ACLR and combined ACLR-LET. Each model was assessed by applying a loading profile that resembles the reduction phase of the Pivot-Shift clinical exam. We measured the External Tibia Rotation (ETR), the Posterior Tibia Translation (PTT) of the lateral tibial compartment, and the ACLR graft stress developed around the femoral tunnel insertion site. We observed the following: a) LET reduces ETR and PTT compared to isolated ACLR, b) combined ACLR-LET is more sensitive to LET graft pretension with lower values showcasing performance closer to the healthy joint, c) LET reduces ACLR graft forces for the same pretension values, d) LET exhibits significant overconstraint for higher pretension values. In general, these findings are in agreement with relevant clinical studies and accentuate the potential of the developed framework as a tool that can assist orthopaedists during surgery planning. We provide open access for the FE models of this study to enhance research transparency, reproducibility and extensibility.
Collapse
Affiliation(s)
- Konstantinos Risvas
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Dimitar Stanev
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
- École Polytechnique Fédérale de Lausanne, Institute of Bioengineering, Lausanne, Switzerland
| | | |
Collapse
|
2
|
Prejbeanu R, Mioc ML, Jebelean S, Balanescu A, Feier AM, Pop TS, Russu O. The Presence of a 'Sentinel' Vessel as an Anatomical Reference during Hamstring Tendon Harvesting-A Prospective Study. J Clin Med 2023; 12:5426. [PMID: 37629469 PMCID: PMC10455329 DOI: 10.3390/jcm12165426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The identification of the branch of the inferior medial genicular artery (bIMGA) in anterior cruciate ligament reconstructions (ACLRs) has previously been considered a landmark by some surgeons, but its consistency remains debated. The aim of this investigation was to evaluate the variability in the appearance and location of bIMGA and to assess its validity as a reliable landmark during hamstring tendon harvesting procedures. METHODS This prospective, single-center study comprised 213 patients who underwent ACLR over a period of two years. The surgical procedures were conducted by the same surgical team, maintaining uniformity in the approach. The study sought correlations between patient demographics, level of activity, and the potential for successful identification of the bIMGA. RESULTS A statistically significant association between patient activity levels and successful identification of the bIMGA (p = 0.035) was observed. No significant correlations were found concerning patient demographic characteristics. bIMGA demonstrated a substantial degree of anatomical variability, rendering its consistent identification in the surgical field challenging. CONCLUSIONS Given the observed variability and the associated difficulty in its identification, the use of the bIMGA as a dependable anatomical reference during ACL graft harvesting is not recommended. This study confirms the inconsistency of bIMGA as a traditional landmark, underscoring the need for research aimed at identifying more consistent and reliable anatomical references to enhance the precision of surgical interventions in ACLR.
Collapse
Affiliation(s)
- Radu Prejbeanu
- Department of Orthopedics, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania (M.L.M.)
| | - Mihail Lazar Mioc
- Department of Orthopedics, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania (M.L.M.)
| | - Silviu Jebelean
- Department of Orthopedics and Traumatology, Premiere Hospital Timisoara, 300643 Timisoara, Romania; (S.J.); (A.B.)
| | - Andrei Balanescu
- Department of Orthopedics and Traumatology, Premiere Hospital Timisoara, 300643 Timisoara, Romania; (S.J.); (A.B.)
| | - Andrei-Marian Feier
- Department of Orthopaedics and Traumatology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (O.R.)
| | - Tudor Sorin Pop
- Department of Orthopaedics and Traumatology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (O.R.)
| | - Octav Russu
- Department of Orthopaedics and Traumatology, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania (O.R.)
| |
Collapse
|
3
|
Sadeqi S, Norte GE, Murray A, Erbulut DU, Goel VK. Effect of Whole Body Parameters on Knee Joint Biomechanics: Implications for ACL Injury Prevention During Single-Leg Landings. Am J Sports Med 2023; 51:2098-2109. [PMID: 37259968 DOI: 10.1177/03635465231174899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Previous studies have examined the effect of whole body (WB) parameters on anterior cruciate ligament (ACL) strain and loads, as well as knee joint kinetics and kinematics. However, articular cartilage damage occurs in relation to ACL failure, and the effect of WB parameters on ACL strain and articular cartilage biomechanics during dynamic tasks is unclear. PURPOSES (1) To investigate the effect of WB parameters on ACL strain, as well as articular cartilage stress and contact force, during a single-leg cross drop (SLCD) and single-leg drop (SLD). (2) To identify WB parameters predictive of high ACL strain during these tasks. STUDY DESIGN Descriptive laboratory study. METHODS Three-dimensional motion analysis data from 14 physically active men and women were recorded during an SLCD and SLD. OpenSim was used to obtain their kinematics, kinetics, and muscle forces for the WB model. Using these data in kinetically driven finite element simulations of the knee joint produced outputs of ACL strains and articular cartilage stresses and contact forces. Spearman correlation coefficients were used to assess relationships between WB parameters and ACL strain and cartilage biomechanics. Moreover, receiver operating characteristic curve analyses and multivariate binary logistic regressions were used to find the WB parameters that could discriminate high from low ACL strain trials. RESULTS Correlations showed that more lumbar rotation away from the stance limb at peak ACL strain had the strongest overall association (ρ = 0.877) with peak ACL strain. Higher knee anterior shear force (ρ = 0.895) and lower gluteus maximus muscle force (ρ = 0.89) at peak ACL strain demonstrated the strongest associations with peak articular cartilage stress or contact force in ≥1 of the analyzed tasks. The regression model that used muscle forces to predict high ACL strain trials during the dominant limb SLD yielded the highest accuracy (93.5%), sensitivity (0.881), and specificity (0.952) among all regression models. CONCLUSION WB parameters that were most consistently associated with and predictive of high ACL strain and poor articular cartilage biomechanics during the SLCD and SLD tasks included greater knee abduction angle at initial contact and higher anterior shear force at peak ACL strain, as well as lower gracilis, gluteus maximus, and medial gastrocnemius muscle forces. CLINICAL RELEVANCE Knowledge of which landing postures create a high risk for ACL or cartilage injury may help reduce injuries in athletes by avoiding those postures and practicing the tasks with reduced high-risk motions, as well as by strengthening the muscles that protect the knee during single-leg landings.
Collapse
Affiliation(s)
- Sara Sadeqi
- Engineering Center for Orthopaedic Research Excellence (E-CORE), Departments of Bioengineering and Orthopaedic Surgery, University of Toledo, Toledo, OH, USA
| | - Grant E Norte
- Motion Analysis and Integrative Neurophysiology Lab, Department of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, Ohio, USA
| | - Amanda Murray
- Motion Analysis and Integrative Neurophysiology Lab, Department of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, Ohio, USA
| | - Deniz U Erbulut
- Engineering Center for Orthopaedic Research Excellence (E-CORE), Departments of Bioengineering and Orthopaedic Surgery, University of Toledo, Toledo, OH, USA
| | - Vijay K Goel
- Engineering Center for Orthopaedic Research Excellence (E-CORE), Departments of Bioengineering and Orthopaedic Surgery, University of Toledo, Toledo, OH, USA
| |
Collapse
|
4
|
Moustridi E, Risvas K, Moustakas K. Predictive simulation of single-leg landing scenarios for ACL injury risk factors evaluation. PLoS One 2023; 18:e0282186. [PMID: 36893124 PMCID: PMC9997920 DOI: 10.1371/journal.pone.0282186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023] Open
Abstract
The Anterior Cruciate Ligament (ACL) rupture is a very common knee injury during sport activities. Landing after jump is one of the most prominent human body movements that can lead to such an injury. The landing-related ACL injury risk factors have been in the spotlight of research interest. Over the years, researchers and clinicians acquire knowledge about human movement during daily-life activities by organizing complex in vivo studies that feature high complexity, costs and technical and most importantly physical challenges. In an attempt to overcome these limitations, this paper introduces a computational modeling and simulation pipeline that aims to predict and identify key parameters of interest that are related to ACL injury during single-leg landings. We examined the following conditions: a) landing height, b) hip internal and external rotation, c) lumbar forward and backward leaning, d) lumbar medial and lateral bending, e) muscle forces permutations and f) effort goal weight. Identified on related research studies, we evaluated the following risk factors: vertical Ground Reaction Force (vGRF), knee joint Anterior force (AF), Medial force (MF), Compressive force (CF), Abduction moment (AbdM), Internal rotation moment (IRM), quadricep and hamstring muscle forces and Quadriceps/Hamstrings force ratio (Q/H force ratio). Our study clearly demonstrated that ACL injury is a rather complicated mechanism with many associated risk factors which are evidently correlated. Nevertheless, the results were mostly in agreement with other research studies regarding the ACL risk factors. The presented pipeline showcased promising potential of predictive simulations to evaluate different aspects of complicated phenomena, such as the ACL injury.
Collapse
Affiliation(s)
- Evgenia Moustridi
- Department of Electrical and Computer Engineering, University of Patras, Patras, Achaia, Greece
| | - Konstantinos Risvas
- Department of Electrical and Computer Engineering, University of Patras, Patras, Achaia, Greece
| | - Konstantinos Moustakas
- Department of Electrical and Computer Engineering, University of Patras, Patras, Achaia, Greece
| |
Collapse
|
5
|
Wang Z, Tao HB, Wang Y, Liu B, Han WF, Xiang LB. Clinical application of modified Crain classification in the Design of Anterior Cruciate Ligament Reconstruction with remnant preservation. BMC Musculoskelet Disord 2022; 23:1066. [PMID: 36471273 PMCID: PMC9721086 DOI: 10.1186/s12891-022-05912-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/25/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND To investigate the clinical application of modified Crain classification in anterior cruciate ligament (ACL) reconstruction (ACLR) with remnant preservation. METHODS The subjects were 70 patients with ACL injury who underwent ACLR from May 2016 to June 2018, and their general data were recorded. They were randomly divided into modified remnant-preserved ACLR group (group M, n = 35) and non remnant-preserved ACLR group (group N, n = 35). ACLR program with remnant preservation was designed based on modified Crain classification in group M, while ACL remnants were completely cleaned during ACLR in group N. Subsequently, the two groups were compared in terms of operation time, complications, as well as Lysholm score, international knee documentation committee (IKDC) score and positive rate of Lachman test of knee joint before operation and at 3, 6 and 12 months after operation. RESULTS Both the groups showed good postoperative efficacy, and none had complications like limited knee extension or cyclops lesion. The comparison results found that group M (72.49 ± 7.64 min) required longer operation time than group N (66.06 ± 6.37 min) (P < 0.05). Lysholm score and IKDC score at 3, 6 and 12 months after operation in the two groups were significantly higher than those before operation (P < 0.05); group M had higher Lysholm score and IKDC score at 3 months and 6 months after operation compared with group N (P < 0.05). Additionally, the positive rate of Lachman test at 3, 6 and 12 months after operation in both groups was significantly lower than that before operation (P < 0.05), but there was no significant difference between group M and group N. CONCLUSION With the modified Crain classification, many remnant-preserved reconstruction techniques can be rationally used to completely preserve the remnant ligament tissue during operation and improve knee joint function and joint stability with few complications.
Collapse
Affiliation(s)
- Zheng Wang
- Department of orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hai-Bing Tao
- Department of orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yu Wang
- Department of orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Bin Liu
- Department of orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Wen-Feng Han
- Department of orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Liang-Bi Xiang
- Department of orthopedics, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| |
Collapse
|
6
|
Evaluation of anterior cruciate ligament surgical reconstruction through finite element analysis. Sci Rep 2022; 12:8044. [PMID: 35577879 PMCID: PMC9110399 DOI: 10.1038/s41598-022-11601-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/21/2022] [Indexed: 11/08/2022] Open
Abstract
Anterior cruciate ligament (ACL) tear is one of the most common knee injuries. The ACL reconstruction surgery aims to restore healthy knee function by replacing the injured ligament with a graft. Proper selection of the optimal surgery parameters is a complex task. To this end, we developed an automated modeling framework that accepts subject-specific geometries and produces finite element knee models incorporating different surgical techniques. Initially, we developed a reference model of the intact knee, validated with data provided by the Open Knee(s) project. This helped us evaluate the effectiveness of estimating ligament stiffness directly from MRI. Next, we performed a plethora of “what-if” simulations, comparing responses with the reference model. We found that (a) increasing graft pretension and radius reduces relative knee displacement, (b) the correlation of graft radius and tension should not be neglected, (c) graft fixation angle of 20\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{\circ }$$\end{document}∘ can reduce knee laxity, and (d) single-versus double-bundle techniques demonstrate comparable performance in restraining knee translation. In most cases, these findings confirm reported values from comparative clinical studies. The numerical models are made publicly available, allowing for experimental reuse and lowering the barriers for meta-studies. The modeling approach proposed here can complement orthopedic surgeons in their decision-making.
Collapse
|
7
|
Cerda-Lugo A, Gonzalez-Galvan E, Gonzalez A. Leg-ligament-thigh-trunk Dynamic Model to Describe Posture Recovery after Double-leg Landing Task. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4816-4819. [PMID: 34892287 DOI: 10.1109/embc46164.2021.9629955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the most common injuries in athletes is that of the Anterior Cruciate Ligament (ACL). This type of injury is commonly analyzed by observing the dynamics of the body in the sagittal plane. ACL injury can be indicated by a the small knee flexion angle and a small angular position of the trunk at start of leg-landing task. In this article a 4 Degrees of Freedom (DOF) dynamic model of the human body restricted to the sagittal plane is presented. The model represents the movement of the legs, an equivalent ligament between the tibia and femur, thighs and trunk. It is used to represent the recovery of vertical posture during a double leg landing task. Initial conditions in velocity are calculated as those resulting from a free fall from a height H. The results obtained from the simulation were satisfactory since the recovery of the vertical posture is achieved and it is possible to approximate the deformation suffered by the equivalent ligament. In conclusion, this model can be very useful in determining the behavior of the ligament and eventually, the possibility of injury after a double-leg landing task.
Collapse
|
8
|
Loi I, Stanev D, Moustakas K. Total Knee Replacement: Subject-Specific Modeling, Finite Element Analysis, and Evaluation of Dynamic Activities. Front Bioeng Biotechnol 2021; 9:648356. [PMID: 33937216 PMCID: PMC8085535 DOI: 10.3389/fbioe.2021.648356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
This study presents a semi-automatic framework to create subject-specific total knee replacement finite element models, which can be used to analyze locomotion patterns and evaluate knee dynamics. In recent years, much scientific attention was attracted to pre-clinical optimization of customized total knee replacement operations through computational modeling to minimize post-operational adverse effects. However, the time-consuming and laborious process of developing a subject-specific finite element model poses an obstacle to the latter. One of this work's main goals is to automate the finite element model development process, which speeds up the proposed framework and makes it viable for practical applications. This pipeline's reliability was ratified by developing and validating a subject-specific total knee replacement model based on the 6th SimTK Grand Challenge data set. The model was validated by analyzing contact pressures on the tibial insert in relation to the patient's gait and analysis of tibial contact forces, which were found to be in accordance with the ones provided by the Grand Challenge data set. Subsequently, a sensitivity analysis was carried out to assess the influence of modeling choices on tibial insert's contact pressures and determine possible uncertainties on the models produced by the framework. Parameters, such as the position of ligament origin points, ligament stiffness, reference strain, and implant-bone alignment were used for the sensitivity study. Notably, it was found that changes in the alignment of the femoral component in reference to the knee bones significantly affect the load distribution at the tibiofemoral joint, with an increase of 206.48% to be observed at contact pressures during 5° internal rotation. Overall, the models produced by this pipeline can be further used to optimize and personalize surgery by evaluating the best surgical parameters in a simulated manner before the actual surgery.
Collapse
Affiliation(s)
- Iliana Loi
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
| | - Dimitar Stanev
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece.,School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
9
|
Development of a three-dimensional computer model of the canine pelvic limb including cruciate ligaments to simulate movement. Res Vet Sci 2021; 136:430-443. [PMID: 33812286 DOI: 10.1016/j.rvsc.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Gait analysis as subjective visual assessment forms the foundation of the veterinarian's lameness examination. Pelvic limb lameness is frequently seen in dogs and the stifle joint with its cruciate ligaments, is a main cause of lameness due to cruciate ligament deficiency. In this study, we developed an open-source three-dimensional musculoskeletal pelvic limb model of a 30 kg Labrador Retriever including cruciate ligaments, simulating the gait cycle of the walking movement with the open-source programs NMSBuilder (Institutio Ortopedico Rizzoli, Bologna, Italy) and OpenSim (National Center for Simulation in Rehabilitation Research (NCSRR), Stanford, CA, USA). The computer model generated muscle activations based on motion data. The computed activations were similar to experimental electromyogram data. Highest joint torque was in extension/flexion in the stifle joint at 54 Nm at 14% of the gait cycle with cruciate ligaments. Highest stifle joint reaction force was 408 N at 16% of the gait cycle and was reduced after adding cruciate ligaments. Especially the cranial cruciate ligament loads up to 102 N (34% body weight). Cranial cruciate ligament forces increase with stifle extension and decrease with stifle flexion. On the contrary, the caudal cruciate ligament loads up to 27 N (9% body weight) during the swing phase with a flexed stifle joint. The model was validated with electromyogram data. The model's predictions are plausible because joint torques and forces match the applied ground reaction forces in curve progression and in timing. This model forms a basis for further investigations into stifle surgery after cruciate ligament deficiency.
Collapse
|
10
|
Charles JP, Fu FH, Anderst WJ. Predictions of Anterior Cruciate Ligament Dynamics From Subject-Specific Musculoskeletal Models and Dynamic Biplane Radiography. J Biomech Eng 2021; 143:031006. [PMID: 33030199 PMCID: PMC7871995 DOI: 10.1115/1.4048710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/17/2020] [Indexed: 01/13/2023]
Abstract
In vivo knee ligament forces are important to consider for informing rehabilitation or clinical interventions. However, they are difficult to directly measure during functional activities. Musculoskeletal models and simulations have become the primary methods by which to estimate in vivo ligament loading. Previous estimates of anterior cruciate ligament (ACL) forces range widely, suggesting that individualized anatomy may have an impact on these predictions. Using ten subject-specific (SS) lower limb musculoskeletal models, which include individualized musculoskeletal geometry, muscle architecture, and six degree-of-freedom knee joint kinematics from dynamic biplane radiography (DBR), this study provides SS estimates of ACL force (anteromedial-aACL; and posterolateral-pACL bundles) during the full gait cycle of treadmill walking. These forces are compared to estimates from scaled-generic (SG) musculoskeletal models to assess the effect of musculoskeletal knee joint anatomy on predicted forces and the benefit of SS modeling in this context. On average, the SS models demonstrated a double force peak during stance (0.39-0.43 xBW per bundle), while only a single force peak during stance was observed in the SG aACL. No significant differences were observed between continuous SG and SS ACL forces; however, root mean-squared differences between SS and SG predictions ranged from 0.08 xBW to 0.27 xBW, suggesting SG models do not reliably reflect forces predicted by SS models. Force predictions were also found to be highly sensitive to ligament resting length, with ±10% variations resulting in force differences of up to 84%. Overall, this study demonstrates the sensitivity of ACL force predictions to SS anatomy, specifically musculoskeletal joint geometry and ligament resting lengths, as well as the feasibility for generating SS musculoskeletal models for a group of subjects to predict in vivo tissue loading during functional activities.
Collapse
Affiliation(s)
- James P. Charles
- Evolutionary Morphology and Biomechanics Lab, Musculoskeletal Biology, University of Liverpool, Liverpool L7 8TX, UK; Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - Freddie H. Fu
- Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - William J. Anderst
- Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
11
|
Benos L, Stanev D, Spyrou L, Moustakas K, Tsaopoulos DE. A Review on Finite Element Modeling and Simulation of the Anterior Cruciate Ligament Reconstruction. Front Bioeng Biotechnol 2020; 8:967. [PMID: 32974307 PMCID: PMC7468435 DOI: 10.3389/fbioe.2020.00967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023] Open
Abstract
The anterior cruciate ligament (ACL) constitutes one of the most important stabilizing tissues of the knee joint whose rapture is very prevalent. ACL reconstruction (ACLR) from a graft is a surgery which yields the best outcome. Taking into account the complicated nature of this operation and the high cost of experiments, finite element (FE) simulations can become a valuable tool for evaluating the surgery in a pre-clinical setting. The present study summarizes, for the first time, the current advancement in ACLR in both clinical and computational level. It also emphasizes on the material modeling and properties of the most popular grafts as well as modeling of different surgery techniques. It can be concluded that more effort is needed to be put toward more realistic simulation of the surgery, including also the use of two bundles for graft representation, graft pretension and artificial grafts. Furthermore, muscles and synovial fluid need to be included, while patellofemoral joint is an important bone that is rarely used. More realistic models are also required for soft tissues, as most articles used isotropic linear elastic models and springs. In summary, accurate and realistic FE analysis in conjunction with multidisciplinary collaboration could contribute to ACLR improvement provided that several important aspects are carefully considered.
Collapse
Affiliation(s)
- Lefteris Benos
- Institute for Bio-Economy and Agri-Technology, Centre for Research and Technology-Hellas, Thessaloniki, Greece
| | - Dimitar Stanev
- Department of Electrical and Computer Engineering, University of Patras, Patras, Greece.,School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Leonidas Spyrou
- Institute for Bio-Economy and Agri-Technology, Centre for Research and Technology-Hellas, Thessaloniki, Greece
| | | | - Dimitrios E Tsaopoulos
- Institute for Bio-Economy and Agri-Technology, Centre for Research and Technology-Hellas, Thessaloniki, Greece
| |
Collapse
|
12
|
Fardoun HM, Mashat AS. Methodologies, Models and Algorithms for Patients Rehabilitation. Methods Inf Med 2015; 55:60-4. [PMID: 26660533 DOI: 10.3414/me14-11-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION This editorial is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". OBJECTIVE The objective of this focus theme is to present current solutions by means of technologies and human factors related to the use of Information and Communication Technologies (ICT) for improving patient rehabilitation. METHODS The focus theme examines distinctive measurements of strengthening methodologies, models and algorithms for disabled people in terms of rehabilitation and health care, and to explore the extent to which ICT is a useful tool in this process. RESULTS The focus theme records a set of solutions for ICT systems developed to improve the rehabilitation process of disabled people and to help them in carrying out their daily life. CONCLUSIONS The development and subsequent setting up of computers for the patients' rehabilitation process is of continuous interest and growth.
Collapse
Affiliation(s)
- H M Fardoun
- Habib M. Fardoun, Information Systems Department, Faculty of Computing and information Technology, King Abdulaziz University (KAU), Jeddah, Kingdom of Saudi Arabia, E-mail:
| | | |
Collapse
|