1
|
Panero AJ, Hirahara AM, Podesta L, Jamali AA, Andersen W, Smith AA. Allograft Tissues. ATLAS OF INTERVENTIONAL ORTHOPEDICS PROCEDURES 2022:89-101. [DOI: 10.1016/b978-0-323-75514-6.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Derakhti S, Safiabadi-Tali SH, Amoabediny G, Sheikhpour M. Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109782. [DOI: 10.1016/j.msec.2019.109782] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 05/20/2019] [Indexed: 12/27/2022]
|
3
|
Nguyen L, Bang S, Noh I. Tissue Regeneration of Human Mesenchymal Stem Cells on Porous Gelatin Micro-Carriers by Long-Term Dynamic In Vitro Culture. Tissue Eng Regen Med 2019; 16:19-28. [PMID: 30815347 PMCID: PMC6361098 DOI: 10.1007/s13770-018-00174-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023] Open
Abstract
Background Tissue engineering is a multidisciplinary field which attracted much attention in recent years. One of the most important issue in tissue engineering is how to obtain high cell numbers and tissue regeneration while maintaining appropriate cellular characteristics in vitro for restoring damaged or dysfunctional body tissues and organs. These demands can be achieved by the use of three dimensional (3D) dynamic cultures of cells combined with cell-adhesive micro-carriers. Method In this study, human mesenchymal stem cells (hMSCs) were cultured in a wave-bioreactor system for up to 100 days, after seeding on Cultisphere-S porous gelatin micro-carriers. Cell counting was performed at the time points of 7, 12, 17, 31 days and compared to those of hMSCs cultured under static condition. Higher growth and proliferation rates was achieved in wave-type dynamic culture, when cell culture continued to day 31. A scanning electron microscope (SEM) photographs, both live and dead and MTT assays were taken to confirm the survival and distribution of cells on porous gelatin micro-carrier surfaces. The results of histological stains such as hematoxylin and eosin, Masson's trichrome, Alcian blue and Alizarin red S also showed improved proliferation and tissue regeneration of hMSCs on porous gelatin micro-carriers. Conclusion The experimental results demonstrated the effect and importance of both micro-carriers and bioreactor in hMSC expansion on cell proliferation and migration as well as extracellular matrix formation on the superficial and pore surfaces of the porous gelatin micro-carriers, and then their inter-connections, leading to tissue regeneration.
Collapse
Affiliation(s)
- LeTuyen Nguyen
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 11811 Republic of Korea
| | - Sumi Bang
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 11811 Republic of Korea
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 11811 Republic of Korea
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 11811 Republic of Korea
| |
Collapse
|
4
|
Li Z, Maitz P. Cell therapy for severe burn wound healing. BURNS & TRAUMA 2018; 6:13. [PMID: 29854856 PMCID: PMC5971426 DOI: 10.1186/s41038-018-0117-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
Cell therapy has emerged as an important component of life-saving procedures in treating burns. Over past decades, advances in stem cells and regenerative medicine have offered exciting opportunities of developing cell-based alternatives and demonstrated the potential and feasibility of various stem cells for burn wound healing. However, there are still scientific and technical issues that should be resolved to facilitate the full potential of the cellular devices. More evidence from large, randomly controlled trials is also needed to understand the clinical impact of cell therapy in burns. This article aims to provide an up-to-date review of the research development and clinical applications of cell therapies in burn wound healing and skin regeneration.
Collapse
Affiliation(s)
- Zhe Li
- Burns Unit, Concord Hospital, Concord, New South Wales 2139 Australia
- Skin Laboratory, NSW Statewide Burns Service, Concord, New South Wales Australia
- Discipline of Surgery, University of Sydney Medical School, Camperdown, New South Wales Australia
| | - Peter Maitz
- Burns Unit, Concord Hospital, Concord, New South Wales 2139 Australia
- Skin Laboratory, NSW Statewide Burns Service, Concord, New South Wales Australia
- Discipline of Surgery, University of Sydney Medical School, Camperdown, New South Wales Australia
| |
Collapse
|
5
|
Eve DJ, Sanberg PR. Article Commentary: Regenerative Medicine: An Analysis of Cell Transplantation's Impact. Cell Transplant 2017; 16:751-764. [DOI: 10.3727/000000007783465136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- David J. Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:545-553. [DOI: 10.1016/j.msec.2017.02.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 11/18/2022]
|
7
|
Zhao G, Liu F, Lan S, Li P, Wang L, Kou J, Qi X, Fan R, Hao D, Wu C, Bai T, Li Y, Liu JY. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem Cell Res Ther 2015; 6:38. [PMID: 25889402 PMCID: PMC4413550 DOI: 10.1186/s13287-015-0031-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Successful stem cell therapy relies on large-scale generation of stem cells and their maintenance in a proliferative multipotent state. This study aimed to establish a three-dimension culture system for large-scale generation of hWJ-MSC and investigated the self-renewal activity, genomic stability and multi-lineage differentiation potential of such hWJ-MSC in enhancing skin wound healing. METHODS hWJ-MSC were seeded on gelatin microbeads and cultured in spinning bottles (3D). Cell proliferation, karyotype analysis, surface marker expression, multipotent differentiation (adipogenic, chondrogenic, and osteogenic potentials), and expression of core transcription factors (OCT4, SOX2, NANOG, and C-MYC), as well as their efficacy in accelerating skin wound healing, were investigated and compared with those of hWJ-MSC derived from plate cultres (2D), using in vivo and in vitro experiments. RESULTS hWJ-MSC attached to and proliferated on gelatin microbeads in 3D cultures reaching a maximum of 1.1-1.30×10(7) cells on 0.5 g of microbeads by days 8-14; in contrast, hWJ-MSC derived from 2D cultures reached a maximum of 6.5 -11.5×10(5) cells per well in a 24-well plate by days 6-10. hWJ-MSC derived by 3D culture incorporated significantly more EdU (P<0.05) and had a significantly higher proliferation index (P<0.05) than those derived from 2D culture. Immunofluorescence staining, real-time PCR, flow cytometry analysis, and multipotency assays showed that hWJ-MSC derived from 3D culture retained MSC surface markers and multipotency potential similar to 2D culture-derived cells. 3D culture-derived hWJ-MSC also retained the expression of core transcription factors at levels comparable to their 2D culture counterparts. Direct injection of hWJ-MSC derived from 3D or 2D cultures into animals exhibited similar efficacy in enhancing skin wound healing. CONCLUSIONS Thus, hWJ-MSC can be expanded markedly in gelatin microbeads, while retaining MSC surface marker expression, multipotent differential potential, and expression of core transcription factors. These cells also efficiently enhanced skin wound healing in vivo, in a manner comparable to that of hWJ-MSC obtained from 2D culture.
Collapse
Affiliation(s)
- Guifang Zhao
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, P.R. China.
| | - Feilin Liu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Shaowei Lan
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Pengdong Li
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Li Wang
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Junna Kou
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Xiaojuan Qi
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Ruirui Fan
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Deshun Hao
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Chunling Wu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Harbin Veterinary Research Institute, CAAS - Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, 150001, P R China.
| | - Tingting Bai
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Yulin Li
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Jin Yu Liu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, P.R. China.
| |
Collapse
|
8
|
Sart S, Agathos SN, Li Y. Engineering stem cell fate with biochemical and biomechanical properties of microcarriers. Biotechnol Prog 2013; 29:1354-66. [PMID: 24124017 DOI: 10.1002/btpr.1825] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/29/2013] [Indexed: 12/28/2022]
Abstract
Microcarriers have been widely used for various biotechnology applications because of their high scale-up potential, high reproducibility in regulating cellular behavior, and well-documented compliance with current Good Manufacturing Practices (cGMP). Recently, microcarriers have been emerging as a novel approach for stem cell expansion and differentiation, enabling potential scale-up of stem cell-derived products in large bioreactors. This review summarizes recent advances of using microcarriers in mesenchymal stem cell (MSC) and pluripotent stem cell (PSC) cultures. From the reported data, efficient expansion and differentiation of stem cells on microcarriers rely on their ability to modulate cell shape (i.e. round or spreading) and cell organization (i.e. aggregate size). Nonetheless, current screening of microcarriers remains empirical, and accurate understanding of how stem cells interact with microcarriers still remains unknown. This review suggests that accurate characterization of biochemical and biomechanical properties of microcarriers is required to fully exploit their potential in regulating stem cell fate decision. Due to the variety of microcarriers, such detailed analyses should lead to the rational design of application-specific microcarriers, enabling the exploitation of reproducible effects for large scale biomedical applications.
Collapse
Affiliation(s)
- Sébastien Sart
- Dept. of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL
| | | | | |
Collapse
|
9
|
Eldardiri M, Martin Y, Roxburgh J, Lawrence-Watt DJ, Sharpe JR. Wound contraction is significantly reduced by the use of microcarriers to deliver keratinocytes and fibroblasts in an in vivo pig model of wound repair and regeneration. Tissue Eng Part A 2011; 18:587-97. [PMID: 21939396 DOI: 10.1089/ten.tea.2011.0258] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In full-thickness injuries caused by extensive burns or penetrating traumatic injuries, the natural epidermal stem cell niche is destroyed, and wound healing occurs through migration of cells from the wound edges and wound contraction. This can lead to significant contracture formation, especially in large full-thickness injuries, causing lack of mobility and pain. Contraction is reduced when wounds are treated using split-thickness skin grafts (STSG) or dermal substitutes, particularly in combination with cultured autologous keratinocytes, delivered as confluent sheets or sprayed as a single cell suspension (SAK). Here, we show that the application of keratinocytes alone or keratinocytes with fibroblasts, delivered on microcarriers, in combination with STSG or a dermal substitute, significantly reduces contraction of wounds in vivo in a porcine model of wound repair and regeneration. A decrease in alpha-smooth muscle actin-positive myofibroblasts, the cell type responsible for wound contraction, accompanies the reduction in contraction. These findings demonstrate the potential for a significant clinical advantage in the treatment of full-thickness injuries.
Collapse
Affiliation(s)
- Mohamed Eldardiri
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Martin Y, Eldardiri M, Lawrence-Watt DJ, Sharpe JR. Microcarriers and Their Potential in Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:71-80. [PMID: 21083436 DOI: 10.1089/ten.teb.2010.0559] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yella Martin
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United kingdom
| | - Mohamed Eldardiri
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United kingdom
| | - Diana J. Lawrence-Watt
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United kingdom
| | - Justin R. Sharpe
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United kingdom
| |
Collapse
|
11
|
Sun LY, Lin SZ, Li YS, Harn HJ, Chiou TW. Functional Cells Cultured on Microcarriers for Use in Regenerative Medicine Research. Cell Transplant 2011; 20:49-62. [PMID: 20887678 DOI: 10.3727/096368910x532792] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microcarriers have been successfully used for many years for growing anchorage-dependent cells and as a means of delivering cells for tissue repair. When cultured on microcarriers, the number of anchorage-dependent cells, including primary cells, can easily be scaled up and controlled to generate the quantities of cells necessary for therapeutic applications. Recently, stem cell technology has been recognized as a powerful tool in regenerative medicine, but adequate numbers of stem cells that retain their differentiation potential are still difficult to obtain. For anchorage-dependent stem cells, however, microcarrier-based suspension culture using various types of microcarriers has proven to be a good alternative for effective ex vivo expansion. In this article, we review studies reporting the expansion, differentiation, or transplantation of functional anchorage-dependent cells that were expanded with the microcarrier culture system. Thus, the implementation of technological advances in biodegradable microcarriers, the bead-to-bead transfer process, and appropriate stem cell media may soon foster the ability to produce the numbers of stem cells necessary for cell-based therapies and/or tissue engineering.
Collapse
Affiliation(s)
- Li-Yi Sun
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University and Hospital and Beigang Hospital, Taichung and Yun-Lin, Taiwan
| | - Yuan-Sheng Li
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University and Hospital, Taichung, Taiwan
- Department of Medicine, China Medical University, Taichung, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
12
|
Hu X, Yu W, Sun H, Wang X, Han C. Epidermal cells delivered for cutaneous wound healing. J DERMATOL TREAT 2010; 23:224-37. [DOI: 10.3109/09546634.2010.495741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Zhang L, Ning B, Jia T, Gong W, Cong M, Chen JF, Yang SY. Microcarrier bioreactor culture system promotes propagation of human intervertebral disc cells. Ir J Med Sci 2010; 179:529-34. [DOI: 10.1007/s11845-010-0537-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 07/12/2010] [Indexed: 11/30/2022]
|
14
|
Abstract
In the last 15 years many different liver cell culture devices, consisting of functional liver cells and artificial materials, have been developed. They have been devised for numerous different applications, such as temporary organ replacement (a bridge to liver transplantation or native liver regeneration) and as in vitro screening systems in the early stages of the drug development process, like assessing hepatotoxicity, hepatic drug metabolism, and induction/inhibition studies. Relevant literature is summarized about artificial human liver cell culture systems by scrutinizing PubMed from 2003 to 2009. Existing devices are divided in 2D configurations (e.g., static monolayer, sandwich, perfused cells, and flat plate) and 3D configurations (e.g., liver slices, spheroids, and different types of bioreactors). The essential features of an ideal liver cell culture system are discussed: different types of scaffolds, oxygenation systems, extracellular matrixes (natural and artificial), cocultures with nonparenchymal cells, and the role of shear stress problems. Finally, miniaturization and high-throughput systems are discussed. All these factors contribute in their own way to the viability and functionality of liver cells in culture. Depending on the aim for which they are designed, several good systems are available for predicting hepatotoxicity and hepatic metabolism within the general population. To predict hepatotoxicity in individual cases genomic analysis might be essential as well.
Collapse
Affiliation(s)
- B Andria
- Center of Biotechnologies, Cardarelli Hospital, Naples, Italy; †Faculty of Pharmacy, 'Federico II" University, Naples, Italy
| | - A Bracco
- Center of Biotechnologies, Cardarelli Hospital , Naples , Italy
| | - G Cirino
- † Faculty of Pharmacy, 'Federico II" University , Naples , Italy
| | - R A F M Chamuleau
- ‡ Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
15
|
Borg DJ, Dawson RA, Leavesley DI, Hutmacher DW, Upton Z, Malda J. Functional and phenotypic characterization of human keratinocytes expanded in microcarrier culture. J Biomed Mater Res A 2009; 88:184-94. [DOI: 10.1002/jbm.a.31864] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Ghosh D, Shenoy S, Kuchroo P. Cultured melanocytes: from skin biopsy to transplantation. Cell Transplant 2008; 17:351-60. [PMID: 18522237 DOI: 10.3727/096368908784153869] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Restoration of cutaneous pigmentation has been achieved in stable vitiligo by autologous melanocyte transplantation. This study was aimed to develop a methodology to deliver melanocytes to vitiliginous area following their processing and culture in a centralized facility. Here we report a methodology to culture melanocytes on carrier films, transport the cells, and graft them on vitiliginous areas. The salient features of this study include: 1) development of polylactic acid (PLA) films that support melanocyte attachment, growth, and delivery; 2) establish transport conditions for skin biopsies from hospitals; 3) establish transport conditions for cultured cells from cell processing center to hospitals. Results suggest that PLA films could serve as carriers for melanocytes during transport. "Upside-down" application of the graft results in the migration of cells from the films into the dermabraded area. The transport conditions ensure cell viability for 96 h. This system could help clinicians, who do not have access to cell culture facilities, transplant cultured melanocytes in a cost-effective manner.
Collapse
Affiliation(s)
- Deepa Ghosh
- Tissue Engineering Group, Reliance Life Sciences Pvt. Ltd., Navi Mumbai, India.
| | | | | |
Collapse
|
17
|
Zhao Y, Wang J, Yan X, Li D, Xu J. Preliminary Survival Studies on Autologous Cultured Skin Fibroblasts Transplantation by Injection. Cell Transplant 2008; 17:775-83. [PMID: 19044204 DOI: 10.3727/096368908786516846] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the correction of aesthetic impairments on the face, dermal, and superficial subcutaneous defects, adequately safe implant material is required. Cultured autologous skin fibroblasts, as a protein repair system, create a living injectable system that has been utilized effectively to treat rhytids, depressed scars, subcutaneous atrophy, acne irregularities, and laser wounds. To evaluate the new method, we have investigated the survival and collagen secretion of autologous transplanted fibroblasts. In this study, rabbit fibroblasts were cultured and expanded. Cells (8 × 107/ml) were injected into the superficial and deep dermal junction of the dorsal ears. Two rabbits were injected independently with labeled [3H]TdR fibroblasts; similarly, eight rabbits were given unlabeled transplanted cells in the right ear and vehicle in the left. Each site was injected three times with the same amount of cells every 2 weeks. The grafts were evaluated for 5 months. After explantation, the samples were collected from the injected sites and stained with autoradiography, H&E, and sirius red, respectively. According to the histological observations, the [3H]TdR-labeled cells survived and large amounts of embryo fibroblasts were found in the experimental subgroup of the labeled cell group. The depth of dermis was significantly different between the experimental subgroup (701.3 ± 31.5 μm) and the control subgroup (638.3 ± 23.9 μm) of the unlabeled group (p < 0.01). There was also a significant difference of collagen III between the experimental subgroup (2.63 ± 1.41 cm2) and the control subgroup (1.05 ± 0.90 cm2) (p < 0.05). There was no significant difference of collagen I between the experimental subgroup (56.25 ± 14.41 cm2) and the control subgroup (55.41 ± 16.59 cm2) (p > 0.05). The results obtained demonstrate that the distinction of the depth of dermis should be interpreted by the increase of collagen III, instead of collagen I, which is produced by the transplanted fibroblasts. The investigation indicated that transplanted autologous skin fibroblasts could provide a potential and effective approach to treat minor facial tissue deficiencies.
Collapse
Affiliation(s)
- Yuming Zhao
- Department of the Plastic and Reconstructive Surgery, Clinical Division of Surgery, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Jiaqi Wang
- Department of the Aesthetic & Plastic Surgery on the Face and Neck, The Plastic Surgery Hospital, Beijing, China
| | - Xiaoqing Yan
- Department of the Plastic and Reconstructive Surgery, Clinical Division of Surgery, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Dan Li
- Department of the Plastic and Reconstructive Surgery, Clinical Division of Surgery, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Jun Xu
- Department of the Plastic and Reconstructive Surgery, Clinical Division of Surgery, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| |
Collapse
|
18
|
Liu JY, Hafner J, Dragieva G, Burg G. High yields of autologous living dermal equivalents using porcine gelatin microbeads as microcarriers for autologous fibroblasts. Cell Transplant 2006; 15:445-51. [PMID: 16970286 DOI: 10.3727/000000006783981855] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Permanent skin replacement requires a dermal component to ensure adequate long-term graft stability and to prevent wound contraction. This study was to construct a bioreactor microcarrier cell culture system (Bio-MCCS) to produce autologous living dermal equivalents on a large scale. Autologous fibroblasts were isolated from split-thickness skin biopsy from a leg ulcer patient, inoculated onto macroporous porcine gelatin microbeads, and incubated in a bioreactor (Cellspin) in serum-free fibroblast growth medium or in DMEM medium containing 10% fetal calf serum (FCS). Fibroblasts rapidly adhered to and actively proliferated on the microbeads in the bioreactor in both serum-free and serum-containing medium. MTT assay showed the number of fibroblasts on the microbeads reached up to 5.3- or 4.0-fold the cells seeded in DMEM medium containing 10% FCS or serum-free medium, respectively. When removed from Bio-MCCS and cultured under static conditions, fibroblasts were able to leave the microbeads and proliferate to confluence on the bottom of tissue culture flasks. When stored at room temperature in DMEM containing 10% FBS, fibroblast cultured on the microbeads retained highest viabilities for at least 3 weeks, up to 82% of originals. This Bio-MCCS using porcine gelatin microbeads as carriers for fibroblasts offers a new option of mass production of autologous living dermal equivalents.
Collapse
Affiliation(s)
- Jin Yu Liu
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|