1
|
Araoka T, Toyohara K, Ryosaka M, Inui C, Matsuura M, Ma C, Watahiki J, Li Z, Iwasaki M, Watanabe A, Yokokawa R, Tabata Y, Izpisua Belmonte JC, Osafune K. Human iPSC-derived nephron progenitor cells treat acute kidney injury and chronic kidney disease in mouse models. Sci Transl Med 2025; 17:eadt5553. [PMID: 40173262 DOI: 10.1126/scitranslmed.adt5553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
The number of patients requiring dialysis therapy continues to increase worldwide because of the lack of effective treatments for chronic kidney disease (CKD). Furthermore, no curative treatments for acute kidney injury (AKI) have been established. The therapeutic effects of human induced pluripotent stem cell-derived nephron progenitor cells (hiPSC-NPCs) on AKI have been reported in mice but not clinically confirmed. There are also no reports examining the therapeutic potential of hiPSC-NPCs on CKD. Although large numbers of uniform hiPSC-NPCs are required for cell therapies for AKI and CKD, effective expansion cultures remain to be developed. Here, we established a culture medium for cells that enabled more than 100-fold proliferation of hiPSC-NPCs from multiple hiPSC lines in two passages. We demonstrated that hiPSC-NPCs expanded by our medium named CFY or by their conditioned medium alone attenuated kidney injury and improved survival in cisplatin-induced AKI mice. We also observed that hiPSC-NPCs prevented kidney functional decline, interstitial fibrosis, and senescence in aristolochic acid-induced CKD mice. In addition, we found c-MET to be a specific cell surface marker for hiPSC-NPCs and confirmed that purified c-MET+ hiPSC-NPCs had therapeutic effects on AKI and CKD mice. Furthermore, we found that hiPSC-NPCs exerted their therapeutic effects in AKI and CKD mice by secreting vascular endothelial growth factor A. Expanded hiPSC-NPCs may be useful cell therapies for AKI and CKD and may open avenues for treating kidney diseases.
Collapse
Affiliation(s)
- Toshikazu Araoka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kosuke Toyohara
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Ryosaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Chihiro Inui
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Maasa Matsuura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Cheng Ma
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Jun Watahiki
- Medical Innovation Center (MIC), Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Zhongwei Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mio Iwasaki
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akira Watanabe
- Medical Innovation Center (MIC), Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Yasuhiko Tabata
- Cell Biotechnology Group, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
2
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Donate-Correa J, Martín-Núñez E, González-Luis A, Ferri CM, Luis-Rodríguez D, Tagua VG, Mora-Fernández C, Navarro-González JF. Pathophysiological Implications of Imbalances in Fibroblast Growth Factor 23 in the Development of Diabetes. J Clin Med 2021; 10:2583. [PMID: 34208131 PMCID: PMC8230948 DOI: 10.3390/jcm10122583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Observational studies have associated the increase in fibroblast growth factor (FGF) 23 levels, the main regulator of phosphate levels, with the onset of diabetes. These studies open the debate on the plausible existence of undescribed diabetogenic mechanisms derived from chronic supraphysiological levels of FGF23, a prevalent condition in chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. These maladaptive and diabetogenic responses to FGF23 may occur at different levels, including a direct effect on the pancreatic ß cells, and an indirect effect derived from the stimulation of the synthesis of pro-inflammatory factors. Both mechanisms could be mediated by the binding of FGF23 to noncanonical receptor complexes with the subsequent overactivation of signaling pathways that leads to harmful effects. The canonical binding of FGF23 to the receptor complex formed by the receptor FGFR1c and the coreceptor αKlotho activates Ras/MAPK/ERK signaling. However, supraphysiological concentrations of FGF23 favor non-αKlotho-dependent binding of this molecule to other FGFRs, which could generate an undesired overactivation of the PLCγ/CN/NFAT pathway, as observed in cardiomyocytes and hepatocytes. Moreover, the decrease in αKlotho expression may constitute a contributing factor to the appearance of these effects by promoting the nonspecific activation of the PLCγ/CN/NFAT to the detriment of the αKlotho-dependent Ras/MAPK/ERK pathway. The description of these mechanisms would allow the development of new therapeutic targets susceptible to be modified by dietary changes or by pharmacological intervention.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Ainhoa González-Luis
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Carla M. Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
| | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (A.G.-L.); (C.M.F.); (V.G.T.); (C.M.-F.)
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Abstract
BACKGROUND Current therapeutic strategies for type 1 (T1DM) and type 2 diabetes mellitus (T2DM) rely on increasing or substituting endogenous insulin secretion in combination with lifestyle changes. β-cell regeneration, a process whereby new β-cells arise from progenitors, self-renewal or transdifferentiation, has the potential to become a viable route to insulin self-sufficiency. Current regeneration strategies capture many of the transcriptomic and protein features of native β-cells, generating cells capable of glucose-dependent insulin secretion in vitro and alleviation of hyperglycemia in vivo. However, whether novel β-cells display appreciable heterogeneity remains poorly understood, with potential consequences for long-term functional robustness. SCOPE OF REVIEW The review brings together crucial discoveries in the β-cell regeneration field with state-of-the-art knowledge regarding β-cell heterogeneity. Aspects that might aid production of longer-lasting and more plastic regenerated β-cells are highlighted and discussed. MAJOR CONCLUSIONS Different β-cell regeneration approaches result in a similar outcome: glucose-sensitive, insulin-positive cells that mimic the native β-cell phenotype but which lack normal plasticity. The β-cell subpopulations identified to date expand our understanding of β-cell survival, proliferation and function, signposting the direction for future regeneration strategies. Therefore, regenerated β-cells should exhibit stimulus-dependent differences in gene and protein expression, as well as establish a functional network with different β-cells, all while coexisting with other cell types on a three-dimensional platform.
Collapse
Affiliation(s)
- Daniela Nasteska
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Katrina Viloria
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Lewis Everett
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
5
|
Yamada S, Nagai N, Saijo S, Kaji H, Nishizawa M, Imura K, Goto M, Abe T. Controlled basic fibroblast growth factor release device made of poly(ethyleneglycol) dimethacrylates for creating a subcutaneous neovascular bed for cell transplantation. J Biomed Mater Res A 2017; 105:3017-3024. [DOI: 10.1002/jbm.a.36153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/07/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Shinji Yamada
- Division of Clinical Cell Therapy; United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi; Aoba-ku Sendai 980-8575 Japan
| | - Nobuhiro Nagai
- Division of Clinical Cell Therapy; United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi; Aoba-ku Sendai 980-8575 Japan
| | - Saaya Saijo
- Division of Clinical Cell Therapy; United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi; Aoba-ku Sendai 980-8575 Japan
| | - Hirokazu Kaji
- Department of Finemechanics; Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki; Aoba-ku Sendai 980-8579 Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics; Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki; Aoba-ku Sendai 980-8579 Japan
| | - Kozue Imura
- Division of Transplantation and Regenerative Medicine; United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku; Sendai 980-0872 Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine; United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku; Sendai 980-0872 Japan
| | - Toshiaki Abe
- Division of Clinical Cell Therapy; United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi; Aoba-ku Sendai 980-8575 Japan
| |
Collapse
|
6
|
Affiliation(s)
- Naoya Kobayashi
- JSOPMB Issue Department of Surgery Okayama University Graduate School of Medicine and Denistry 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
7
|
Eve DJ, Sanberg PR. Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplant 2017; 16:751-764. [DOI: 10.3727/000000007783465136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Schive SW, Mirlashari MR, Hasvold G, Wang M, Josefsen D, Gullestad HP, Korsgren O, Foss A, Kvalheim G, Scholz H. Human Adipose-Derived Mesenchymal Stem Cells Respond to Short-Term Hypoxia by Secreting Factors Beneficial for Human Islets In Vitro and Potentiate Antidiabetic Effect In Vivo. CELL MEDICINE 2017; 9:103-116. [PMID: 28713640 DOI: 10.3727/215517917x693401] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) release factors beneficial for islets in vitro and protect against hyperglycemia in rodent models of diabetes. Oxygen tension has been shown to induce metabolic changes and alter ASCs' release of soluble factors. The effects of hypoxia on the antidiabetic properties of ASCs have not been explored. To investigate this, we incubated human ASCs for 48 h in 21% (normoxia) or 1% O2 (hypoxia) and compared viability, cell growth, surface markers, differentiation capability, and soluble factors in the conditioned media (CM). Human islets were exposed to CM from ASCs incubated in either normoxia or hypoxia, and islet function and apoptosis after culture with or without proinflammatory cytokines were measured. To test hypoxic preconditioned ASCs' islet protective effects in vivo, ASCs were incubated for 48 h in normoxia or hypoxia before being injected into Balb/c Rag 1-/- immunodeficient mice with streptozotocin-induced insulitis. Progression of diabetes and insulin content of pancreas were measured. We found that incubation in hypoxia was well tolerated by ASCs and that levels of VEGF-A, FGF-2, and bNGF were elevated in CM from ASCs incubated in hypoxia compared to normoxia, while levels of HGF, IL-8, and CXCL1 were reduced. CM from ASCs incubated in hypoxia significantly improved human islet function and reduced apoptosis after culture, and reduced cytokine-induced apoptosis. In our mouse model, pancreas insulin content was higher in both groups receiving ASCs compared to control, but the mice receiving preconditioned ASCs had lower random and fasting blood glucose, as well as improved oral glucose tolerance compared to untreated mice. In conclusion, our in vitro results indicate that the islet protective potential of ASCs improves in hypoxia, and we give insight into factors involved in this. Finally we show that hypoxic preconditioning potentiates ASCs' antidiabetic effect in vivo.
Collapse
Affiliation(s)
- Simen W Schive
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway.,†Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,‡Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mohammad Reza Mirlashari
- §Section for Cell Therapy, Oslo University Hospital, Oslo, Norway.,¶Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Grete Hasvold
- #Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mengyu Wang
- §Section for Cell Therapy, Oslo University Hospital, Oslo, Norway
| | - Dag Josefsen
- §Section for Cell Therapy, Oslo University Hospital, Oslo, Norway
| | | | - Olle Korsgren
- ††Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Aksel Foss
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway.,†Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,‡Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gunnar Kvalheim
- §Section for Cell Therapy, Oslo University Hospital, Oslo, Norway
| | - Hanne Scholz
- Department of Transplant Medicine, Oslo University Hospital, Oslo, Norway.,†Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,‡Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Barba-Gutierrez DA, Daneri-Navarro A, Villagomez-Mendez JJA, Kanamune J, Robles-Murillo AK, Sanchez-Enriquez S, Villafan-Bernal JR, Rivas-Carrillo JD. Facilitated Engraftment of Isolated Islets Coated With Expanded Vascular Endothelial Cells for Islet Transplantation. Transplant Proc 2016; 48:669-72. [PMID: 27110026 DOI: 10.1016/j.transproceed.2016.02.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes is complex disease, which involves primary metabolic changes followed by immunological and vascular pathophysiological adjustments. However, it is mostly characterized by an unbalanced decreased number of the β-cells unable to maintain the metabolic requirements and failure to further regenerate newly functional pancreatic islets. The objective of this study was to analyze the properties of the endothelial cells to facilitate the islet cells engraftment after islet transplantation. METHODS We devised a co-cultured engineer system to coat isolated islets with vascular endothelial cells. To assess the cell integration of cell-engineered islets, we stained them for endothelial marker CD31 and nuclei counterstained with DAPI dye. We comparatively performed islet transplantations into streptozotocin-induced diabetic mice and recovered the islet grafts for morphometric analyses on days 3, 7, 10, and 30. Blood glucose levels were measured continuously after islet transplantation to monitor the functional engraftment and capacity to achieve metabolic control. RESULTS Cell-engineered islets showed a well-defined rounded shape after co-culture when compared with native isolated islets. Furthermore, the number of CD31-positive cells layered on the islet surface showed a direct proportion with engraftment capacities and less TUNEL-positive cells on days 3 and 7 after transplantation. CONCLUSIONS We observed that vascular endothelial cells could be functional integrated into isolated islets. We also found that islets that are coated with vascular endothelial cells increased their capacity to engraft. These findings indicate that islets coated with endothelial cells have a greater capacity of engraftment and thus establish a definitely vascular network to support the metabolic requirements.
Collapse
Affiliation(s)
- D Alonso Barba-Gutierrez
- Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant, University Center for Health Sciences, University of Guadalajara, Mexico
| | - A Daneri-Navarro
- Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant, University Center for Health Sciences, University of Guadalajara, Mexico
| | - J Jesus Alejandro Villagomez-Mendez
- Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant, University Center for Health Sciences, University of Guadalajara, Mexico
| | - J Kanamune
- Department of Organ Reconstruction, Field of Clinical Application, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | | | - S Sanchez-Enriquez
- Department of Molecular Biology and Genomics, University Center for Health Sciences, University of Guadalajara, Mexico
| | - J Rafael Villafan-Bernal
- Department of Surgery, Center of Health Sciences, Autonomous University of Aguascalientes, Mexico
| | - J D Rivas-Carrillo
- Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant, University Center for Health Sciences, University of Guadalajara, Mexico.
| |
Collapse
|
10
|
Lin X, Zhao L, Tang S, Zhou Q, Lin Q, Li X, Zheng H, Gao H. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation. Sci Rep 2016; 6:36474. [PMID: 27808173 PMCID: PMC5093531 DOI: 10.1038/srep36474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022] Open
Abstract
The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = −0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.
Collapse
Affiliation(s)
- Xiaodong Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Metabonomics Section of Collaborative Innovation Center of Biomedicine, Wenzhou Medical University-Wenzhou University, Wenzhou 325035, China
| | - Shengli Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qi Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiuting Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Metabonomics Section of Collaborative Innovation Center of Biomedicine, Wenzhou Medical University-Wenzhou University, Wenzhou 325035, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Metabonomics Section of Collaborative Innovation Center of Biomedicine, Wenzhou Medical University-Wenzhou University, Wenzhou 325035, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.,Metabonomics Section of Collaborative Innovation Center of Biomedicine, Wenzhou Medical University-Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
11
|
Del Toro-Arreola A, Robles-Murillo AK, Daneri-Navarro A, Rivas-Carrillo JD. The role of endothelial cells on islet function and revascularization after islet transplantation. Organogenesis 2016; 12:28-32. [PMID: 27002241 DOI: 10.1080/15476278.2016.1165378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation.
Collapse
Affiliation(s)
- Alicia Del Toro-Arreola
- a Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant , University Center for Health Sciences, University of Guadalajara , Mexico
| | | | - Adrian Daneri-Navarro
- a Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant , University Center for Health Sciences, University of Guadalajara , Mexico
| | - Jorge David Rivas-Carrillo
- a Department of Physiology, Laboratory of Immunology, Tissue Engineering and Transplant , University Center for Health Sciences, University of Guadalajara , Mexico
| |
Collapse
|
12
|
Tsuchiya H, Sakata N, Yoshimatsu G, Fukase M, Aoki T, Ishida M, Katayose Y, Egawa S, Unno M. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation. PLoS One 2015; 10:e0140910. [PMID: 26473955 PMCID: PMC4608691 DOI: 10.1371/journal.pone.0140910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/01/2015] [Indexed: 12/24/2022] Open
Abstract
Background The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Methods Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Results Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. Conclusions The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.
Collapse
Affiliation(s)
| | - Naoaki Sakata
- Department of Surgery, Tohoku University, Sendai, Japan
- * E-mail:
| | | | | | - Takeshi Aoki
- Department of Surgery, Tohoku University, Sendai, Japan
| | | | - Yu Katayose
- Department of Surgery, Tohoku University, Sendai, Japan
- Division of Integrated Surgery and Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Mediscine, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University, Sendai, Japan
| |
Collapse
|
13
|
Najjar M, Manzoli V, Abreu M, Villa C, Martino MM, Molano RD, Torrente Y, Pileggi A, Inverardi L, Ricordi C, Hubbell JA, Tomei AA. Fibrin gels engineered with pro-angiogenic growth factors promote engraftment of pancreatic islets in extrahepatic sites in mice. Biotechnol Bioeng 2015; 112:1916-26. [PMID: 25786390 DOI: 10.1002/bit.25589] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/21/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
Abstract
With a view toward reduction of graft loss, we explored pancreatic islet transplantation within fibrin matrices rendered pro-angiogenic by incorporation of minimal doses of vascular endothelial growth factor-A165 and platelet-derived growth factor-BB presented complexed to a fibrin-bound integrin-binding fibronectin domain. Engineered matrices allowed for extended release of pro-angiogenic factors and for their synergistic signaling with extracellular matrix-binding domains in the post-transplant period. Aprotinin addition delayed matrix degradation and prolonged pro-angiogenic factor availability within the graft. Both subcutaneous (SC) and epididymal fat pad (EFP) sites were evaluated. We show that in the SC site, diabetes reversal in mice transplanted with 1,000 IEQ of syngeneic islets was not observed for islets transplanted alone, while engineered matrices resulted in a diabetes median reversal time (MDRT) of 38 days. In the EFP site, the MDRT with 250 IEQ of syngeneic islets within the engineered matrices was 24 days versus 86 days for islets transplanted alone. Improved function of engineered grafts was associated with enhanced and earlier (by day 7) angiogenesis. Our findings show that by engineering the transplant site to promote prompt re-vascularization, engraftment and long-term function of islet grafts can be improved in relevant extrahepatic sites.
Collapse
Affiliation(s)
- Mejdi Najjar
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida
| | - Vita Manzoli
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Maria Abreu
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida
| | - Chiara Villa
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - Mikaël M Martino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - R Damaris Molano
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida
| | - Yvan Torrente
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Pathophysiology and Transplantation, Universitá degli Studi di Milano, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | - Antonello Pileggi
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biomedical Engineering, University of Miami, Miami, Florida
| | - Luca Inverardi
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida.,Department of Biomedical Engineering, University of Miami, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey A Hubbell
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida.,Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Illinois
| | - Alice A Tomei
- Diabetes Research Institute, University of Miami Miller School of Medicine, 1450 NW 10th Avenue, Miami, Florida. .,Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Department of Biomedical Engineering, University of Miami, Miami, Florida.
| |
Collapse
|
14
|
Endothelial cells promote pancreatic stem cell activation during islet regeneration in mice. Transplant Proc 2014; 43:3209-11. [PMID: 22099759 DOI: 10.1016/j.transproceed.2011.09.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Diabetes is the clinical consequence of the loss of the majority of the β-cell population and failure to regenerate new pancreatic β cells. The current therapies based on β-cell replacement have failed to achieve β-cell renewal and thus, long-term insulin freedom. We have hypothesized that early rejection of endothelial elements within the islet grafts may seriously hamper islet regeneration in both native and islet grafts. METHODS In the present study, we analyzed the role of endothelial cells to activate pancreatic stem cells during islet regeneration. Mice were pretreated with or without endothelial pharmacological ablation of endothelial cells, followed by an acute β-cell injury using a single intraperitoneal injection of streptozotocin. We performed comparative morphometric analyses of recovered pancreata on days 3, 7, 10, and 30 after streptozotocin injury, staining with bromodeoxyuridine (BrdU) for representative cell types, β cells, endothelial elements, and stem cells. Blood glucose levels were measured continuously after the injury to monitor the capacity for metabolic control. RESULTS Morphometric analyses revealed an increasing number of cells over time to be stained with a stem cell and BrdU markers among animals only injured with streptozotocin but not with endothelial ablation. Notably, on day 10, stem cell markers were dramatically decrease nearly to basal levels, with appearance of numerous insulin-positive cells. Intact vessels with cobblestone-shaped endothelial elements were observed in direct proportion to the better outcomes, both by morphometric and by metabolic parameters. In contrast, fewer insulin-positive cells were observed in pancreata that had been ablated of endothelial cells showing extensive collapse of endocrine functions. CONCLUSIONS We observed that endothelial elements promoted stem cell proliferation and islet regeneration after a β-cell insult. We believe that preservation of endothelial cells positively affects the process of pancreatic regeneration.
Collapse
|
15
|
Silva PN, Altamentova SM, Kilkenny DM, Rocheleau JV. Fibroblast growth factor receptor like-1 (FGFRL1) interacts with SHP-1 phosphatase at insulin secretory granules and induces beta-cell ERK1/2 protein activation. J Biol Chem 2013; 288:17859-70. [PMID: 23640895 DOI: 10.1074/jbc.m112.440677] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FGFRL1 is a newly identified member of the fibroblast growth factor receptor (FGFR) family expressed in adult pancreas. Unlike canonical FGFRs that initiate signaling via tyrosine kinase domains, the short intracellular sequence of FGFRL1 consists of a putative Src homology domain-2 (SH2)-binding motif adjacent to a histidine-rich C terminus. As a consequence of nonexistent kinase domains, FGFRL1 has been postulated to act as a decoy receptor to inhibit canonical FGFR ligand-induced signaling. In pancreatic islet beta-cells, canonical FGFR1 signaling affects metabolism and insulin processing. This study determined beta-cell expression of FGFRL1 as well as consequent effects on FGFR1 signaling and biological responses. We confirmed FGFRL1 expression at the plasma membrane and within distinct intracellular granules of both primary beta-cells and βTC3 cells. Fluorescent protein-tagged FGFRL1 (RL1) induced a significant ligand-independent increase in MAPK signaling. Removal of the histidine-rich domain (RL1-ΔHis) or entire intracellular sequence (RL1-ΔC) resulted in greater retention at the plasma membrane and significantly reduced ligand-independent ERK1/2 responses. The SHP-1 phosphatase was identified as an RL1-binding substrate. Point mutation of the SH2-binding motif reduced the ability of FGFRL1 to bind SHP-1 and activate ERK1/2 but did not affect receptor localization to insulin secretory granules. Finally, overexpression of RL1 increased cellular insulin content and matrix adhesion. Overall, these data suggest that FGFRL1 does not function as a decoy receptor in beta-cells, but rather it enhances ERK1/2 signaling through association of SHP-1 with the receptor's intracellular SH2-binding motif.
Collapse
Affiliation(s)
- Pamuditha N Silva
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | | | | | | |
Collapse
|
16
|
Kawazoe T, Kim HH. Tissue augmentation by white blood cell-containing platelet-rich plasma. Cell Transplant 2012; 21:601-7. [PMID: 22793069 DOI: 10.3727/096368911x605538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Platelet-rich plasma (PRP) is a matrix of fibrin and platelets that releases cytokines that are important in wound healing. PRP is produced from the patient's blood and therefore has less risk of allergic reaction and infection. We have obtained PRP with an enhanced white blood cell component (W-PRP) by optimizing the centrifugal separation of PRP from plasma. Here we show that injection of W-PRP into the auricle of nude mice gave greater tissue augmentation compared to PRP. Further augmentation occurred when bFGF was added to W-PRP, and there was a significant increase in the number of α-smooth muscle actin-positive cells in mice treated with W-PRP+bFGF. Our results suggest that W-PRP may have value in cosmetic surgery aimed at rejuvenation of wrinkled and sagging skin. W-PRP injection constitutes a new concept in cell transplantation, in which cells required for tissue regeneration are induced by cytokines released from the transplanted cells.
Collapse
Affiliation(s)
- Takeshi Kawazoe
- Department of Plastic Reconstructive and Aesthetic Surgery, Kijunkai, Yoshikawa Hospital, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
17
|
Bedoya FJ, Salguero-Aranda C, Cahuana GM, Tapia-Limonchi R, Soria B, Tejedo JR. Regulation of pancreatic β-cell survival by nitric oxide: clinical relevance. Islets 2012; 4:108-18. [PMID: 22614339 DOI: 10.4161/isl.19822] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The reduction of pancreatic β-cell mass is an important factor in the development of type 1 and type 2 diabetes. Understanding the mechanisms that regulate the maintenance of pancreatic β-cell mass as well as β-cell death is necessary for the establishment of therapeutic strategies. In this context, nitric oxide (NO) is a diatomic, gaseous, highly reactive molecule with biological activity that participates in the regulation of pancreatic β-cell mass. Two types of cellular responses can be distinguished depending on the level of NO production. First, pancreatic β-cells exposed to inflammatory cytokines, lipid stress or hyperglycaemia produce high concentrations of NO, mainly due to the activation of inducible NO synthase (iNOS), thus promoting cell death. Meanwhile, under homeostatic conditions, low concentrations of NO, constitutively produced by endothelial NO synthase (eNOS), promote cell survival. Here, we will discuss the current knowledge of the NO-dependent mechanisms activated during cellular responses, emphasizing those related to the regulation of cell survival.
Collapse
Affiliation(s)
- Francisco J Bedoya
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, CIBERDEM, RED-TERCEL, Seville, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Advances and challenges in islet transplantation: islet procurement rates and lessons learned from suboptimal islet transplantation. J Transplant 2011; 2011:979527. [PMID: 22235361 PMCID: PMC3253477 DOI: 10.1155/2011/979527] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/04/2011] [Indexed: 01/22/2023] Open
Abstract
The initial step in successful islet transplantation is procurement of healthy donor islets. Given the limited number of donor pancreata selected for islet isolation and that islets from multiple donors are typically required to obtain insulin independence, it is critical to improve pancreas procurement rates and yield of islets for transplantation. Islets are delicate microorgans that are susceptible to apoptosis, hypoxia, and ischemia during isolation, culture, and the peritransplant period. Once the islets are engrafted, both prompt revascularization and protection from beta-cell death and graft rejection are key to secure long-term survival and function. To facilitate the engraftment of more robust islets suitable for combating the challenging isolation period and proinflammatory transplantation milieu, numerous approaches have been employed to prevent beta-cell dysfunction and death including immune modulation, prevention of apoptosis and hypoxia, as well as stimulation of growth factors, angiogenesis, and reinnervation. In addition to briefly discussing islet isolation procedures, procurement rates, and islet transplantation, the relevant literature pertaining to successful suboptimal islet transplantation is reviewed to provide insight into potential approaches to balance the limited supply of available donor islets.
Collapse
|
19
|
Khanna O, Moya ML, Opara EC, Brey EM. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1. J Biomed Mater Res A 2011; 95:632-40. [PMID: 20725969 DOI: 10.1002/jbm.a.32883] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alginate microcapsules coated with a permselective poly-L-ornithine (PLO) membrane have been investigated for the encapsulation and transplantation of islets as a treatment for type 1 diabetes. The therapeutic potential of this approach could be improved through local stimulation of microvascular networks to meet mass transport demands of the encapsulated cells. Fibroblast growth factor-1 (FGF-1) is a potent angiogenic factor with optimal effect occurring when it is delivered in a sustained manner. In this article, a technique is described for the generation of multilayered alginate microcapsules with an outer alginate layer that can be used for the delivery of FGF-1. The influence of alginate concentration and composition (high mannuronic acid (M) or guluronic acid (G) content) on outer layer size and stability, protein encapsulation efficiency, and release kinetics was investigated. The technique results in a stable outer layer of alginate with a mean thickness between 113 and 164 μm, increasing with alginate concentration and G-content. The outer layer was able to encapsulate and release FGF-1 for up to 30 days, with 1.25% of high G alginate displaying the most sustained release. The released FGF-1 retained its biologic activity in the presence of heparin, and the addition of the outer layer did not alter the permselectivity of the PLO coat. This technique could be used to generate encapsulation systems that deliver proteins to stimulate local neovascularization around encapsulated islets.
Collapse
Affiliation(s)
- Omaditya Khanna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
20
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
21
|
Abstract
Transplantation of human pancreatic isolated islets can restore beta-cell function but it requires chronic immunosuppression. The outcome of islet transplantation mainly depends on both the quality of islet preparations, and the survival of the graft. The quality of islet preparations can be evaluated by the results of isolation, which determines the chance to achieve insulin independence. The survival of islet grafts is reflected by the amount of engrafted functional tissue that maintains metabolic control. Immunosuppressive therapy prevents the immunological rejection of grafts, but impairs their function and impedes their regenerative capacity. Therefore, the selection of high quality islet preparations and the reduction of toxic effects of immunosuppressive regimens might dramatically improve the outcomes. The application of stem cell therapy in islet transplantation may contribute to a better understanding of the mechanisms responsible for tissue homeostasis and immune tolerance. Xenogeneic islets may serve as an unlimited source if immune tolerance can be achieved. This may be a strategy to enable a substantial improvement in function while overcoming potentially deleterious risks.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
22
|
Huang X, Moore DJ, Ketchum RJ, Nunemaker CS, Kovatchev B, McCall AL, Brayman KL. Resolving the conundrum of islet transplantation by linking metabolic dysregulation, inflammation, and immune regulation. Endocr Rev 2008; 29:603-30. [PMID: 18664617 PMCID: PMC2819735 DOI: 10.1210/er.2008-0006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although type 1 diabetes cannot be prevented or reversed, replacement of insulin production by transplantation of the pancreas or pancreatic islets represents a definitive solution. At present, transplantation can restore euglycemia, but this restoration is short-lived, requires islets from multiple donors, and necessitates lifelong immunosuppression. An emerging paradigm in transplantation and autoimmunity indicates that systemic inflammation contributes to tissue injury while disrupting immune tolerance. We identify multiple barriers to successful islet transplantation, each of which either contributes to the inflammatory state or is augmented by it. To optimize islet transplantation for diabetes reversal, we suggest that targeting these interacting barriers and the accompanying inflammation may represent an improved approach to achieve successful clinical islet transplantation by enhancing islet survival, regeneration or neogenesis potential, and tolerance induction. Overall, we consider the proinflammatory effects of important technical, immunological, and metabolic barriers including: 1) islet isolation and transplantation, including selection of implantation site; 2) recurrent autoimmunity, alloimmune rejection, and unique features of the autoimmune-prone immune system; and 3) the deranged metabolism of the islet transplant recipient. Consideration of these themes reveals that each is interrelated to and exacerbated by the other and that this connection is mediated by a systemic inflammatory state. This inflammatory state may form the central barrier to successful islet transplantation. Overall, there remains substantial promise in islet transplantation with several avenues of ongoing promising research. This review focuses on interactions between the technical, immunological, and metabolic barriers that must be overcome to optimize the success of this important therapeutic approach.
Collapse
Affiliation(s)
- Xiaolun Huang
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hiscox AM, Stone AL, Limesand S, Hoying JB, Williams SK. An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng Part A 2008; 14:433-40. [PMID: 18333795 DOI: 10.1089/tea.2007.0099] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Islet transplantation for the purpose of treating insulin-sensitive diabetes is currently limited by several factors, including islet survival posttransplantation. In the current study, a tissue-engineered prevascularized pancreatic encapsulating device (PPED) was developed. Isolated islets were placed in collagen gels, and they exhibited fourfold more insulin release than islets not in collagen. The insulin released by beta-cells in islets encapsulated in collagen exhibited unobstructed diffusion within the collagen gels. Subsequent studies evaluated the ability to create a sandwich comprised of two layers of prevascularized collagen gels around a central collagen gel containing islets. In vitro characterization of the islets showed that islets are functional and responded to glucose stimulation. The PPEDs were implanted subcutaneously into severe combined immunodeficient mice. Islet survival was assessed after 7, 14, and 28 days. Immunohistochemical analysis was performed on the implants to detect insulin and the presence of intraislet endothelial cells. At all time points, insulin was localized in association with intact and partially dissociated islets. Moreover, cells that exhibited insulin staining were colocalized with intraislet endothelial cells. These data indicate that the PPED enhances islet survival by supporting islet viability and maintaining intraislet endothelial cell structures.
Collapse
Affiliation(s)
- Alton M Hiscox
- Department of Physiological Sciences, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | |
Collapse
|
24
|
Rivas-Carrillo JD, Soto-Gutierrez A, Navarro-Alvarez N, Noguchi H, Okitsu T, Chen Y, Yuasa T, Tanaka K, Narushima M, Miki A, Misawa H, Tabata Y, Jun HS, Matsumoto S, Fox IJ, Tanaka N, Kobayashi N. Cell-permeable pentapeptide V5 inhibits apoptosis and enhances insulin secretion, allowing experimental single-donor islet transplantation in mice. Diabetes 2007; 56:1259-1267. [PMID: 17287463 DOI: 10.2337/db06-1679] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Treatment of diabetic patients by pancreatic islet transplantation often requires the use of islets from two to four donors to produce insulin independence in a single recipient. Following isolation and transplantation, islets are susceptible to apoptosis, which limits their function and probably long-term islet graft survival. RESEARCH DESIGN AND METHODS To address this issue, we examined the effect of the cell-permeable apoptosis inhibitor pentapeptide Val-Pro-Met-Leu-Lys, V5, on pancreatic islets in a mouse model. RESULTS V5 treatment upregulated expression of anti-apoptotic proteins Bcl-2 and XIAP (X-linked inhibitor of apoptosis protein) by more than 3- and 11-fold and downregulated expression of apoptosis-inducing proteins Bax, Bad, and nuclear factor-kappaB-p65 by 10, 30, and nearly 50%, respectively. Treatment improved the recovered islet mass following collagenase digestion and isolation by 44% and in vitro glucose-responsive insulin secretion nearly fourfold. Following transplantation in streptozotocin-induced diabetic mice, 150 V5-treated islet equivalents functioned as well as 450 control untreated islet equivalents in normalizing blood glucose. CONCLUSIONS These studies indicate that inhibition of apoptosis by V5 significantly improves islet function following isolation and improves islet graft function following transplantation. Use of this reagent in clinical islet transplantation could have a dramatic impact on the number of patients that might benefit from this therapy and could affect long-term graft survival.
Collapse
Affiliation(s)
- Jorge D Rivas-Carrillo
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Shikata-cho, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|