1
|
Calvo B, Schembri-Wismayer P, Durán-Alonso MB. Age-Related Neurodegenerative Diseases: A Stem Cell's Perspective. Cells 2025; 14:347. [PMID: 40072076 PMCID: PMC11898746 DOI: 10.3390/cells14050347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Neurodegenerative diseases encompass a number of very heterogeneous disorders, primarily characterized by neuronal loss and a concomitant decline in neurological function. Examples of this type of clinical condition are Alzheimer's Disease, Parkinson's Disease, Huntington's Disease and Amyotrophic Lateral Sclerosis. Age has been identified as a major risk in the etiology of these disorders, which explains their increased incidence in developed countries. Unfortunately, despite continued and intensive efforts, no cure has yet been found for any of these diseases; reliable markers that allow for an early diagnosis of the disease and the identification of key molecular events leading to disease onset and progression are lacking. Altered adult neurogenesis appears to precede the appearance of severe symptoms. Given the scarcity of human samples and the considerable differences with model species, increasingly complex human stem-cell-based models are being developed. These are shedding light on the molecular alterations that contribute to disease development, facilitating the identification of new clinical targets and providing a screening platform for the testing of candidate drugs. Moreover, the secretome and other promising features of these cell types are being explored, to use them as replacement cells of high plasticity or as co-adjuvant therapy in combinatorial treatments.
Collapse
Affiliation(s)
- Belén Calvo
- Faculty of Health Sciences, Catholic University of Ávila, 05005 Ávila, Spain;
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | - María Beatriz Durán-Alonso
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
2
|
Huang T, Fakurazi S, Cheah PS, Ling KH. Chromosomal and cellular therapeutic approaches for Down syndrome: A research update. Biochem Biophys Res Commun 2024; 735:150664. [PMID: 39260337 DOI: 10.1016/j.bbrc.2024.150664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
In individuals with Down syndrome (DS), an additional HSA21 chromosome copy leads to the overexpression of a myriad of HSA21 genes, disrupting the transcription of the entire genome. This dysregulation in transcription and post-transcriptional modifications contributes to abnormal phenotypes across nearly all tissues and organs in DS individuals. The array of severe clinical symptoms associated with trisomy 21 poses a considerable challenge in the quest for a cure for DS. Fortunately, a wealth of research suggests that chromosome therapy, hinging on cutting-edge genome editing technologies, can potentially eliminate the extra copy of the human chromosome 21. Genome editing tools have demonstrated their efficacy in restoring trisomy to a normal diploid state in vitro DS cell models. Furthermore, we delve into the noteworthy findings in cellular therapy for DS, with recent studies showcasing the increasing feasibility of strategies involving stem cells and CAR T-cells to address corresponding clinical phenotypes.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Malaysian Research Institute on Ageing (MyAgeing(TM)), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Farrell C, Mumford P, Wiseman FK. Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches. Front Neurosci 2022; 16:909669. [PMID: 35747206 PMCID: PMC9209729 DOI: 10.3389/fnins.2022.909669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis. DS is caused by trisomy of chromosome 21 (Hsa21) thus an additional copy of a gene(s) on the chromosome must cause the development of AD neuropathology and dementia. Indeed, triplication of the gene APP which encodes the amyloid precursor protein is sufficient and necessary for early onset AD (EOAD), both in people who have and do not have DS. However, triplication of other genes on Hsa21 leads to profound differences in neurodevelopment resulting in intellectual disability, elevated incidence of epilepsy and perturbations to the immune system. This different biology may impact on how AD neuropathology and dementia develops in people who have DS. Indeed, genes on Hsa21 other than APP when in three-copies can modulate AD-pathogenesis in mouse preclinical models. Understanding this biology better is critical to inform drug selection for AD prevention and therapy trials for people who have DS. Here we will review rodent preclinical models of AD-DS and how these can be used for both in vivo and ex vivo (cultured cells and organotypic slice cultures) studies to understand the mechanisms that contribute to the early development of AD in people who have DS and test the utility of treatments to prevent or delay the development of disease.
Collapse
|
4
|
Henrique AM, Gianetti NG, Ferrari MFR. Parkin is downregulated among autophagy-related proteins prior to hyperphosphorylation of Tau in TS65DN mice. Biochem Biophys Res Commun 2021; 561:59-64. [PMID: 34015759 DOI: 10.1016/j.bbrc.2021.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Autophagy is a pathway through which cells execute a plethora of functions, such as macromolecules and organelles quality control, recycling of building blocks and apoptosis. Numerous studies have shown in the past that autophagy is an important mechanism associated with the pathology of various neurodegenerative diseases, whose impairment may lead to several disease-characteristic phenotypes (e.g. misfolded protein and defective organelles accumulation). With this in mind, we aimed to investigate whether alterations in expression of autophagy-related proteins would show before hyperphosphorylation of Tau, a hallmark of Alzheimer's disease (AD). After analyzing 7 different proteins, we observed that, while Pink1 and p62 show an age-related reduction in the Ts65Dn mice respectively in the locus coeruleus and hippocampus, Parkin shows an age-genotype interaction-associated reduction in both brain areas. This suggests potential outcomes in pathways associated with Parkin that could relate to later stages of the disease development.
Collapse
Affiliation(s)
- Alan M Henrique
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias. Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| | - Nathália G Gianetti
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias. Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias. Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
5
|
Sivandzade F, Cucullo L. Regenerative Stem Cell Therapy for Neurodegenerative Diseases: An Overview. Int J Mol Sci 2021; 22:2153. [PMID: 33671500 PMCID: PMC7926761 DOI: 10.3390/ijms22042153] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells' capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders.
Collapse
Affiliation(s)
- Farzane Sivandzade
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
6
|
Leptin enhances adult neurogenesis and reduces pathological features in a transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2020; 148:105219. [PMID: 33301880 DOI: 10.1016/j.nbd.2020.105219] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide and is characterized by the presence of senile plaques by amyloid-beta (Aβ) and neurofibrillary tangles of hyperphosphorylated Tau protein. These changes lead to progressive neuronal degeneration and dysfunction, resulting in severe brain atrophy and cognitive deficits. With the discovery that neurogenesis persists in the adult mammalian brain, including brain regions affected by AD, studies of the use of neural stem cells (NSCs) for the treatment of neurodegenerative diseases to repair or prevent neuronal cell loss have increased. Here we demonstrate that leptin administration increases the neurogenic process in the dentate gyrus of the hippocampus as well as in the subventricular zone of lateral ventricles of adult and aged mice. Chronic treatment with leptin increased NSCs proliferation with significant effects on proliferation and differentiation of newborn cells. The expression of the long form of the leptin receptor, LepRb, was detected in the neurogenic niches by reverse qPCR and immunohistochemistry. Moreover, leptin modulated astrogliosis, microglial cell number and the formation of senile plaques. Additionally, leptin led to attenuation of Aβ-induced neurodegeneration and superoxide anion production as revealed by Fluoro-Jade B and dihydroethidium staining. Our study contributes to the understanding of the effects of leptin in the brain that may lead to the development of new therapies to treat Alzheimer's disease.
Collapse
|
7
|
Chaves JCS, Machado FT, Almeida MF, Bacovsky TB, Ferrari MFR. microRNAs expression correlates with levels of APP, DYRK1A, hyperphosphorylated Tau and BDNF in the hippocampus of a mouse model for Down syndrome during ageing. Neurosci Lett 2020; 714:134541. [PMID: 31605772 DOI: 10.1016/j.neulet.2019.134541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/28/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023]
Abstract
Down syndrome (DS) patients are more susceptible to Alzheimer's disease (AD) due to the presence of three copies of genes on chromosome 21 such as DYRK1A, which encodes a broad acting kinase, and APP (amyloid precursor protein), leading to formation of amyloid beta (Aβ) peptide and hyperphosphorylation of Tau. In this study, we investigated the association among miRNAs miR-17, -20a, -101, -106b, -199b, -26a, 26b and some of their target mRNAs such as APP, DYRK1A and BDNF, as well as the levels of hyperphosphorylated Tau in the hippocampus of a 2 and 5 months old mice model of trisomy 21 (Ts65Dn). Results indicated that increased APP expression in the hippocampus of 5 months old DS mice might be correlated with decrease in miR-17, -20a, -101 and -106b. Whereas at 2 months of age normal levels of APP expression in the hippocampus was correlated with increased levels of miR-17, -101 and -106b in DS mice. DYRK1A mRNA also increased in the hippocampus of 5 months old DS mice and it is associated with decreased levels of miR-199b. Increased levels of DYRK1A in 5-month old mice are associated with increased phosphorylation of Tau at Thr212 residue but not at Ser199-202. Tau pathology is accompanied by decreased expression of BDNF and increased miR-26a/b in mice of 5 months of age. Taken together, data indicate that miR-17, -20a, -26a/b, -101, -106b and -199b might be interesting targets to mitigate Tau and Aβ pathology in DS.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Felippe T Machado
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Michael F Almeida
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Tatiana B Bacovsky
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
8
|
Cannavo C, Tosh J, Fisher EMC, Wiseman FK. Using mouse models to understand Alzheimer's disease mechanisms in the context of trisomy of chromosome 21. PROGRESS IN BRAIN RESEARCH 2019; 251:181-208. [PMID: 32057307 DOI: 10.1016/bs.pbr.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
People who have Down syndrome are at significantly elevated risk of developing early onset Alzheimer's disease that causes dementia (AD-DS). Here we review recent progress in modeling the development of AD-DS in mouse models. These studies provide insight into mechanisms underlying Alzheimer's disease and generate new clinical research questions. In addition, they suggest potential new targets for disease prevention therapies.
Collapse
Affiliation(s)
- Claudia Cannavo
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at University College, London, United Kingdom
| | - Justin Tosh
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; The London Down Syndrome Consortium (LonDownS), London, United Kingdom
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom; The London Down Syndrome Consortium (LonDownS), London, United Kingdom; UK Dementia Research Institute at University College, London, United Kingdom.
| |
Collapse
|
9
|
Chen ZZ, Niu YY. Stem cell therapy for Parkinson's disease using non-human primate models. Zool Res 2019; 40:349-357. [PMID: 31343853 PMCID: PMC6755115 DOI: 10.24272/j.issn.2095-8137.2019.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Stem cell therapy (SCT) for Parkinson's disease (PD) has received considerable attention in recent years. Non-human primate (NHP) models of PD have played an instrumental role in the safety and efficacy of emerging PD therapies and facilitated the translation of initiatives for human patients. NHP models of PD include primates with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, who are responsive to dopamine replacement therapies, similar to human PD patients. Extensive research in SCT has been conducted to better treat the progressive dopaminergic neurodegeneration that underlies PD. For effective application of SCT in PD, however, a number of basic parameters still need to be tested and optimized in NHP models, including preparation and storage of cells for engraftment, methods of transplantation, choice of target sites, and timelines for recovery. In this review, we discuss the current status of NHP models of PD in stem cell research. We also analyze the advances and remaining challenges for successful clinical translation of SCT for this persistent disease.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500
| | - Yu-Yu Niu
- Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500, China; E-mail:
| |
Collapse
|
10
|
Duval N, Vacano GN, Patterson D. Rapamycin Treatment Ameliorates Age-Related Accumulation of Toxic Metabolic Intermediates in Brains of the Ts65Dn Mouse Model of Down Syndrome and Aging. Front Aging Neurosci 2018; 10:263. [PMID: 30237765 PMCID: PMC6135881 DOI: 10.3389/fnagi.2018.00263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/14/2018] [Indexed: 01/22/2023] Open
Abstract
Down syndrome (DS), caused by trisomy of chromosome 21, is the most common genetic cause of intellectual disability. Individuals with DS exhibit changes in neurochemistry and neuroanatomy that worsen with age, neurological delay in learning and memory, and predisposition to Alzheimer's disease. The Ts65Dn mouse is the best characterized model of DS and has many features reminiscent of DS, including developmental anomalies and age-related neurodegeneration. The mouse carries a partial triplication of mouse chromosome 16 containing roughly 100 genes syntenic to human chromosome 21 genes. We hypothesized that there would be differences in brain metabolites with trisomy and age, and that long-term treatment with rapamycin, mechanistic target of rapamycin (mTOR) inhibitor and immunosuppressant, would correct these differences. Using HPLC coupled with electrochemical detection, we identified differences in levels of metabolites involved in dopaminergic, serotonergic, and kynurenine pathways in trisomic mice that are exacerbated with age. These include homovanillic acid, norepinephrine, and kynurenine. In addition, we demonstrate that prolonged treatment with rapamycin reduces accumulation of toxic metabolites (such as 6-hydroxymelatonin and 3-hydroxykynurenine) in aged mice.
Collapse
Affiliation(s)
- Nathan Duval
- Department of Biological Sciences, Knoebel Institute for Healthy Aging, and Eleanor Roosevelt Institute, University of Denver, Denver, CO, United States
| | | | | |
Collapse
|
11
|
Herault Y, Delabar JM, Fisher EMC, Tybulewicz VLJ, Yu E, Brault V. Rodent models in Down syndrome research: impact and future opportunities. Dis Model Mech 2018; 10:1165-1186. [PMID: 28993310 PMCID: PMC5665454 DOI: 10.1242/dmm.029728] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. Summary: Mouse models have boosted therapeutic options for Down syndrome, and improved models are being developed to better understand the pathophysiology of this genetic condition.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France.,T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris
| | - Jean M Delabar
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, UMR8251, CNRS, 75205 Paris, France.,INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et la Moelle épinière, ICM, 75013 Paris, France.,Brain and Spine Institute (ICM) CNRS UMR7225, INSERM UMRS 975, 75013 Paris, France
| | - Elizabeth M C Fisher
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, WC1N 3BG, UK.,LonDownS Consortium, London, W1T 7NF UK
| | - Victor L J Tybulewicz
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,LonDownS Consortium, London, W1T 7NF UK.,The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Eugene Yu
- T21 Research Society, Brain and Spine Institute (ICM), 75013 Paris.,The Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics and Genetics Program, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Department of Cellular and Molecular Biology, Roswell Park Division of Graduate School, Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Veronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 1 rue Laurent Fries, 67404 Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
12
|
García-Cerro S, Rueda N, Vidal V, Lantigua S, Martínez-Cué C. Normalizing the gene dosage of Dyrk1A in a mouse model of Down syndrome rescues several Alzheimer's disease phenotypes. Neurobiol Dis 2017; 106:76-88. [PMID: 28647555 DOI: 10.1016/j.nbd.2017.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/30/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022] Open
Abstract
The intellectual disability that characterizes Down syndrome (DS) is primarily caused by prenatal changes in central nervous system growth and differentiation. However, in later life stages, the cognitive abilities of DS individuals progressively decline due to accelerated aging and the development of Alzheimer's disease (AD) neuropathology. The AD neuropathology in DS has been related to the overexpression of several genes encoded by Hsa21 including DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which encodes a protein kinase that performs crucial functions in the regulation of multiple signaling pathways that contribute to normal brain development and adult brain physiology. Studies performed in vitro and in vivo in animal models overexpressing this gene have demonstrated that the DYRK1A gene also plays a crucial role in several neurodegenerative processes found in DS. The Ts65Dn (TS) mouse bears a partial triplication of several Hsa21 orthologous genes, including Dyrk1A, and replicates many DS-like abnormalities, including age-dependent cognitive decline, cholinergic neuron degeneration, increased levels of APP and Aβ, and tau hyperphosphorylation. To use a more direct approach to evaluate the role of the gene dosage of Dyrk1A on the neurodegenerative profile of this model, TS mice were crossed with Dyrk1A KO mice to obtain mice with a triplication of a segment of Mmu16 that includes this gene, mice that are trisomic for the same genes but only carry two copies of Dyrk1A, euploid mice with a normal Dyrk1A dosage, and CO animals with a single copy of Dyrk1A. Normalizing the gene dosage of Dyrk1A in the TS mouse rescued the density of senescent cells in the cingulate cortex, hippocampus and septum, prevented cholinergic neuron degeneration, and reduced App expression in the hippocampus, Aβ load in the cortex and hippocampus, the expression of phosphorylated tau at the Ser202 residue in the hippocampus and cerebellum and the levels of total tau in the cortex, hippocampus and cerebellum. Thus, the present study provides further support for the role of the Dyrk1A gene in several AD-like phenotypes found in TS mice and indicates that this gene could be a therapeutic target to treat AD in DS.
Collapse
Affiliation(s)
- Susana García-Cerro
- Department of Anatomical Pathology, Pharmacology and Microbiology, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.
| |
Collapse
|
13
|
Zhang W, Gu GJ, Zhang Q, Liu JH, Zhang B, Guo Y, Wang MY, Gong QY, Xu JR. NSCs promote hippocampal neurogenesis, metabolic changes and synaptogenesis in APP/PS1 transgenic mice. Hippocampus 2017; 27:1250-1263. [PMID: 28833933 DOI: 10.1002/hipo.22794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023]
Abstract
Adult neurogenesis and synaptic remodeling persist as a unique form of structural and functional plasticity in the hippocampal dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles due to the existence of neural stem cells (NSCs). Transplantation of NSCs may represent a promising approach for the recovery of neural circuits. Here, we aimed to examine effects of highly neuronal differentiation of NSCs transplantation on hippocampal neurogenesis, metabolic changes and synaptic formation in APP/PS1 mice. 12-month-old APP/PS1 mice were used for behavioral tests, immunohistochemistry, western blot, transmission electron microscopy and proton magnetic resonance spectroscopy (1H-MRS). The results showed that N-acetylaspartate (NAA) and Glutamate (Glu) levels were increased in the Tg-NSC mice compared with the Tg-PBS and Tg-AD mice 10 weeks after NSCs transplantation. NSC-induced an increase in expression of synaptophysin and postsynaptic protein-95, and the number of neurons with normal synapses was significantly increased in Tg-NSC mice. More doublecortin-, BrdU/NeuN- and Nestin-positive neurons were observed in the hippocampal DG and SVZ of the Tg-NSC mice. This is the first demonstration that engrafted NSCs with a high differentiation rate to neurons can enhance neurogenesis in a mouse model of AD and can be detected by 1H-MRS in vivo. It is suggested that engraft of NSCs can restore memory and promote endogenous neurogenesis and synaptic remodeling, moreover, 1H-MRS can detect metabolite changes in AD mice in vivo. The observed changes in NAA/creatine (Cr) and glutamate (Glu)/Cr may be correlated with newborn neurons and new synapse formation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Imaging, Renji Hospital, Medical School of Jiaotong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China
| | - Guo-Jun Gu
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Qi Zhang
- Department of Blood Transfusion, Huashan Hospital, Fudan University, No. 12, Urumqi Road, Jing'an District, Shanghai, 200040, P. R. China
| | - Jian-Hui Liu
- Department of Anesthesiology, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Bo Zhang
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Yi Guo
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Mei-Yun Wang
- Department of Radiology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, P. R. China
| | - Qi-Yong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610065, P. R. China
| | - Jian-Rong Xu
- Department of Medical Imaging, Renji Hospital, Medical School of Jiaotong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China
| |
Collapse
|
14
|
Cuchillo-Ibañez I, Balmaceda V, Mata-Balaguer T, Lopez-Font I, Sáez-Valero J. Reelin in Alzheimer’s Disease, Increased Levels but Impaired Signaling: When More is Less. J Alzheimers Dis 2016; 52:403-16. [DOI: 10.3233/jad-151193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Valeria Balmaceda
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Trinidad Mata-Balaguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
15
|
Periodic acid-Schiff granules in the brain of aged mice: From amyloid aggregates to degenerative structures containing neo-epitopes. Ageing Res Rev 2016; 27:42-55. [PMID: 26970374 DOI: 10.1016/j.arr.2016.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/22/2016] [Accepted: 03/02/2016] [Indexed: 11/20/2022]
Abstract
Brain ageing in mice leads to the progressive appearance and expansion of degenerative granular structures frequently referred as "PAS granules" because of their positive staining with periodic acid-Schiff (PAS). PAS granules are present mainly in the hippocampus, although they have also been described in other brain areas such as piriform and entorhinal cortices, and have been observed in other mammals than mice, like rats and monkeys. PAS granules have been identified as a wide range of brain deposits related to numerous neurodegenerative diseases, such as amyloid deposits, neurofibrillary tangles, Lafora bodies, corpora amylacea and polyglucosan bodies, and these identifications have generated controversy and particular theories about them. We have recently reported the presence of a neo-epitope in mice hippocampal PAS granules and the existence of natural IgM auto-antibodies directed against the neo-epitope in the plasma of the animals. The significance of the neo-epitope and the autoantibodies is discussed in this review. Moreover, we observed that the IgM anti-neo-epitope is frequently present as a contaminant in numerous commercial antibodies and is responsible of a considerable amount of false positive immunostainings, which may produce misinterpretations in the identification of the granules. Now that this point has been clarified, this article reviews and reconsiders the nature and physiopathological significance of these degenerative granules. Moreover, we suggest that neo-epitopes may turn into a useful brain-ageing biomarker and that autoimmunity could become a new focus in the study of age-related degenerative processes.
Collapse
|
16
|
Choong XY, Tosh JL, Pulford LJ, Fisher EMC. Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav Neurosci 2015; 9:268. [PMID: 26528151 PMCID: PMC4602094 DOI: 10.3389/fnbeh.2015.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Collapse
Affiliation(s)
- Xun Yu Choong
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| |
Collapse
|
17
|
Lee IS, Jung K, Kim IS, Lee H, Kim M, Yun S, Hwang K, Shin JE, Park KI. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener 2015; 10:38. [PMID: 26293123 PMCID: PMC4546205 DOI: 10.1186/s13024-015-0035-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
Background Alzheimer’s disease (AD) is an inexorable neurodegenerative disease that commonly occurs in the elderly. The cognitive impairment caused by AD is associated with abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, which are accompanied by inflammation. Neural stem cells (NSCs) are self-renewing, multipotential cells that differentiate into distinct neural cells. When transplanted into a diseased brain, NSCs repair and replace injured tissues after migration toward and engraftment within lesions. We investigated the therapeutic effects in an AD mouse model of human NSCs (hNSCs) that derived from an aborted human fetal telencephalon at 13 weeks of gestation. Cells were transplanted into the cerebral lateral ventricles of neuron-specific enolase promoter-controlled APPsw-expressing (NSE/APPsw) transgenic mice at 13 months of age. Results Implanted cells extensively migrated and engrafted, and some differentiated into neuronal and glial cells, although most hNSCs remained immature. The hNSC transplantation improved spatial memory in these mice, which also showed decreased tau phosphorylation and Aβ42 levels and attenuated microgliosis and astrogliosis. The hNSC transplantation reduced tau phosphorylation via Trk-dependent Akt/GSK3β signaling, down-regulated Aβ production through an Akt/GSK3β signaling-mediated decrease in BACE1, and decreased expression of inflammatory mediators through deactivation of microglia that was mediated by cell-to-cell contact, secretion of anti-inflammatory factors generated from hNSCs, or both. The hNSC transplantation also facilitated synaptic plasticity and anti-apoptotic function via trophic supplies. Furthermore, the safety and feasibility of hNSC transplantation are supported. Conclusions These findings demonstrate the hNSC transplantation modulates diverse AD pathologies and rescue impaired memory via multiple mechanisms in an AD model. Thus, our data provide tangible preclinical evidence that human NSC transplantation could be a safe and versatile approach for treating AD patients. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0035-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Il-Shin Lee
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Kwangsoo Jung
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Il-Sun Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Haejin Lee
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Miri Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Seokhwan Yun
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Kyujin Hwang
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Jeong Eun Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Kook In Park
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea. .,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| |
Collapse
|
18
|
Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease. Stem Cell Res 2015. [PMID: 26209890 DOI: 10.1016/j.scr.2015.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural stem cells (NSCs) have been considered as potential therapy in Alzheimer's disease (AD) but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL), a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg) model of AD. We grafted murine NSCs into the hippocampus of non-tg and APP tg that were treated systemically with CBL and analyzed after 1, 3, 6 and 9months post grafting. Compared to vehicle-treated non-tg mice, in the vehicle-treated APP tg mice there was considerable reduction in the survival of the grafted NSCs. Whereas, CBL treatment enhanced the survival of NSCs in both non-tg and APP tg with the majority of the surviving NSCs remaining as neuroblasts. The NSCs of the CBL treated mice displayed reduced numbers of caspase-3 and TUNEL positive cells and increased brain derived neurotrophic factor (BDNF) and furin immunoreactivity. These results suggest that CBL might protect grafted NSCs and as such be a potential adjuvant therapy when combined with grafting.
Collapse
|
19
|
Sakthiswary R, Raymond AA. Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regen Res 2015; 7:1822-31. [PMID: 25624807 PMCID: PMC4302533 DOI: 10.3969/j.issn.1673-5374.2012.23.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/13/2012] [Indexed: 12/11/2022] Open
Abstract
The lack of curative therapies for neurodegenerative diseases has high economic impact and places huge burden on the society. The contribution of stem cells to cure neurodegenerative diseases has been unraveled and explored extensively over the past few years. Beyond substitution of the lost neurons, stem cells act as immunomodulators and neuroprotectors. A large number of preclinical and a small number of clinical studies have shown beneficial outcomes in this context. In this review, we have summarized the current concepts of stem cell therapy in neurodegenerative diseases and the recent advances in this field, particularly between 2010 and 2012. Further studies should be encouraged to resolve the clinical issues and vague translational findings for maximum optimization of the efficacy of stem cell therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rajalingham Sakthiswary
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Azman Ali Raymond
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Freude K, Pires C, Hyttel P, Hall VJ. Induced Pluripotent Stem Cells Derived from Alzheimer's Disease Patients: The Promise, the Hope and the Path Ahead. J Clin Med 2014; 3:1402-36. [PMID: 26237610 PMCID: PMC4470192 DOI: 10.3390/jcm3041402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023] Open
Abstract
The future hope of generated induced pluripotent stem cells (iPS cells) from Alzheimer’s disease patients is multifold. Firstly, they may help to uncover novel mechanisms of the disease, which could lead to the development of new and unprecedented drugs for patients and secondly, they could also be directly used for screening and testing of potential new compounds for drug discovery. In addition, in the case of familial known mutations, these cells could be targeted by use of advanced gene-editing techniques to correct the mutation and be used for future cell transplantation therapies. This review summarizes the work so far in regards to production and characterization of iPS cell lines from both sporadic and familial Alzheimer’s patients and from other iPS cell lines that may help to model the disease. It provides a detailed comparison between published reports and states the present hurdles we face with this new technology. The promise of new gene-editing techniques and accelerated aging models also aim to move this field further by providing better control cell lines for comparisons and potentially better phenotypes, respectively.
Collapse
Affiliation(s)
- Kristine Freude
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Carlota Pires
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| | - Vanessa Jane Hall
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Gronnegaardsvej 7, Frederiksberg C DK-1870, Denmark.
| |
Collapse
|
21
|
|
22
|
Upadhyay G, Shankar S, Srivastava RK. Stem Cells in Neurological Disorders: Emerging Therapy with Stunning Hopes. Mol Neurobiol 2014; 52:610-25. [DOI: 10.1007/s12035-014-8883-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
|
23
|
Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morató M, Guivernau B, Eraso-Pichot A, Salvador B, Fernàndez-Busquets X, Roquer J, Muñoz FJ. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31:152-67. [PMID: 25046533 DOI: 10.3109/09687688.2014.937468] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.
Collapse
Affiliation(s)
- Marta Tajes
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF) , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Disease modifying effect of chronic oral treatment with a neurotrophic peptidergic compound in a triple transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2014; 71:110-30. [PMID: 25046994 DOI: 10.1016/j.nbd.2014.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/28/2014] [Accepted: 07/08/2014] [Indexed: 12/16/2022] Open
Abstract
Besides the presence of amyloid beta (Aβ) plaques and neurofibrillary tangles, neurogenesis and synaptic plasticity are markedly impaired in Alzheimer's disease (AD) possibly contributing to cognitive impairment. In this context, neurotrophic factors serve as a promising therapeutic approach via utilization of regenerative capacity of brain to shift the balance from neurodegeneration to neural regeneration. However, besides more conventional "bystander" effect, to what extent can neurotrophic compounds affect underlying AD pathology remains questionable. Here we investigated the effect of chronic oral treatment with a ciliary neurotrophic factor (CNTF) derived peptidergic compound, P021 (Ac-DGGL(A)G-NH2), on disease pathology both at moderate and severe stages in a transgenic mouse model of AD. 3xTg-AD and wild type female mice were treated for 12months with P021 or vehicle diet starting at 9-10months of age. A significant reduction in abnormal hyperphosphorylation and accumulation of tau at known major AD neurofibrillary pathology associated sites was observed. The effect of P021 on Aβ pathology was limited to a significant decrease in soluble Aβ levels and a trend towards reduction in Aβ plaque load in CA1 region of hippocampus, consistent with reduction in Aβ generation and not clearance. This disease modifying effect was probably via increased brain derived neurotrophic factor (BDNF) expression mediated decrease in glycogen synthase kinase-3-β (GSK3β) activity we found in P021 treated 3xTg-AD mice. P021 treatment also rescued deficits in cognition, neurogenesis, and synaptic plasticity in 3xTg-AD mice. These findings demonstrate the potential of the neurotrophic peptide mimetic as a disease modifying therapy for AD.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Down syndrome affects more than 5 million people globally. During the last 10 years, there has been a dramatic increase in the research efforts focused on therapeutic interventions to improve learning and memory in Down syndrome. RECENT FINDINGS This review summarizes the different functional abnormalities targeted by researchers in mouse models of Down syndrome. Three main strategies have been used: neural stem cell implantation; environmental enrichment and physical exercise; and pharmacotherapy. Pharmacological targets include the choline pathway, GABA and NMDA receptors, DYRK1A protein, oxidative stress and pathways involved in development and neurogenesis. Many strategies have improved learning and memory as well as electrophysiological and molecular alterations in affected animals. To date, eight molecules have been tested in human adult clinical trials. No studies have yet been performed on infants. However, compelling studies reveal that permanent brain alterations originate during fetal life in Down syndrome. Early prenatal diagnosis offers a 28 weeks window to positively impact brain development and improve postnatal cognitive outcome in affected individuals. Only a few approaches (Epigallocatechine gallate, NAP/SAL, fluoxetine, and apigenin) have been used to treat mice in utero; these showed therapeutic effects that persisted to adulthood. SUMMARY In this article, we discuss the challenges, recent progress, and lessons learned that pave the way for new therapeutic approaches in Down syndrome.
Collapse
Affiliation(s)
- Fayçal Guedj
- aMother Infant Research Institute, Tufts Medical Center and the Floating Hospital for Children, Boston, Massachusetts, USA bUniv Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, Adaptive Functional Biology, Paris, France
| | | | | |
Collapse
|
26
|
Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol Cell Neurosci 2014; 59:76-84. [PMID: 24472845 DOI: 10.1016/j.mcn.2014.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/17/2022] Open
Abstract
Systemic administration of human umbilical cord blood (HUCB) mononuclear cells (MNC) following middle cerebral artery occlusion (MCAO) in the rat reduces infarct size and, more importantly, restores motor function. The HUCB cell preparation is composed of immature T-cells, B-cells, monocytes and stem cells. In this study we examined whether the beneficial effects of HUCB injection were attributable to one of these cell types. Male Sprague Dawley rats underwent permanent MCAO followed 48 h later by intravenous administration of HUCB MNC preparations depleted of either CD14(+) monocytes, CD133(+) stem cells, CD2(+) T-cells or CD19(+) B cells. Motor function was measured prior to MCAO and 30 days post-stroke. When CD14(+) monocytes were depleted from the HUCB MNC, activity and motor asymmetry were similar to the MCAO only treated animals. Monocyte depletion prevented HUCB cell treatment from reducing infarct size while monocyte enrichment was sufficient to reduce infarct size. Administration of monocyte-depleted HUCB cells did not suppress Iba1 labeling of microglia in the infarcted area relative to treatment with the whole HUCB preparation. These data demonstrate that the HUCB monocytes provide the majority of the efficacy in reducing infarct volume and promoting functional recovery.
Collapse
|
27
|
|
28
|
Doehner J, Genoud C, Imhof C, Krstic D, Knuesel I. Extrusion of misfolded and aggregated proteins--a protective strategy of aging neurons? Eur J Neurosci 2012; 35:1938-50. [PMID: 22708604 DOI: 10.1111/j.1460-9568.2012.08154.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular senescence is the consequence of repetitive exposures to oxidative stress, perturbed energy homeostasis, accumulation of damaged proteins and lesions in their nucleic acids. Whereas mitotic cells are equipped with efficient cell replacement strategies; postmitotic neurons have--with a few exceptions--no mechanism to substitute dysfunctional cells within a complex neuronal network. Here we propose a potential strategy by which aging neurons contend against abnormal accumulation of damaged/misfolded proteins. The suggested mechanism involves the formation of 'budding-like' extrusions and their subsequent clearance by glia. This hypothesis emerged from our previous investigations of the aged hippocampus revealing layer-specific accumulations of Reelin, a glycoprotein with fundamental roles during brain development and adult synaptic plasticity. We showed that Reelin deposits constitute a conserved neuropathological feature of aging, which is significantly accelerated in adult wild-type mice prenatally exposed to a viral-like infection. Here, we employed two- and three-dimensional immunoelectron microscopy to elucidate their morphological properties, localization and origin in immune challenged vs. control mice. In controls, Reelin-positive deposits were dispersed in the neuropil, some being engulfed by glia. In immune challenged mice, however, significantly more Reelin-immunoreactive deposits were associated with neuritic swellings containing mitochondria, vacuoles and cellular debris, pointing to their intracellular origin and suggesting that 'budding-like' neuronal extrusions of misfolded proteins and glial clearance may represent a protective strategy to counteract aging-associated impairments in proteosomal/lysosomal degradation. Neurons exposed to chronic neuroinflammation with increased levels of misfolded/damaged proteins, however, may fail to combat intraneuronal protein accumulations, a process probably underlying neuronal dysfunction and degeneration during aging.
Collapse
Affiliation(s)
- Jana Doehner
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Modulating cognitive deficits and tau accumulation in a mouse model of aging Down syndrome through neonatal implantation of neural progenitor cells. Exp Gerontol 2012; 47:723-33. [DOI: 10.1016/j.exger.2012.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/04/2023]
|
30
|
Kaneko Y, Tajiri N, Yu S, Hayashi T, Stahl CE, Bae E, Mestre H, Franzese N, Rodrigues A, Rodrigues MC, Ishikawa H, Shinozuka K, Hethorn W, Weinbren N, Glover LE, Tan J, Achyuta AH, van Loveren H, Sanberg PR, Shivsankar S, Borlongan CV. Nestin overexpression precedes caspase-3 upregulation in rats exposed to controlled cortical impact traumatic brain injury. CELL MEDICINE 2012; 4:55-63. [PMID: 23101029 DOI: 10.3727/215517912x639306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Our understanding of biological mechanisms and treatment options for traumatic brain injury (TBI) is limited. Here, we employed quantitative real-time PCR (QRT-PCR) and immunohistochemical analyses to determine the dynamic expression of cell proliferation and apoptosis in an effort to provide insights into the therapeutic window for developing regenerative strategies for TBI. For this purpose, young adult Sprague-Dawley rats were subjected to experimental TBI using a controlled cortical impactor, then euthanized 1-48 hours after TBI for QRT-PCR and immunohistochemistry. QRT-PCR revealed that brains from TBI exposed rats initially displayed nestin mRNA expression that modestly increased as early as 1-hour post-TBI, then significantly peaked at 8 hours, but thereafter reverted to pre-TBI levels. On the other hand, caspase-3 mRNA expression was slightly elevated at 8 hours post-TBI, which did not become significantly upregulated until 48 hours. Immunofluorescent microscopy revealed a significant surge in nestin immunoreactive cells in the cortex, corpus callosum, and subventricular zone at 24 hours post-TBI, whereas a significant increase in the number of active caspase-3 immunoreactive cells was only found in the cortex and not until 48 hours. These results suggest that the injured brain attempts to repair itself via cell proliferation immediately after TBI, but that this endogenous regenerative mechanism is not sufficient to abrogate the secondary apoptotic cell death. Treatment strategies designed to amplify cell proliferation and to prevent apoptosis are likely to exert maximal benefits when initiated at the acute phase of TBI.
Collapse
Affiliation(s)
- Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rachubinski AL, Crowley SK, Sladek JR, Maclean KN, Bjugstad KB. Effects of neonatal neural progenitor cell implantation on adult neuroanatomy and cognition in the Ts65Dn model of Down syndrome. PLoS One 2012; 7:e36082. [PMID: 22558337 PMCID: PMC3338504 DOI: 10.1371/journal.pone.0036082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/26/2012] [Indexed: 12/13/2022] Open
Abstract
As much of the aberrant neural development in Down syndrome (DS) occurs postnatally, an early opportunity exists to intervene and influence life-long cognitive development. Recent success using neural progenitor cells (NPC) in models of adult neurodegeneration indicate such therapy may be a viable option in diseases such as DS. Murine NPC (mNPC, C17.2 cell line) or saline were implanted bilaterally into the dorsal hippocampus of postnatal day 2 (PND 2) Ts65Dn pups to explore the feasibility of early postnatal treatment in this mouse model of DS. Disomic littermates provided karyotype controls for trisomic pups. Pups were monitored for developmental milestone achievement, and then underwent adult behavior testing at 14 weeks of age. We found that implanted mNPC survived into adulthood and migrated beyond the implant site in both karyotypes. The implantation of mNPC resulted in a significant increase in the density of dentate granule cells. However, mNPC implantation did not elicit cognitive changes in trisomic mice either neonatally or in adulthood. To the best of our knowledge, these results constitute the first assessment of mNPC as an early intervention on cognitive ability in a DS model.
Collapse
Affiliation(s)
- Angela L. Rachubinski
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Shannon K. Crowley
- Departments of Exercise Science, and Neuropsychiatry and Behavioral Science, University of South Carolina, Columbia, South Carolina, United States of America
| | - John R. Sladek
- Department of Neurology and Center for Neuroscience, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kenneth N. Maclean
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kimberly B. Bjugstad
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
32
|
Lockrow JP, Fortress AM, Granholm ACE. Age-related neurodegeneration and memory loss in down syndrome. Curr Gerontol Geriatr Res 2012; 2012:463909. [PMID: 22545043 PMCID: PMC3318235 DOI: 10.1155/2012/463909] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/21/2011] [Indexed: 01/10/2023] Open
Abstract
Down syndrome (DS) is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD) by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS.
Collapse
Affiliation(s)
- Jason P. Lockrow
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ashley M. Fortress
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ann-Charlotte E. Granholm
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Center on Aging, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
33
|
The use of mouse models for understanding the biology of down syndrome and aging. Curr Gerontol Geriatr Res 2012; 2012:717315. [PMID: 22461792 PMCID: PMC3296169 DOI: 10.1155/2012/717315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022] Open
Abstract
Down syndrome is a complex condition caused by trisomy of human chromosome 21. The biology of aging may be different in individuals with Down syndrome; this is not well understood in any organism. Because of its complexity, many aspects of Down syndrome must be studied either in humans or in animal models. Studies in humans are essential but are limited for ethical and practical reasons. Fortunately, genetically altered mice can serve as extremely useful models of Down syndrome, and progress in their production and analysis has been remarkable. Here, we describe various mouse models that have been used to study Down syndrome. We focus on segmental trisomies of mouse chromosome regions syntenic to human chromosome 21, mice in which individual genes have been introduced, or mice in which genes have been silenced by targeted mutagenesis. We selected a limited number of genes for which considerable evidence links them to aspects of Down syndrome, and about which much is known regarding their function. We focused on genes important for brain and cognitive function, and for the altered cancer spectrum seen in individuals with Down syndrome. We conclude with observations on the usefulness of mouse models and speculation on future directions.
Collapse
|
34
|
Rescue of synaptic failure and alleviation of learning and memory impairments in a trisomic mouse model of down syndrome. J Neuropathol Exp Neurol 2012; 70:1070-9. [PMID: 22082658 DOI: 10.1097/nen.0b013e318236e9ad] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Down syndrome (DS) is caused by the triplication of ∼240 protein-coding genes on chromosome 21 and is the most prevalent form of developmental disability. This condition results in abnormalities in many organ systems, as well as in intellectual retardation. Many previous efforts to understand brain dysfunction in DS have indicated that cognitive deficits are coincident with reduced synaptic plasticity and decreased neuronal proliferation. One therapeutic strategy for optimizing the microenvironment for neuronal proliferation and synaptic plasticity in the brain is the use of neurotrophins to restore the homeostasis of the brain biochemical milieu. Here, we show that peripheral administration of Peptide 6, an 11-mer corresponding to an active region of ciliary neurotrophic factor, amino acid residues 146 to 156, can inhibit learning and memory impairments in Ts65Dn mice, a trisomic mouse model of DS. Long-term treatment with Peptide 6 enhanced the pool of neural progenitor cells in the hippocampus and increased levels of synaptic proteins crucial for synaptic plasticity. These findings suggest a therapeutic potential of Peptide 6 in promoting functional neural integration into networks, thereby strengthening biologic substrates of memory processing.
Collapse
|
35
|
Altered synaptic marker abundance in the hippocampal stratum oriens of Ts65Dn mice is associated with exuberant expression of versican. ASN Neuro 2012; 4:AN20110037. [PMID: 22225533 PMCID: PMC3275338 DOI: 10.1042/an20110037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DS (Down syndrome), resulting from trisomy of chromosome 21, is the most common cause of genetic mental retardation; however, the molecular mechanisms underlying the cognitive deficits are poorly understood. Growing data indicate that changes in abundance or type of CSPGs (chondroitin sulfate proteoglycans) in the ECM (extracellular matrix) can influence synaptic structure and plasticity. The purpose of this study was to identify changes in synaptic structure in the hippocampus in a model of DS, the Ts65Dn mouse, and to determine the relationship to proteoglycan abundance and/or cleavage and cognitive disability. We measured synaptic proteins by ELISA and changes in lectican expression and processing in the hippocampus of young and old Ts65Dn mice and LMCs (littermate controls). In young (5 months old) Ts65Dn hippocampal extracts, we found a significant increase in the postsynaptic protein PSD-95 (postsynaptic density 95) compared with LMCs. In aged (20 months old) Ts65Dn hippocampus, this increase was localized to hippocampal stratum oriens extracts compared with LMCs. Aged Ts65Dn mice exhibited impaired hippocampal-dependent spatial learning and memory in the RAWM (radial-arm water maze) and a marked increase in levels of the lectican versican V2 in stratum oriens that correlated with the number of errors made in the final RAWM block. Ts65Dn stratum oriens PNNs (perineuronal nets), an extension of the ECM enveloping mostly inhibitory interneurons, were dispersed over a larger area compared with LMC mice. Taken together, these data suggest a possible association with alterations in the ECM and inhibitory neurotransmission in the Ts65Dn hippocampus which could contribute to cognitive deficits.
Collapse
|