1
|
Li W, Xu Z, Zou B, Yang D, Lu Y, Zhang X, Zhang C, Li Y, Zhu C. Macrophage regulation in vascularization upon regeneration and repair of tissue injury and engineered organ transplantation. FUNDAMENTAL RESEARCH 2025; 5:697-714. [PMID: 40242532 PMCID: PMC11997588 DOI: 10.1016/j.fmre.2023.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/04/2023] [Accepted: 12/29/2023] [Indexed: 04/18/2025] Open
Abstract
Tissue engineering and regenerative medicine are effective strategies for the treatment of damaged tissues and end-stage organ failure. Damaged tissue regeneration and organ transplantation require blood vessel reconstruction to facilitate tissue remodeling, the bottleneck for application research in this field. Immune cells are heavily involved in coordinating neovascularization, in which macrophage aggregation is a key factor in angiogenesis and arteriogenesis. Previous studies have promoted tissue vascularization by regulating macrophages; however, the mechanisms underlying macrophage-mediated vascularization remain nebulous. Studies on material-based regulation have primarily been observational and lack systematic and targeted research. Macrophages from different sources exhibit different phenotypes or functions in tissues, such as peripheral blood monocytes and tissue-resident macrophages, with each exhibiting complicated mechanisms for promoting tissue injury and graft remodeling. Therefore, in this review, we discuss the role of different tissue-resident macrophages and circulating monocytes in vascularization during injured tissue regeneration and graft remodeling and summarize the current strategies for the use of biomaterials to regulate macrophages and promote the vascularization of injured tissues and during organ transplantation. A better understanding of these mechanisms will facilitate future tissue engineering research that promotes vascularization by regulating macrophage reactions.
Collapse
Affiliation(s)
- Wenya Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610000, China
| | - Zilu Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Binghan Zou
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Dongcheng Yang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Yue Lu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Xiaohan Zhang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Chen Zhang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
| | - Yanzhao Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400038, China
| |
Collapse
|
2
|
Das A, Smith RJ, Andreadis ST. Harnessing the potential of monocytes/macrophages to regenerate tissue-engineered vascular grafts. Cardiovasc Res 2024; 120:839-854. [PMID: 38742656 PMCID: PMC11218695 DOI: 10.1093/cvr/cvae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Cell-free tissue-engineered vascular grafts provide a promising alternative to treat cardiovascular disease, but timely endothelialization is essential for ensuring patency and proper functioning post-implantation. Recent studies from our lab showed that blood cells like monocytes (MCs) and macrophages (Mϕ) may contribute directly to cellularization and regeneration of bioengineered arteries in small and large animal models. While MCs and Mϕ are leucocytes that are part of the innate immune response, they share common developmental origins with endothelial cells (ECs) and are known to play crucial roles during vessel formation (angiogenesis) and vessel repair after inflammation/injury. They are highly plastic cells that polarize into pro-inflammatory and anti-inflammatory phenotypes upon exposure to cytokines and differentiate into other cell types, including EC-like cells, in the presence of appropriate chemical and mechanical stimuli. This review focuses on the developmental origins of MCs and ECs; the role of MCs and Mϕ in vessel repair/regeneration during inflammation/injury; and the role of chemical signalling and mechanical forces in Mϕ inflammation that mediates vascular graft regeneration. We postulate that comprehensive understanding of these mechanisms will better inform the development of strategies to coax MCs/Mϕ into endothelializing the lumen and regenerate the smooth muscle layers of cell-free bioengineered arteries and veins that are designed to treat cardiovascular diseases and perhaps the native vasculature as well.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
| | - Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, 908 Furnas Hall, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, 332 Bonner Hall, Buffalo, NY 14260-1920, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, 701 Ellicott St, Buffalo, NY 14203, USA
- Cell, Gene and Tissue Engineering (CGTE) Center, University at Buffalo, The State University of New York, 813 Furnas Hall, Buffalo, NY 14260-4200, USA
| |
Collapse
|
3
|
Sun Z, Yang L, Kiram A, Yang J, Yang Z, Xiao L, Yin Y, Liu J, Mao Y, Zhou D, Yu H, Zhou Z, Xu D, Jia Y, Ding C, Guo Q, Wang H, Li Y, Wang L, Fu T, Hu S, Gan Z. FNIP1 abrogation promotes functional revascularization of ischemic skeletal muscle by driving macrophage recruitment. Nat Commun 2023; 14:7136. [PMID: 37932296 PMCID: PMC10628247 DOI: 10.1038/s41467-023-42690-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Ischaemia of the heart and limbs attributable to compromised blood supply is a major cause of mortality and morbidity. The mechanisms of functional angiogenesis remain poorly understood, however. Here we show that FNIP1 plays a critical role in controlling skeletal muscle functional angiogenesis, a process pivotal for muscle revascularization during ischemia. Muscle FNIP1 expression is down-regulated by exercise. Genetic overexpression of FNIP1 in myofiber causes limited angiogenesis in mice, whereas its myofiber-specific ablation markedly promotes the formation of functional blood vessels. Interestingly, the increased muscle angiogenesis is independent of AMPK but due to enhanced macrophage recruitment in FNIP1-depleted muscles. Mechanistically, myofiber FNIP1 deficiency induces PGC-1α to activate chemokine gene transcription, thereby driving macrophage recruitment and muscle angiogenesis program. Furthermore, in a mouse hindlimb ischemia model of peripheral artery disease, the loss of myofiber FNIP1 significantly improved the recovery of blood flow. Thus, these results reveal a pivotal role of FNIP1 as a negative regulator of functional angiogenesis in muscle, offering insight into potential therapeutic strategies for ischemic diseases.
Collapse
Affiliation(s)
- Zongchao Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Abdukahar Kiram
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhuangzhuang Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Hao Yu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Dengqiu Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yuhuan Jia
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Chenyun Ding
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Hongwei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Yin X, Li Y, Chen Y, Liu P, Feng B, Zhang P, Zeng H. IL-4-loaded alginate/chitosan multilayer films for promoting angiogenesis through both direct and indirect means. Int J Biol Macromol 2023; 232:123486. [PMID: 36731693 DOI: 10.1016/j.ijbiomac.2023.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Vascularization remains a major challenge in tissue engineering. In tissue repair with the involvement of biomaterials, both the material properties and material-induced immune response can affect angiogenesis. However, there is a scarcity of research on biomaterials that modulate angiogenesis simultaneously from both perspectives. Meanwhile, the effects and mechanisms of biomaterial-induced macrophages on angiogenesis remain controversial. In this study, a cytokine-controlled release system from our previous work was employed, and the effects thereof on angiogenesis through both direct and indirect means were investigated. Alginate/chitosan multilayer films were fabricated on interleukin (IL)-4-loaded titania nanotubes to achieve a sustained release of IL-4. The released IL-4 and the multilayers synergistically promoted angiogenic behaviors of endothelial cells (ECs), while up-regulating the expression of early vascular markers. Furthermore, polarized macrophages (both M1 and M2) notably elevated the expression of late vascular markers in ECs via the high expression of pro-maturation factor angiogenin-1. After subcutaneous implantation, the IL-4-loaded implants induced increased neovascularization in a short period, with the surrounding tissue returning to normal at the later stage. Therefore, the proposed IL-4-loaded implants exhibited superior pro-angiogenic capability in vitro and in vivo through both direct stimulation of ECs and the indirect induction of a suitable immune microenvironment.
Collapse
Affiliation(s)
- Xianzhen Yin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China; Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiting Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Feng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
5
|
Li Y, Lu Y, Qiu B, Ze Y, Li P, Du Y, Gong P, Lin J, Yao Y. Copper-containing titanium alloys promote angiogenesis in irradiated bone through releasing copper ions and regulating immune microenvironment. BIOMATERIALS ADVANCES 2022; 139:213010. [PMID: 35882157 DOI: 10.1016/j.bioadv.2022.213010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Poor vascularization was demonstrated as a factor inhibiting bone regeneration in patients receiving radiotherapy. Various copper-containing materials have been reported to increase angiogenesis, therefore might improve bone formation. In this study, a Ti6Al4V-1.5Cu alloy was prepared using selective laser melting (SLM) technology. The immunomodulatory and pro-angiogenic effects of the Ti6Al4V-1.5Cu alloys were examined. In vitro, Ti6Al4V-1.5Cu stimulated vascular formation by restraining inflammatory factors and provoking angiogenic factors in non-irradiated and irradiated macrophages. In vivo, the angiogenic effects of the Ti6Al4V-1.5Cu alloy were confirmed using an irradiated rat femur defect model. Moreover, we found that the biological effects of the Ti6Al4V-1.5Cu alloy were partially due to the release of copper ions and associated with PI3K-Akt signaling pathway. In conclusion, this study indicated the potential of the Ti6Al4V-1.5Cu alloy to promote angiogenesis by releasing copper ions and inhibiting inflammation in normal and irradiated tissues.
Collapse
Affiliation(s)
- Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China
| | - Bingrun Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Zarubova J, Hasani-Sadrabadi MM, Ardehali R, Li S. Immunoengineering strategies to enhance vascularization and tissue regeneration. Adv Drug Deliv Rev 2022; 184:114233. [PMID: 35304171 PMCID: PMC10726003 DOI: 10.1016/j.addr.2022.114233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022]
Abstract
Immune cells have emerged as powerful regulators of regenerative as well as pathological processes. The vast majority of regenerative immunoengineering efforts have focused on macrophages; however, growing evidence suggests that other cells of both the innate and adaptive immune system are as important for successful revascularization and tissue repair. Moreover, spatiotemporal regulation of immune cells and their signaling have a significant impact on the regeneration speed and the extent of functional recovery. In this review, we summarize the contribution of different types of immune cells to the healing process and discuss ways to manipulate and control immune cells in favor of vascularization and tissue regeneration. In addition to cell delivery and cell-free therapies using extracellular vesicles, we discuss in situ strategies and engineering approaches to attract specific types of immune cells and modulate their phenotypes. This field is making advances to uncover the extraordinary potential of immune cells and their secretome in the regulation of vascularization and tissue remodeling. Understanding the principles of immunoregulation will help us design advanced immunoengineering platforms to harness their power for tissue regeneration.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | | | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Whitaker R, Hernaez-Estrada B, Hernandez RM, Santos-Vizcaino E, Spiller KL. Immunomodulatory Biomaterials for Tissue Repair. Chem Rev 2021; 121:11305-11335. [PMID: 34415742 DOI: 10.1021/acs.chemrev.0c00895] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All implanted biomaterials are targets of the host's immune system. While the host inflammatory response was once considered a detrimental force to be blunted or avoided, in recent years, it has become a powerful force to be leveraged to augment biomaterial-tissue integration and tissue repair. In this review, we will discuss the major immune cells that mediate the inflammatory response to biomaterials, with a focus on how biomaterials can be designed to modulate immune cell behavior to promote biomaterial-tissue integration. In particular, the intentional activation of monocytes and macrophages with controlled timing, and modulation of their interactions with other cell types involved in wound healing, have emerged as key strategies to improve biomaterial efficacy. To this end, careful design of biomaterial structure and controlled release of immunomodulators can be employed to manipulate macrophage phenotype for the maximization of the wound healing response with enhanced tissue integration and repair, as opposed to a typical foreign body response characterized by fibrous encapsulation and implant isolation. We discuss current challenges in the clinical translation of immunomodulatory biomaterials, such as limitations in the use of in vitro studies and animal models to model the human immune response. Finally, we describe future directions and opportunities for understanding and controlling the biomaterial-immune system interface, including the application of new imaging tools, new animal models, the discovery of new cellular targets, and novel techniques for in situ immune cell reprogramming.
Collapse
Affiliation(s)
- Ricardo Whitaker
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Wang Y, Fan Y, Liu H. Macrophage Polarization in Response to Biomaterials for Vascularization. Ann Biomed Eng 2021; 49:1992-2005. [PMID: 34282494 DOI: 10.1007/s10439-021-02832-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Vascularization of tissue engineering constructs is an urgent need for delivering oxygen and nutrients and promoting tissue remodeling. As we all know, almost all implanted biomaterials elicit immune responses. Interestingly, the immunomodulatory biomaterials can utilize the inherent regenerative capability of endogenous cells and stem cells recruited by the activated immune cells to facilitate anagenesis and tissue remodeling. Macrophages, as almost ones of the first responses upon the implantation of biomaterials, play a vital role in guiding vascular formation and tissue remodeling. The polarization of macrophages can be influenced by the physical and chemical properties of biomaterials and thus they display diverse function states. Here, this review focus on the macrophage polarization in response to biomaterials and the interactions between them. It also summarizes the current strategies to promote vascularization of tissue engineering constructs through macrophage responses.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
9
|
Graney PL, Ben-Shaul S, Landau S, Bajpai A, Singh B, Eager J, Cohen A, Levenberg S, Spiller KL. Macrophages of diverse phenotypes drive vascularization of engineered tissues. SCIENCE ADVANCES 2020; 6:eaay6391. [PMID: 32494664 PMCID: PMC7195167 DOI: 10.1126/sciadv.aay6391] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/10/2020] [Indexed: 05/05/2023]
Abstract
Macrophages are key contributors to vascularization, but the mechanisms behind their actions are not understood. Here, we show that diverse macrophage phenotypes have distinct effects on endothelial cell behavior, with resulting effects on vascularization of engineered tissues. In Transwell coculture, proinflammatory M1 macrophages caused endothelial cells to up-regulate genes associated with sprouting angiogenesis, whereas prohealing (M2a), proremodeling (M2c), and anti-inflammatory (M2f) macrophages promoted up-regulation of genes associated with pericyte cell differentiation. In 3D tissue-engineered human blood vessel networks in vitro, short-term exposure (1 day) to M1 macrophages increased vessel formation, while long-term exposure (3 days) caused regression. When human tissue-engineered blood vessel networks were implanted into athymic mice, macrophages expressing markers of both M1 and M2 phenotypes wrapped around and bridged adjacent vessels and formed vessel-like structures themselves. Last, depletion of host macrophages inhibited remodeling of engineered vessels, infiltration of host vessels, and anastomosis with host vessels.
Collapse
Affiliation(s)
- P. L. Graney
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - S. Ben-Shaul
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - S. Landau
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - A. Bajpai
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - B. Singh
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - J. Eager
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - A. Cohen
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA, USA
| | - S. Levenberg
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
- Corresponding author. (S.L.); (K.L.S.)
| | - K. L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Corresponding author. (S.L.); (K.L.S.)
| |
Collapse
|
10
|
Dimitrova E, Caromile LA, Laubenbacher R, Shapiro LH. The innate immune response to ischemic injury: a multiscale modeling perspective. BMC SYSTEMS BIOLOGY 2018; 12:50. [PMID: 29631571 PMCID: PMC5891907 DOI: 10.1186/s12918-018-0580-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
Background Cell death as a result of ischemic injury triggers powerful mechanisms regulated by germline-encoded Pattern Recognition Receptors (PRRs) with shared specificity that recognize invading pathogens and endogenous ligands released from dying cells, and as such are essential to human health. Alternatively, dysregulation of these mechanisms contributes to extreme inflammation, deleterious tissue damage and impaired healing in various diseases. The Toll-like receptors (TLRs) are a prototypical family of PRRs that may be powerful anti-inflammatory targets if agents can be designed that antagonize their harmful effects while preserving host defense functions. This requires an understanding of the complex interactions and consequences of targeting the TLR-mediated pathways as well as technologies to analyze and interpret these, which will then allow the simulation of perturbations targeting specific pathway components, predict potential outcomes and identify safe and effective therapeutic targets. Results We constructed a multiscale mathematical model that spans the tissue and intracellular scales, and captures the consequences of targeting various regulatory components of injury-induced TLR4 signal transduction on potential pro-inflammatory or pro-healing outcomes. We applied known interactions to simulate how inactivation of specific regulatory nodes affects dynamics in the context of injury and to predict phenotypes of potential therapeutic interventions. We propose rules to link model behavior to qualitative estimates of pro-inflammatory signal activation, macrophage infiltration, production of reactive oxygen species and resolution. We tested the validity of the model by assessing its ability to reproduce published data not used in its construction. Conclusions These studies will enable us to form a conceptual framework focusing on TLR4-mediated ischemic repair to assess potential molecular targets that can be utilized therapeutically to improve efficacy and safety in treating ischemic/inflammatory injury.
Collapse
Affiliation(s)
- Elena Dimitrova
- Department of Mathematical Sciences, Clemson University, Clemson, SC, USA
| | - Leslie A Caromile
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030, CT, USA
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT, USA. .,Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, 06030, CT, USA.
| |
Collapse
|
11
|
Fakoya AOJ. New Delivery Systems of Stem Cells for Vascular Regeneration in Ischemia. Front Cardiovasc Med 2017; 4:7. [PMID: 28286751 PMCID: PMC5323391 DOI: 10.3389/fcvm.2017.00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/07/2017] [Indexed: 01/08/2023] Open
Abstract
The finances of patients and countries are increasingly overwhelmed with the plague of cardiovascular diseases as a result of having to chronically manage the associated complications of ischemia such as heart failures, neurological deficits, chronic limb ulcers, gangrenes, and amputations. Hence, scientific research has sought for alternate therapies since pharmacological and surgical treatments have fallen below expectations in providing the desired quality of life. The advent of stem cells research has raised expectations with respect to vascular regeneration and tissue remodeling, hence assuring the patients of the possibility of an improved quality of life. However, these supposed encouraging results have been short-lived as the retention, survival, and engraftment rates of these cells appear to be inadequate; hence, the long-term beneficial effects of these cells cannot be ascertained. These drawbacks have led to the relentless research into better ways to deliver stem cells or angiogenic factors (which mobilize stem cells) to the regions of interest to facilitate increased retention, survival, engraftment, and regeneration. This review considered methods, such as the use of scaffolds, retrograde coronary delivery, improved combinations, stem cell pretreatment, preconditioning, stem cell exosomes, mannitol, magnet, and ultrasound-enhanced delivery, homing techniques, and stem cell modulation. Furthermore, the study appraised the possibility of a combination therapy of stem cells and macrophages, considering the enormous role macrophages play in repair, remodeling, and angiogenesis.
Collapse
|
12
|
Ng J, Spiller K, Bernhard J, Vunjak-Novakovic G. Biomimetic Approaches for Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:480-493. [PMID: 27912680 DOI: 10.1089/ten.teb.2016.0289] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although autologous bone grafts are considered a gold standard for the treatment of bone defects, they are limited by donor site morbidities and geometric requirements. We propose that tissue engineering technology can overcome such limitations by recreating fully viable and biological bone grafts. Specifically, we will discuss the use of bone scaffolds and autologous cells with bioreactor culture systems as a tissue engineering paradigm to grow bone in vitro. We will also discuss emergent vascularization strategies to promote graft survival in vivo, as well as the role of inflammation during bone repair. Finally, we will highlight some recent advances and discuss new solutions to bone repair inspired by endochondral ossification.
Collapse
Affiliation(s)
- Johnathan Ng
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Kara Spiller
- 2 School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Jonathan Bernhard
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,3 Department of Medicine, Columbia University , New York, New York
| |
Collapse
|
13
|
Kumar M, Coburn J, Kaplan DL, Mandal BB. Immuno-Informed 3D Silk Biomaterials for Tailoring Biological Responses. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29310-29322. [PMID: 27726371 DOI: 10.1021/acsami.6b09937] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Macrophages, the key players in immunoregulation, are actively involved in tissue remodelling and vascularization. Recent advances in tissue engineering and regenerative medicine illustrate the importance of "immuno-informed" biomaterials to regulate the microenvironment of biomedical implants. In the current study, silk-based 3D hydrogels were utilized to regulate cytokine delivery for macrophage, a type of immune cell, differentiation and polarization. Three different hydrogel variants, silk-poly(ethylene glycol) (PEG) (SP), silk-horseradish peroxidase (HRP) (SH) and silk-sonicated (SS) hydrogels were studied. Hydrogels were loaded with the M1 and M2 polarizing cytokines interferon-γ (IFN-γ) and interleukin-4 (IL-4), respectively. Functional cytokine release and macrophage polarization studies were conducted using three cytokine exposure approaches: only cytokine encapsulation (macrophage in culture well), only macrophage encapsulation (cytokine in culture media) and cytokine with macrophage encapsulation. The extent of macrophage polarization by cytokine-eluting and macrophage-encapsulating hydrogels was investigated using gene expression analysis for C-C chemokine receptor 7 (CCR7), Interleukin-1 beta (IL-1β), cluster of differentiation 206 (CD206) and cluster of differentiation 209 (CD209). The released cytokines polarized macrophages from an M0 phenotype to an M1/M2 phenotype. Also, lineage committed M1/M2 macrophages could be "switched" to their M2/M1 counterparts (M1-to-M2 or M2-to-M1 transition) exhibiting their well-established plasticity. When macrophages were encapsulated in hydrogels, polarization could be induced to the lineage committed M1 or M2 phenotypes either in polarizing media or when coencapsulated with cytokines. Through this study, silk hydrogels demonstrated utility as a novel system for focal delivery of cytokines and macrophages as "immuno-informed" 3D silk-biomaterials.
Collapse
Affiliation(s)
- Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG) , Guwahati, 781039, India
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts United States
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG) , Guwahati, 781039, India
| |
Collapse
|
14
|
Lisovsky A, Zhang DKY, Sefton MV. Effect of methacrylic acid beads on the sonic hedgehog signaling pathway and macrophage polarization in a subcutaneous injection mouse model. Biomaterials 2016; 98:203-14. [PMID: 27264502 DOI: 10.1016/j.biomaterials.2016.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 12/23/2022]
Abstract
Poly(methacrylic acid-co-methyl methacrylate) (MAA) beads promote a vascular regenerative response when used in diabetic wound healing. Previous studies reported that MAA beads modulated the expression of sonic hedgehog (Shh) and inflammation related genes in diabetic wounds. The aim of this work was to follow up on these observations in a subcutaneous injection model to study the host response in the absence of the confounding factors of diabetic wound healing. In this model, MAA beads improved vascularization in healthy mice of both sexes compared to control poly(methyl methacrylate) (MM) beads, with a stronger effect seen in males than females. MAA-induced vessels were perfusable, as evidenced from the CLARITY-processed images. In Shh-Cre-eGFP/Ptch1-LacZ non-diabetic transgenic mice, the increased vessel formation was accompanied by a higher density of cells expressing GFP (Shh) and β-Gal (patched 1, Ptch1) suggesting MAA enhanced the activation of the Shh pathway. Ptch1 is the Shh receptor and a target of the pathway. MAA beads also modulated the inflammatory cell infiltrate in CD1 mice: more neutrophils and more macrophages were noted with MAA relative to MM beads at days 1 and 7, respectively. In addition, MAA beads biased macrophages towards a MHCII-CD206+ ("M2") polarization state. This study suggests that the Shh pathway and an altered inflammatory response are two elements of the complex mechanism whereby MAA-based biomaterials effect vascular regeneration.
Collapse
Affiliation(s)
- Alexandra Lisovsky
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Suite 407, Toronto, Ontario, Canada M5S 3G9
| | - David K Y Zhang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Suite 407, Toronto, Ontario, Canada M5S 3G9
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Suite 407, Toronto, Ontario, Canada M5S 3G9; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 164 College Street, Suite 407, Toronto, Ontario, Canada M5S 3G9.
| |
Collapse
|
15
|
Garash R, Bajpai A, Marcinkiewicz BM, Spiller KL. Drug delivery strategies to control macrophages for tissue repair and regeneration. Exp Biol Med (Maywood) 2016; 241:1054-63. [PMID: 27190256 PMCID: PMC4950366 DOI: 10.1177/1535370216649444] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue repair and regeneration is a complex process. Our bodies have an excellent capacity to regenerate damaged tissues in many situations. However, tissue healing is impaired in injuries that exceed a critical size or are exacerbated by chronic inflammatory diseases like diabetes. In these instances, biomaterials and drug delivery strategies are often required to facilitate tissue regeneration by providing physical and biochemical cues. Inflammation is the body's response to injury. It is critical for wound healing and biomaterial integration and vascularization, as long as the timing is well controlled. For example, chronic inflammation is well known to impair healing in chronic wounds. In this review, we highlight the importance of a well-controlled inflammatory response, primarily mediated by macrophages in tissue repair and regeneration and discuss various strategies designed to promote regeneration by controlling macrophage behavior. These strategies include temporally controlled delivery of anti-inflammatory drugs, delivery of macrophages as cellular therapy, controlled release of cytokines that modulate macrophage phenotype, and the design of nanoparticles that exploit the inherent phagocytic behavior of macrophages. A clear outcome of this review is that a deeper understanding of the role and timing of complex macrophage phenotypes or activation states is required to fully harness their abilities with drug delivery strategies.
Collapse
Affiliation(s)
- Reham Garash
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Anamika Bajpai
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Brandon M Marcinkiewicz
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Kara L Spiller
- Biomaterials and Regenerative Medicine Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Rahman MM, Ghosh M, Subramani J, Fong GH, Carlson ME, Shapiro LH. CD13 regulates anchorage and differentiation of the skeletal muscle satellite stem cell population in ischemic injury. Stem Cells 2015; 32:1564-77. [PMID: 24307555 DOI: 10.1002/stem.1610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 01/03/2023]
Abstract
CD13 is a multifunctional cell surface molecule that regulates inflammatory and angiogenic mechanisms in vitro, but its contribution to these processes in vivo or potential roles in stem cell biology remains unexplored. We investigated the impact of loss of CD13 on a model of ischemic skeletal muscle injury that involves angiogenesis, inflammation, and stem cell mobilization. Consistent with its role as an inflammatory adhesion molecule, lack of CD13 altered myeloid trafficking in the injured muscle, resulting in cytokine profiles skewed toward a prohealing environment. Despite this healing-favorable context, CD13(KO) animals showed significantly impaired limb perfusion with increased necrosis, fibrosis, and lipid accumulation. Capillary density was correspondingly decreased, implicating CD13 in skeletal muscle angiogenesis. The number of CD45-/Sca1-/α7-integrin+/β1-integrin+ satellite cells was markedly diminished in injured CD13(KO) muscles and adhesion of isolated CD13(KO) satellite cells was impaired while their differentiation was accelerated. Bone marrow transplantation studies showed contributions from both host and donor cells to wound healing. Importantly, CD13 was coexpressed with Pax7 on isolated muscle-resident satellite cells. Finally, phosphorylated-focal adhesion kinase and ERK levels were reduced in injured CD13(KO) muscles, consistent with CD13 regulating satellite cell adhesion, potentially contributing to the maintenance and renewal of the satellite stem cell pool and facilitating skeletal muscle regeneration.
Collapse
Affiliation(s)
- M Mamunur Rahman
- Center for Vascular Biology and University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
17
|
Mei Y, Thompson MD, Shiraishi Y, Cohen RA, Tong X. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase C674 promotes ischemia- and hypoxia-induced angiogenesis via coordinated endothelial cell and macrophage function. J Mol Cell Cardiol 2014; 76:275-82. [PMID: 25260714 PMCID: PMC4250384 DOI: 10.1016/j.yjmcc.2014.09.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022]
Abstract
Ischemia is a complex phenomenon modulated by the concerted action of several cell types. We have identified that sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase 2 (SERCA 2) cysteine 674 (C674) S-glutathiolation is essential for ischemic angiogenesis, vascular endothelial growth factor (VEGF)-mediated endothelial cell (EC) migration and network formation. A heterozygote SERCA 2 C674S knockin (SKI) mouse shows impaired ischemic blood flow recovery after femoral artery ligation, and its ECs show depleted endoplasmic reticulum (ER) Ca(2+) stores and impaired angiogenic behavior. Here we studied the role of SERCA 2 C674 in the interaction between ECs and macrophages in the context of ischemia and discovered the involvement of the ER stress response protein, ER oxidoreductin-1α (ERO1). In wild type (WT) mice, expression of ERO1 was increased in the ischemic hind limb in vivo, as well as in ECs and macrophages exposed to hypoxia in vitro. The increase in ERO1 to ischemia/hypoxia was less in SKI mice. In WT ECs, both vascular cell adhesion molecule 1 (VCAM1) expression and bone marrow-derived macrophage adhesion to ECs were increased by hypoxia, and both were attenuated in SKI ECs. In WT ECs, ERO1 siRNA blocked hypoxia-induced VCAM1 expression and macrophage adhesion. In WT macrophages, hypoxia also stimulated both ERO1 and VEGF expression, and both were less in SKI macrophages. Compared with conditioned media of hypoxic SKI macrophages, conditioned media from WT macrophages had a greater effect on EC angiogenic behavior, and were blocked by VEGF neutralizing antibody. Taken together, under hypoxic conditions, SERCA 2 C674 and ERO1 enable increased VCAM1 expression and macrophage adhesion to ECs, as well as macrophage VEGF production that, in turn, promote angiogenesis. This study highlights the hitherto unrecognized interaction of two ER proteins, SERCA 2 C674 and ERO1, which mediate the EC and macrophage angiogenic response to ischemia/hypoxia.
Collapse
Affiliation(s)
- Yu Mei
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Melissa D Thompson
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yasunaga Shiraishi
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Xiaoyong Tong
- Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
18
|
Spiller KL, Freytes DO, Vunjak-Novakovic G. Macrophages modulate engineered human tissues for enhanced vascularization and healing. Ann Biomed Eng 2014; 43:616-27. [PMID: 25331098 DOI: 10.1007/s10439-014-1156-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/08/2014] [Indexed: 01/01/2023]
Abstract
Tissue engineering is increasingly based on recapitulating human physiology, through integration of biological principles into engineering designs. In spite of all progress in engineering functional human tissues, we are just beginning to develop effective methods for establishing blood perfusion and controlling the inflammatory factors following implantation into the host. Functional vasculature largely determines tissue survival and function in vivo. The inflammatory response is a major regulator of vascularization and overall functionality of engineered tissues, through the activity of different types of macrophages and the cytokines they secrete. We discuss here the cell-scaffold-bioreactor systems for harnessing the inflammatory response for enhanced tissue vascularization and healing. To this end, inert scaffolds that have been considered for many decades a "gold standard" in regenerative medicine are beginning to be replaced by a new generation of "smart" tissue engineering systems designed to actively mediate tissue survival and function.
Collapse
|
19
|
Yoo JS, Das RK, Jow ZY, Chang YT. In vivo detection of macrophage recruitment in hind-limb ischemia using a targeted near-infrared fluorophore. PLoS One 2014; 9:e103721. [PMID: 25072508 PMCID: PMC4114964 DOI: 10.1371/journal.pone.0103721] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/03/2014] [Indexed: 12/17/2022] Open
Abstract
Macrophages are an essential component of the immune system and have protective and pathogenic functions in various diseases. Imaging of macrophages in vivo could furnish new tools to advance evaluation of disease and therapies. Critical limb ischemia is a disease in which macrophages have considerable pathogenic roles, and are potential targets for cell-based immunotherapy. We sought to develop a new near-infrared fluorescence (NIRF) imaging probe to target macrophages specifically in vivo in various pathological states, including hind-limb ischemia. We rapidly screened the photostable cyanine-based NIRF library against different blood cell lines. The identified monocyte/macrophage-selective hit was tested in vitro in live-cell labeling assay. Non-invasive NIRF imaging was performed with murine models of paw inflammation by lipopolysaccharide challenge and hind-limb ischemia with femoral artery ligation. in vivo macrophage targeting was further evaluated using intravital microscopy with Csf1r-EGFP transgenic mice and immunofluorescent staining with macrophage-specific markers. We discovered MF800, a Macrophage-specific near-infrared Fluorophore, which showed selective live-cell imaging performance in a panel of cell lines and primary human blood samples. MF800 outperforms the clinically-available NIRF contrast agent ICG for in vivo specificity in paw inflammation and hind-limb ischemia models. We observed a marked overlap of MF800-labeled cells and EGFP-expressing macrophages in intravital imaging of Csf1r-EGFP transgenic mice. In the histologic analysis, MF800-positive cells also expressed the macrophage markers CD68 and CD169. NIRF imaging showcased the potential of using MF800 to understand macrophage behavior in vivo, characterize macrophage-associated diseases, and may help in assessing therapeutic responses in the clinic.
Collapse
Affiliation(s)
- Jung Sun Yoo
- Smart Humanity Convergence Center, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Korea
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Raj Kumar Das
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhi Yen Jow
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | - Young-Tae Chang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
20
|
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW, Vunjak-Novakovic G. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 2014; 35:4477-88. [PMID: 24589361 DOI: 10.1016/j.biomaterials.2014.02.012] [Citation(s) in RCA: 670] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/07/2014] [Indexed: 12/27/2022]
Abstract
Angiogenesis is crucial for the success of most tissue engineering strategies. The natural inflammatory response is a major regulator of vascularization, through the activity of different types of macrophages and the cytokines they secrete. Macrophages exist on a spectrum of diverse phenotypes, from "classically activated" M1 to "alternatively activated" M2 macrophages. M2 macrophages, including the subsets M2a and M2c, are typically considered to promote angiogenesis and tissue regeneration, while M1 macrophages are considered to be anti-angiogenic, although these classifications are controversial. Here we show that in contrast to this traditional paradigm, primary human M1 macrophages secrete the highest levels of potent angiogenic stimulators including VEGF; M2a macrophages secrete the highest levels of PDGF-BB, a chemoattractant for stabilizing pericytes, and also promote anastomosis of sprouting endothelial cells in vitro; and M2c macrophages secrete the highest levels of MMP9, an important protease involved in vascular remodeling. In a murine subcutaneous implantation model, porous collagen scaffolds were surrounded by a fibrous capsule, coincident with high expression of M2 macrophage markers, while scaffolds coated with the bacterial lipopolysaccharide were degraded by inflammatory macrophages, and glutaraldehyde-crosslinked scaffolds were infiltrated by substantial numbers of blood vessels, accompanied by high levels of M1 and M2 macrophages. These results suggest that coordinated efforts by both M1 and M2 macrophages are required for angiogenesis and scaffold vascularization, which may explain some of the controversy over which phenotype is the angiogenic phenotype.
Collapse
Affiliation(s)
- Kara L Spiller
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA; School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | - Rachel R Anfang
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Krista J Spiller
- Department of Pathology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Johnathan Ng
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Kenneth R Nakazawa
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA
| | - Jeffrey W Daulton
- Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
21
|
Eve DJ, Fillmore RW, Borlongan CV, Sanberg PR. Stem cell research in cell transplantation: sources, geopolitical influence, and transplantation. Cell Transplant 2010; 19:1493-509. [PMID: 21054954 DOI: 10.3727/096368910x540612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
If the rapidly progressing field of stem cell research reaches its full potential, successful treatments and enhanced understanding of many diseases are the likely results. However, the full potential of stem cell science will only be reached if all possible avenues can be explored and on a worldwide scale. Until 2009, the US had a highly restrictive policy on obtaining cells from human embryos and fetal tissue, a policy that pushed research toward the use of adult-derived cells. Currently, US policy is still in flux, and retrospective analysis does show the US lagging behind the rest of the world in the proportional increase in embryonic/fetal stem cell research. The majority of US studies being on either a limited number of cell lines, or on cells derived elsewhere (or funded by other sources than Federal) rather than on freshly isolated embryonic or fetal material. Neural, mesenchymal, and the mixed stem cell mononuclear fraction are the most commonly investigated types, which can generally be classified as adult-derived stem cells, although roughly half of the neural stem cells are fetal derived. Other types, such as embryonic and fat-derived stem cells, are increasing in their prominence, suggesting that new types of stem cells are still being pursued. Sixty percent of the reported stem cell studies involved transplantation, of which over three quarters were allogeneic transplants. A high proportion of the cardiovascular systems articles were on allogeneic transplants in a number of different species, including several autologous studies. A number of pharmaceutical grade stem cell products have also recently been tested and reported on. Stem cell research shows considerable promise for the treatment of a number of disorders, some of which have entered clinical trials; over the next few years it will be interesting to see how these treatments progress in the clinic.
Collapse
Affiliation(s)
- David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
22
|
Aranguren XL, Pelacho B, Peñuelas I, Abizanda G, Uriz M, Ecay M, Collantaes M, Araña M, Beerens M, Coppiello G, Prieto I, Perez-Ilzarbe M, Andreu EJ, Luttun A, Prósper F. MAPC transplantation confers a more durable benefit than AC133+ cell transplantation in severe hind limb ischemia. Cell Transplant 2010; 20:259-69. [PMID: 20719064 DOI: 10.3727/096368910x516592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133(+) cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133(+) cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls. This improvement persisted for 30 days in hMAPC-treated but not in hAC133(+)-injected animals. While transplantation of hAC133(+) cells promoted capillary growth, hMAPC transplantation also induced collateral expansion, decreased muscle necrosis/fibrosis, and improved muscle regeneration. Incorporation of differentiated hAC133(+) or hMAPC progeny into new vessels was limited; however, a paracrine angio/arteriogenic effect was demonstrated in animals treated with hMAPC. Accordingly, hMAPC-conditioned, but not hAC133(+)-conditioned, media stimulated vascular cell proliferation and prevented myoblast, endothelial, and smooth muscle cell apoptosis in vitro. Our study suggests that although hAC133(+) cell and hMAPC transplantation both contribute to vascular regeneration in ischemic limbs, hMAPC exert a more robust effect through trophic mechanisms, which translated into collateral and muscle fiber regeneration. This, in turn, conferred tissue protection and regeneration with longer term functional improvement.
Collapse
Affiliation(s)
- Xabier L Aranguren
- Hematology Service and Cell Therapy, Foundation for Applied Medical Research, Division of Cancer, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cobellis G, Maione C, Botti C, Coppola A, Silvestroni A, Lillo S, Schiavone V, Molinari AM, Sica V. Beneficial effects of VEGF secreted from stromal cells in supporting endothelial cell functions: therapeutic implications for critical limb ischemia. Cell Transplant 2010; 19:1425-37. [PMID: 20587143 DOI: 10.3727/096368910x509068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Critical limb ischemia (CLI) is the end stage of peripheral vascular disease (PVD). One third of CLI patients progresses to leg amputation with high associated morbidity and mortality. In no-option patients with end-stage critical limb ischemia, bone marrow cell transplantation has shown promising results, improving leg perfusion to the level of reducing major amputations and allowing limb salvage. We recently reported the successful application of an innovative protocol based on repeated autologous bone marrow cell transplantation, which resulted in an effective and feasible strategy for achieving long-term revascularization in patients with severe CLI. In an effort to understand the clinical benefit provided by stem cells therapy in patients with CLI, we characterized the marrow-derived stromal cells of CLI patients and we provided a correlation between the in vitro features of these cells and the clinical follow up at 12 months. We showed that cells derived from CLI patients had a reduced capacity to proliferate, adhere, and migrate, but that they stimulated proliferation and migration of endothelial cells through the release of VEGF-A, supporting the idea that the paracrine mechanisms underpinned the biological effects of long-term angiogenesis in CLI patients.
Collapse
Affiliation(s)
- Gilda Cobellis
- Dipartimento di Patologia Generale, Cattedra di Patologia Clinica, Seconda Università degli Studi di Napoli, Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hossne NA, Invitti AL, Buffolo E, Azevedo S, Rodrigues de Oliveira JS, Stolf NG, Cruz LE, Sanberg PR. Refractory angina cell therapy (ReACT) involving autologous bone marrow cells in patients without left ventricular dysfunction: a possible role for monocytes. Cell Transplant 2009; 18:1299-310. [PMID: 20149298 DOI: 10.3727/096368909x484671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autologous bone marrow mononuclear cell (BMMC) transplantation has emerged as a potential therapeutic option for refractory angina patients. Previous studies have shown conflicting myocardium reperfusion results. The present study evaluated safety and efficacy of CellPraxis Refractory Angina Cell Therapy Protocol (ReACT), in which a specific BMMC formulation was administered as the sole therapy for these patients. The phase I/IIa noncontrolled, open label, clinical trial, involved eight patients with refractory angina and viable ischemic myocardium, without left ventricular dysfunction and who were not suitable for conventional myocardial revascularization. ReACT is a surgical procedure involving a single series of multiple injections (40-90 injections, 0.2 ml each) into ischemic areas of the left ventricle. Primary endpoints were Canadian Cardiovascular Society Angina Classification (CCSAC) improvement at 18 months follow-up and myocardium ischemic area reduction (assessed by scintigraphic analysis) at 12 months follow-up, in correlation with a specific BMMC formulation. Almost all patients presented progressive improvement in angina classification beginning 3 months (p = 0.008) postprocedure, which was sustained at 18 months follow-up (p = 0.004), as well as objective myocardium ischemic area reduction at 12 months (decrease of 84.4%, p < 0.004). A positive correlation was found between monocyte concentration and CCSAC improvement (r = -0.759, p < 0.05). Improvement in CCSAC, followed by correlated reduction in scintigraphic myocardium ischemic area, strongly suggests neoangiogenesis as the main stem cell action mechanism. The significant correlation between number of monocytes and improvement strongly supports a cell-related effect of ReACT. ReACT appeared safe and effective.
Collapse
Affiliation(s)
- Nelson Americo Hossne
- Cardiovascular Surgery Division, Surgery Department, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sanberg PR, Park DH, Kuzmin-Nichols N, Cruz E, Hossne NA, Buffolo E, Willing AE. Monocyte transplantation for neural and cardiovascular ischemia repair. J Cell Mol Med 2009; 14:553-63. [PMID: 19754667 PMCID: PMC3823455 DOI: 10.1111/j.1582-4934.2009.00903.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neovascularization is an integral process of inflammatory reactions and subsequent repair cascades in tissue injury. Monocytes/macrophages play a key role in the inflammatory process including angiogenesis as well as the defence mechanisms by exerting microbicidal and immunomodulatory activity. Current studies have demonstrated that recruited monocytes/macrophages aid in regulating angiogenesis in ischemic tissue, tumours and chronic inflammation. In terms of neovascularization followed by tissue regeneration, monocytes/macrophages should be highly attractive for cell-based therapy compared to any other stem cells due to their considerable advantages: non-oncogenic, non-teratogenic, multiple secretary functions including pro-angiogenic and growth factors, straightforward cell harvesting procedure and non-existent ethical controversy. In addition to adult origins such as bone marrow or peripheral blood, umbilical cord blood (UCB) can be a potential source for autologous or allogeneic monocytes/macrophages. Especially, UCB monocytes should be considered as the first candidate owing to their feasibility, low immune rejection and multiple characteristic advantages such as their anti-inflammatory properties by virtue of their unique immune and inflammatory immaturity, and their pro-angiogenic ability. In this review, we present general characteristics and potential of monocytes/macrophages for cell-based therapy, especially focusing on neovascularization and UCB-derived monocytes.
Collapse
Affiliation(s)
- Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Extratumoral macrophages promote tumor and vascular growth in an orthotopic rat prostate tumor model. Neoplasia 2009; 11:177-86. [PMID: 19177202 DOI: 10.1593/neo.81338] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 12/31/2022] Open
Abstract
Tumor-associated macrophages are involved in angiogenesis and tumor progression, but their role and specific site of action in prostate cancer remain unknown. To explore this, Dunning R-3327 AT-1 rat prostate tumor cells were injected into the prostate of syngenic and immunocompetent Copenhagen rats and analyzed at different time points for vascular proliferation and macrophage density. Endothelial proliferation increased with tumor size both in the tumor and importantly also in the extratumoral normal prostate tissue. Macrophages accumulated in the tumor and in the extratumoral normal prostate tissue and were most abundant in the invasive zone. Moreover, only extratumoral macrophages showed strong positive associations with tumor size and extratumoral vascular proliferation. Treatment with clodronate-encapsulated liposomes reduced the monocyte/macrophage infiltration and resulted in a significant inhibition of tumor growth. This was accompanied by a suppressed proliferation in microvessels and in the extratumoral prostate tissue also in arterioles and venules. The AT-1 tumors produced, as examined by RT(2) Profiler PCR arrays, numerous factors promoting monocyte recruitment, angiogenesis, and tissue remodeling. Several, namely, chemokine (C-C) ligand 2, fibroblast growth factor 2, matrix metalloproteinase 9, interleukin 1beta, interferon gamma, and transforming growth factor beta, were highly upregulated by the tumor in vivo compared with tumor cells in vitro, suggesting macrophages as a plausible source. In conclusion, we here show the importance of extratumoral monocytes/macrophages for prostate tumor growth, angiogenesis, and extratumoral arteriogenesis. Our findings identify tumor-associated macrophages and several chemotactic and angiogenic factors as potential targets for prostate cancer therapy.
Collapse
|
27
|
Affiliation(s)
- Naoya Kobayashi
- Department of Surgery Okayama University Graduate School of Medicine and Dentistry
| |
Collapse
|