1
|
Panda P, Mohanty S, Gouda SR, Mohapatra R. Advances in nanomedicine for retinal drug delivery: overcoming barriers and enhancing therapeutic outcomes. J Drug Target 2025; 33:587-611. [PMID: 39694681 DOI: 10.1080/1061186x.2024.2443144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Nanomedicine offers a promising avenue for improving retinal drug delivery, effectively addressing challenges associated with ocular diseases like age-related macular degeneration and diabetic retinopathy. Nanoparticles, with their submicron size and customisable surface properties, enable enhanced permeability and retention within retinal tissues, supporting sustained drug release and minimising systemic side effects. Nanostructured scaffolds further provide a supportive environment for retinal cell growth and tissue regeneration, crucial for treating degenerative conditions. Additionally, advanced nanodevices facilitate real-time monitoring and controlled drug release, marking significant progress in retinal therapy. This study reviews recent advancements in nanomedicine for retinal drug delivery, critically analysing design innovations, therapeutic benefits, and limitations of these systems. By advancing nanotechnology integration in ocular therapies, this field holds strong potential for overcoming current barriers, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Pratikeswar Panda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Shreyashree Mohanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Sangita Ranee Gouda
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| | - Rajaram Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Lin H, Zhou C, Li Q, Xie Q, Xia L, Liu L, Bao W, Xiong X, Zhang H, Zheng Z, Zhao J, Liang W. Nanotechnology-Assisted mesenchymal stem cells treatment for improved cartilage regeneration: A review of current practices. Biochem Pharmacol 2025; 237:116895. [PMID: 40154890 DOI: 10.1016/j.bcp.2025.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/26/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Cartilage tissue does not promptly elicit an inflammatory response upon injury, hence constraining its capacity for healing and self-regeneration. Mesenchymal Stem Cells (MSC) therapy, enhanced by nanotechnology, offers promising advancements in cartilage repair. Injuries to cartilage often cause chronic pain, where current treatments are inadequate. As MSCs can readily differentiate into chondrocytes and secrete soluble factors, they are essential components in tissue engineering of cartilage repair. Although, like other stem cell applications, clinical applications are restricted by poor post implantation survival and differentiation. Recent studies show that nanoparticles (NPs) can further improve MSC outcomes by promoting cell adhesion, and chondrogenic differentiation allowing for sustained growth factor release. In addition, nanomaterials can improve the biological activity of MSCs, by also facilitating the composition of a conducive microenvironment for cartilage repair. In this review, the application of nanofibrous scaffolds, hydrogels and nanoscale particulate matter to improve mechanical properties in cartilage tissue engineering, are discussed. Moreover, the MSCs and nanotechnology synergistic effects present hope of overcoming the limitations of conventional treatments. Nanotechnology greatly enhances the MSC based cartilage regeneration strategies and could provide better treatment for cartilage related diseases in the future. Future research should be aimed at standardizing MSC harvesting and culturing protocols and contrasting their long-term efficacy.
Collapse
Affiliation(s)
- Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua hospital, Zhoushan 316000 Zhejiang Province, China
| | - Qingping Li
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China.
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000 Zhejiang Province, China.
| |
Collapse
|
3
|
Sajjad U, Ahmed M, Iqbal MZ, Riaz M, Mustafa M, Biedermann T, Klar AS. Exploring mesenchymal stem cells homing mechanisms and improvement strategies. Stem Cells Transl Med 2024; 13:1161-1177. [PMID: 39550211 PMCID: PMC11631218 DOI: 10.1093/stcltm/szae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/16/2024] [Indexed: 11/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with high self-renewal and multilineage differentiation abilities, playing an important role in tissue healing. Recent advancements in stem cell-based technologies have offered new and promising therapeutic options in regenerative medicine. Upon tissue damage, MSCs are immediately mobilized from the bone marrow and move to the injury site via blood circulation. Notably, allogenically transplanted MSCs can also home to the damaged tissue site. Therefore, MSCs hold great therapeutic potential for curing various diseases. However, one major obstacle to this approach is attracting MSCs specifically to the injury site following systemic administration. In this review, we describe the molecular pathways governing the homing mechanism of MSCs and various strategies for improving this process, including targeted stem cell administration, target tissue modification, in vitro priming, cell surface engineering, genetic modifications, and magnetic guidance. These strategies are crucial for directing MSCs precisely to the injury site and, consequently, enhancing their migration and local tissue repair properties. Specifically, our review provides a guide to improving the therapeutic efficacy of clinical applications of MSCs through optimized in vivo administration and homing capacities.
Collapse
Affiliation(s)
- Umar Sajjad
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College University, Lahore, Pakistan
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Soe HMSH, Loftsson T, Jansook P. The application of cyclodextrins in drug solubilization and stabilization of nanoparticles for drug delivery and biomedical applications. Int J Pharm 2024; 666:124787. [PMID: 39362296 DOI: 10.1016/j.ijpharm.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles (NPs) have gained significant attention in recent years due to their potential applications in pharmaceutical formulations, drug delivery systems, and various biomedical fields. The versatility of colloidal NPs, including their ability to be tailored with various components and synthesis methods, enables drug delivery systems to achieve controlled release patterns, improved solubility, and increased bioavailability. The review discusses various types of NPs, such as nanocrystals, lipid-based NPs, and inorganic NPs (i.e., gold, silver, magnetic NPs), each offering unique advantages for drug delivery. Despite the promising potential of NPs, challenges such as physical instability and the need for surface stabilization remain. Strategies to overcome these challenges include the use of surfactants, polymers, and cyclodextrins (CDs). This review highlights the role of CDs in stabilizing colloidal NPs and enhancing drug solubility. The combination of CDs with NPs presents a synergistic approach that enhances drug delivery and broadens the range of biomedical applications. Additionally, the potential of CDs to enhance the stability and therapeutic efficacy of colloidal NPs, making them promising candidates for advanced drug delivery systems, is comprehensively reviewed.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Siontas O, Ahn S. Challenges in AAV-Based Retinal Gene Therapies and the Role of Magnetic Nanoparticle Platforms. J Clin Med 2024; 13:7385. [PMID: 39685843 DOI: 10.3390/jcm13237385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Retinal diseases, leading to various visual impairments and blindness, are on the rise. However, the advancement of retinal gene therapies offers new hope for treatment of such diseases. Among different vector systems for conferring therapeutic genetic load to retinal cells, adeno-associated viruses (AAVs) have been most intensively explored and have already successfully gained multiple clinical approvals. AAV-based retinal gene therapies have shown great promise in treating retinal disorders, but usually rely on the heavily disruptive administration methods such as subretinal injection. This is because the clinically well-established, minimally invasive alternative of intravitreal injection (IVI) necessitates AAVs to traverse the retinal inner limiting membrane (ILM), which is hard to penetrate in higher eye models, like human or porcine eyes. Additionally, AAVs' natural transduction preference, known as tropism, is commonly not specific to cells of only one target retinal layer, which is another ongoing challenge in retinal gene therapy. This review examines strategies to overcome these obstacles with a focus on the potential of magnetic nanoparticles (MNPs) for improved retinal AAV delivery.
Collapse
Affiliation(s)
- Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
| | - Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, 4056 Basel, Switzerland
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
6
|
Kaur G, Bisen S, Singh NK. Nanotechnology in retinal diseases: From disease diagnosis to therapeutic applications. BIOPHYSICS REVIEWS 2024; 5:041305. [PMID: 39512331 PMCID: PMC11540445 DOI: 10.1063/5.0214899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology has demonstrated tremendous promise in the realm of ocular illnesses, with applications for disease detection and therapeutic interventions. The nanoscale features of nanoparticles enable their precise interactions with retinal tissues, allowing for more efficient and effective treatments. Because biological organs are compatible with diverse nanomaterials, such as nanoparticles, nanowires, nanoscaffolds, and hybrid nanostructures, their usage in biomedical applications, particularly in retinal illnesses, has increased. The use of nanotechnology in medicine is advancing rapidly, and recent advances in nanomedicine-based diagnosis and therapy techniques may provide considerable benefits in addressing the primary causes of blindness related to retinal illnesses. The current state, prospects, and challenges of nanotechnology in monitoring nanostructures or cells in the eye and their application to regenerative ophthalmology have been discussed and thoroughly reviewed. In this review, we build on our previously published review article in 2021, where we discussed the impact of nano-biomaterials in retinal regeneration. However, in this review, we extended our focus to incorporate and discuss the application of nano-biomaterials on all retinal diseases, with a highlight on nanomedicine-based diagnostic and therapeutic research studies.
Collapse
|
7
|
Ahn S, Siontas O, Koester J, Krol J, Fauser S, Müller DJ. Magnetically Guided Adeno-Associated Virus Delivery for the Spatially Targeted Transduction of Retina in Eyes. Adv Healthc Mater 2024; 13:e2401577. [PMID: 38848510 DOI: 10.1002/adhm.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Adeno-associated viruses (AAVs) are intensively explored for gene therapies in general and have found promising applications for treating retina diseases. However, controlling the specificity (tropism) and delivery of AAVs to selected layers, cell types, and areas of the retina is a major challenge to further develop retinal gene therapies. Magnetic nanoparticles (MNPs) provide effective delivery platforms to magnetically guide therapeutics to target cells. Yet, how MNPs can deliver AAVs to transfect particular retina layers and cells remains elusive. Here, it is demonstrated that MNPs can be used to transport different AAVs through the retina and to modulate the selective transduction of specific retinal layers or photoreceptor cells in ex vivo porcine explants and whole eyes. Thereby, transduction is triggered by bringing the viruses in close proximity to the target cell layer and by controlling their interaction time. It is shown that this magnetically guided approach to transport AAVs to selected areas and layers of the retina does not require the cell-specific optimization of the AAV tropism. It is anticipated that the new approach to control the delivery of AAVs and to selectively transduce cellular systems can be applied to many other tissues or organs to selectively deliver genes of interest.
Collapse
Affiliation(s)
- Seungkuk Ahn
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| | - Oliver Siontas
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| | - Janis Koester
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Jacek Krol
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Sascha Fauser
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Department of Ophthalmology, Basel, 4070, Switzerland
| | - Daniel J Müller
- Eidgenössische Technische Hochschule (ETH) Zürich, Department of Biosystems Science and Engineering, Basel, 4056, Switzerland
| |
Collapse
|
8
|
Shan Y, Zhang M, Tao E, Wang J, Wei N, Lu Y, Liu Q, Hao K, Zhou F, Wang G. Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduct Target Ther 2024; 9:242. [PMID: 39271680 PMCID: PMC11399464 DOI: 10.1038/s41392-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/15/2024] Open
Abstract
Over the past two decades, mesenchymal stem/stromal cell (MSC) therapy has made substantial strides, transitioning from experimental clinical applications to commercial products. MSC therapies hold considerable promise for treating refractory and critical conditions such as acute graft-versus-host disease, amyotrophic lateral sclerosis, and acute respiratory distress syndrome. Despite recent successes in clinical and commercial applications, MSC therapy still faces challenges when used as a commercial product. Current detection methods have limitations, leaving the dynamic biodistribution, persistence in injured tissues, and ultimate fate of MSCs in patients unclear. Clarifying the relationship between the pharmacokinetic characteristics of MSCs and their therapeutic effects is crucial for patient stratification and the formulation of precise therapeutic regimens. Moreover, the development of advanced imaging and tracking technologies is essential to address these clinical challenges. This review provides a comprehensive analysis of the kinetic properties, key regulatory molecules, different fates, and detection methods relevant to MSCs and discusses concerns in evaluating MSC druggability from the perspective of integrating pharmacokinetics and efficacy. A better understanding of these challenges could improve MSC clinical efficacy and speed up the introduction of MSC therapy products to the market.
Collapse
Affiliation(s)
- Yunlong Shan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Mengying Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Enxiang Tao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jing Wang
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Ning Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Yi Lu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qing Liu
- Jiangsu Renocell Biotech Co. Ltd., Nanjing, China
| | - Kun Hao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Dash S, Majood M, Meena R, Mukherjee M, Dinda AK, Kuanr BK, Mohanty S. Biocompatible polymer-coated magneto-fluorescent super nanoparticles for the homing of mesenchymal stem cells. Int J Biol Macromol 2024; 273:132794. [PMID: 38834114 DOI: 10.1016/j.ijbiomac.2024.132794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Stem cell plays an important role in the clinical field. However, the effective delivery of stem cells to the targeted site relies on the efficient homing of the cells to the site of injury. In view of that, fluorescent magnetic nanoparticles stick out due to their wide range of enabling functions including cellular homing and tracking. The present study unravels the synthesis of polymer-coated biocompatible and fluorescent magnetic nanoparticles (FMNPs) by a single-step hydrothermal synthesis method. Importantly, the facile method developed the biological super nanoparticles consisting of the magnetic core, which is surrounded by the fluorescent nanodot-decorated polymeric shell. The synthesized particles showed an amorphous nature, and superparamagnetic properties, with efficient fluorescence properties of emission at the blue range (̴ 410 nm). The FMNP labeling showed the mesenchymal stem cell (MSC) homing to the desired site in the presence of an external magnetic field. The in-house synthesized nanoparticles showed significant cytocompatibility and hemocompatibility in vitro as well as in vivo conditions owing to their surface coating. This unprecedented work advances the efficient internalization of FMNPs in MSCs and their enhanced migration potential provides a breakthrough in stem cell delivery for therapeutic applications. STATEMENT OF SIGNIFICANCE: The bi-modal fluorescent magnetic nanoparticles hold a promising role in the biomedical field for mesenchymal stem cell homing and tracking. Hence, in this study, for the first time, we have synthesized the fluorescent magnetic nanoparticle with polymer coating via an easy single-step method. The nanoparticle with a polymer coat enhanced the biocompatibility and effortless internalization of the nanoparticle into mesenchymal stem cells without hampering the native stem cell properties. Furthermore, the enhanced migration potential of such magnetized stem cells and their homing at the target site by applying an external magnetic field opened up avenues for the smart delivery of mesenchymal stem cells at complex sites such as retina for the tissue regeneration.
Collapse
Affiliation(s)
- Saumya Dash
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Misba Majood
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India; Amity Institute of Click Chemistry Research and Studies, Amity University, Uttar Pradesh, 201303 Noida, India
| | - Ravindra Meena
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Uttar Pradesh, 201303 Noida, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bijoy K Kuanr
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
10
|
Mehta NJ, Mehta SN. Nanotechnology in Retinal Disease: Current Concepts and Future Directions. J Ocul Pharmacol Ther 2024; 40:3-12. [PMID: 38052063 PMCID: PMC10890960 DOI: 10.1089/jop.2023.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
The retina is one of the most complex and extraordinary human organs affected by genetic, metabolic, and degenerative diseases, resulting in blindness for ∼1.3 million people in the United States and over 40 million people worldwide. This translates into a huge loss of productivity, especially among younger patients with inherited retinal diseases (IRDs) and diabetic retinopathy. Age-related macular degeneration accounts for 90% of all blindness cases worldwide. The prevalence of this condition is projected to reach over 5 million individuals over the next 3 decades. There are also >20 IRD phenotypes, affecting >2 million people worldwide. Nanobiotechnology uses nanotechnology for biological applications, making use of biological materials either conceptually or directly in the fabrication of new materials. Bionanotechnology, on the other hand, uses molecular biology for the purpose of creating nanostructures (ie, structures with at least 1 dimension <100 nm). Retinal applications of these technologies are developing at a rapid pace. This review includes the most current nanotechnological applications in retinal diagnostics, theranostics, drug delivery, and targeting, including the potential for nonviral vehicles such as liposomes, micelles, and dendrimers, which pose advantages over viral vectors in retinal drug delivery. Furthermore, we discuss current and future applications as surgical adjuncts and in regenerative medicine as they pertain to retinal disease. Structure and function of nanoparticles such as carbon nanotubules, quantum dots, and magnetic nanoparticles, as well as diagnostic technologies such as next-generation DNA sequencing and single-molecule bionanosensing, will also be discussed.
Collapse
|
11
|
Lammers MJW, Young E, Yanai A, Viringipurampeer IA, Le TN, Straatman LV, Westerberg BD, Gregory-Evans K. IGF-1 Mediated Neuroprotective Effects of Olfactory-Derived Mesenchymal Stem Cells on Auditory Hair Cells. J Otolaryngol Head Neck Surg 2024; 53:19160216241258431. [PMID: 38888945 PMCID: PMC11177734 DOI: 10.1177/19160216241258431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/11/2024] [Indexed: 06/20/2024] Open
Abstract
IMPORTANCE Mesenchymal stem cells (MSCs) have the capability of providing ongoing paracrine support to degenerating tissues. Since MSCs can be extracted from a broad range of tissues, their specific surface marker profiles and growth factor secretions can be different. We hypothesized that MSCs derived from different sources might also have different neuroprotective potential. OBJECTIVE In this study, we extracted MSCs from rodent olfactory mucosa and compared their neuroprotective effects on auditory hair cell survival with MSCs extracted from rodent adipose tissue. METHODS Organ of Corti explants were dissected from 41 cochlea and incubated with olfactory mesenchymal stem cells (OMSCs) and adipose mesenchymal stem cells (AMSCs). After 72 hours, Corti explants were fixed, stained, and hair cells counted. Growth factor concentrations were determined in the supernatant and cell lysate using Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS Co-culturing of organ of Corti explants with OMSCs resulted in a significant increase in inner and outer hair cell stereocilia survival, compared to control. Comparisons between both stem cell lines, showed that co-culturing with OMSCs resulted in superior inner and outer hair cell stereocilia survival rates over co-culturing with AMSCs. Assessment of growth factor secretions revealed that the OMSCs secrete significant amounts of insulin-like growth factor 1 (IGF-1). Co-culturing OMSCs with organ of Corti explants resulted in a 10-fold increase in IGF-1 level compared to control, and their secretion was 2 to 3 times higher compared to the AMSCs. CONCLUSIONS This study has shown that OMSCs may mitigate auditory hair cell stereocilia degeneration. Their neuroprotective effects may, at least partially, be ascribed to their enhanced IGF-1 secretory abilities compared to AMSCs.
Collapse
Affiliation(s)
- Marc J. W. Lammers
- BC Rotary Hearing and Balance Centre at St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Emily Young
- BC Rotary Hearing and Balance Centre at St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Anat Yanai
- Department of Ophthalmology and Visual Science, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Ishaq A. Viringipurampeer
- Department of Ophthalmology and Visual Science, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Trung N. Le
- Sunnybrook Research Institute, Department of Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Louise V. Straatman
- Department of Otolaryngology—Head and Neck Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brian D. Westerberg
- BC Rotary Hearing and Balance Centre at St. Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Science, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Yang Z, Peng Y, Yuan J, Xia H, Luo L, Wu X. Mesenchymal Stem Cells: A Promising Treatment for Thymic Involution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:29-38. [PMID: 37421539 DOI: 10.1007/5584_2023_780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
The thymus is the main immune organ in the body. However, the thymus gradually degenerates in early life, leading to a reduction in T-cell production and a decrease in immune function. Mesenchymal stem cells (MSCs) are a promising alternative for the treatment of thymus senescence due to their homing ability to the site of inflammation and their paracrine, anti-inflammatory, and antioxidant properties. However, the heterogeneity, difficulty of survival in vivo, short residence time, and low homing efficiency of the injected MSCs affect the clinical therapeutic effect. This article reviews strategies to improve the efficacy of mesenchymal stem cell therapy, including the selection of appropriate cell doses, transplantation frequency, and interval cycles. The survival rate of MSCs can be improved to some extent by improving the infusion mode of MSCs, such as simulating the in vivo environment, applying the biological technology of hydrogels and microgels, and iron oxide labeling technology, which can improve the curative effect and homing of MSCs, promote the regeneration of thymic epithelial cells, and restore the function of the thymus.
Collapse
Affiliation(s)
- Zailing Yang
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Yunxiao Peng
- The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Jun Yuan
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Haixiong Xia
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Li Luo
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China
| | - Xijun Wu
- The Second People's Hospital of Guiyang, Medical Laboratory, Guiyang, Guizhou Province, China.
| |
Collapse
|
13
|
Mahaling B, Low SWY, Ch S, Addi UR, Ahmad B, Connor TB, Mohan RR, Biswas S, Chaurasia SS. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023; 15:2005. [PMID: 37514191 PMCID: PMC10383092 DOI: 10.3390/pharmaceutics15072005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shermaine W Y Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Utkarsh R Addi
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thomas B Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- One-Health One-Medicine Ophthalmology and Vision Research Program, University of Missouri, Columbia, MO 65211, USA
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
14
|
Park JH, Lee K, Park CY. Effect of Magnetic Microparticles on Cultivated Human Corneal Endothelial Cells. Transl Vis Sci Technol 2023; 12:14. [PMID: 36757343 PMCID: PMC9924430 DOI: 10.1167/tvst.12.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Purpose To investigate effects of magnetic microparticles on movement of magnet controlled human corneal endothelial cells (HCECs). Methods Immortalized HCEC line (B4G12) and primary culture of HCECs were exposed to two commercially available magnetic micro- or nanoparticles, SiMAG (average size 100 nm) and fluidMAG (average size <1000 nm). Cell viability assays and reactive oxygen species production assays were performed. Cellular structural changes, intracellular distribution of microparticles, and expression levels of proteins related to cellular survival were analyzed. Ex vivo human corneas were exposed to microparticles to further evaluate their effects. Magnetic particle-laden HCECs were cultured under the influence of a neodymium magnet. Results No significant decrease of viability was found in HCECs after exposure to both magnetic particles at concentrations up to 20 µg/mL for 48 hours. However, high concentrations (40 µg/mL and 80 µg/mL) of SiMAG and FluidMAG significantly decreased viability in immortalized HCECs, and only 80 µg/mL of SiMAG and FluidMAG decreased viability in primary HCECs after 48 hours of exposure. There was relative stability of viability at various concentrations of magnetic particles, despite a dose-dependent increase of reactive oxygen species, lactate dehydrogenase, and markers of apoptosis. Ex vivo human cornea study further revealed that exposure to 20 µg/mL of SiMAG and fluidMAG for 72 hours was tolerable. Endocytosed magnetic particles were mainly localized in the cytoplasm. The application of a magnetic field during cell culture successfully demonstrated that magnetic particle-loaded HCECs moved toward the magnet area and that the population density of HCECs was significantly increased. Conclusions We verified short-term effects of SiMAG and fluidMAG on HCECs and their ability to control movement of HCECs by an external magnetic field. Translational Relevance A technology of applying magnetic particles to a human corneal endothelial cell culture and controlling the movement of cells to a desired area using a magnetic field could be used to increase cell density during cell culture or improve the localization of corneal endothelial cells injected into the anterior chamber to the back of the cornea.
Collapse
Affiliation(s)
- Joo-Hee Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Kangmin Lee
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, Goyang, South Korea
| |
Collapse
|
15
|
Mai Q, Wang Z, Chen Q, Zhang J, Zhang D, Li C, Jiang Q. Magnetically empowered bone marrow cells as a micro-living motor can improve early hematopoietic reconstitution. Cytotherapy 2023; 25:162-173. [PMID: 36503865 DOI: 10.1016/j.jcyt.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS Bone marrow-derived hematopoietic stem cell transplantation/hematopoietic progenitor cell transplantation (HSCT/HPCT) is widely used and one of the most useful treatments in clinical practice. However, the homing rate of hematopoietic stem cells/hematopoietic progenitor cells (HSCs/HPCs) by routine cell transfusion is quite low, influencing hematopoietic reconstitution after HSCT/HPCT. METHODS The authors developed a micro-living motor (MLM) strategy to increase the number of magnetically empowered bone marrow cells (ME-BMCs) homing to the bone marrow of recipient mice. RESULTS In the in vitro study, migration and retention of ME-BMCs were greatly improved in comparison with non-magnetized bone marrow cells, and the biological characteristics of ME-BMCs were well maintained. Differentially expressed gene analysis indicated that ME-BMCs might function through gene regulation. In the in vivo study, faster hematopoietic reconstitution was observed in ME-BMC mice, which demonstrated a better survival rate and milder symptoms of acute graft-versus-host disease after transplantation of allogeneic ME-BMCs. CONCLUSIONS This study demonstrated that ME-BMCs serving as MLMs facilitated the homing of HSCs/HPCs and eventually contributed to earlier hematopoietic reconstitution in recipients. These data might provide useful information for other kinds of cell therapies.
Collapse
Affiliation(s)
- Qiusui Mai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhengyuan Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quanfeng Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jialu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingyi Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Qianli Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Ma X, Luan Z, Li J. Inorganic Nanoparticles-Based Systems in Biomedical Applications of Stem Cells: Opportunities and Challenges. Int J Nanomedicine 2023; 18:143-182. [PMID: 36643862 PMCID: PMC9833678 DOI: 10.2147/ijn.s384343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Stem cells (SC) are a kind of cells with self renewing ability and multipotent differentiation, which can differentiate into many types of cells such as osteoblast, chondrocyte, neurocyte to treat disease like osteoporosis, osteoarthritis and Alzheimer's disease. Despite the development of novel methods for inducing cell differentiation, the inefficiency and complexity of controlling differentiation of stem cells remain a serious challenge, which necessary to develop a new and alternative approach for effectively controlling the direction of stem cell differentiation in vitro and in vivo in stem cells therapy. Recent advancement in nanotechnology for developing a new class of inorganic nanoparticles that exhibit unique chemical and physical properties holds promise for the treatment of stem cells. Over the last decade, inorganic nanoparticle-based approaches against stem cells have been directed toward developing nanoparticles with drug delivery, or utilizing nanoparticles for controlled cell behaviors, and applying nanoparticles for inducing cell differentiation directly. In addition, a strategy to functionalize inorganic nanoparticles as a nanoprobe towards enhanced penetration through near-infrared light or nuclear magnetic resonance has been receiving considerable interest by means of long-term tracking stem cell in vivo. This review summarizes and highlights the recent development of these inorganic nanoparticle-based approaches as potential therapeutics for controlling differentiation of stem cells and so on for stem cell therapy, along with current opportunities and challenges that need to be overcome for their successful clinical translation.
Collapse
Affiliation(s)
- Xulu Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Zhao Luan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China
| | - Jinming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, People’s Republic of China,Correspondence: Jinming Li, Tel +86 20 85211438, Email
| |
Collapse
|
17
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
18
|
Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology 2022; 20:361. [PMID: 35918688 PMCID: PMC9344723 DOI: 10.1186/s12951-022-01567-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Ocular drug delivery is one of the most challenging endeavors among the various available drug delivery systems. Despite having suitable drugs for the treatment of ophthalmic disease, we have not yet succeeded in achieving a proper drug delivery approach with the least adverse effects. Nanotechnology offers great opportunities to overwhelm the restrictions of common ocular delivery systems, including low therapeutic effects and adverse effects because of invasive surgery or systemic exposure. The present review is dedicated to highlighting and updating the recent achievements of nano-based technologies for ocular disease diagnosis and treatment. While further effort remains, the progress illustrated here might pave the way to new and very useful ocular nanomedicines.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
20
|
Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther 2022; 13:135. [PMID: 35365206 PMCID: PMC8972776 DOI: 10.1186/s13287-022-02808-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are introduced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in cell therapy and provides a comprehensive view.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China. .,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
21
|
Yao X, Ma Y, Zhou W, Liao Y, Jiang Z, Lin J, He Q, Wu H, Wei W, Wang X, Björklund M, Ouyang H. In-cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioeng Transl Med 2022; 7:e10250. [PMID: 35111950 PMCID: PMC8780934 DOI: 10.1002/btm2.10250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/15/2022] Open
Abstract
Stem cell therapies are unsatisfactory due to poor cell survival and engraftment. Stem cell used for therapy must be properly "tuned" for a harsh in vivo environment. Herein, we report that transfer of exogenous mitochondria (mito) to adipose-derived mesenchymal stem cells (ADSCs) can effectively boost their energy levels, enabling efficient cell engraftment. Importantly, the entire process of exogeneous mitochondrial endocytosis is captured by high-content live-cell imaging. Mitochondrial transfer leads to acutely enhanced bioenergetics, with nearly 17% of higher adenosine 5'-triphosphate (ATP) levels in ADSCs treated with high mitochondrial dosage and further results in altered secretome profiles of ADSCs. Mitochondrial transfer also induced the expression of 334 mRNAs in ADSCs, which are mainly linked to signaling pathways associated with DNA replication and cell division. We hypothesize that increase in ATP and cyclin-dependent kinase 1 and 2 expression might be responsible for promoting enhanced proliferation, migration, and differentiation of ADSCs in vitro. More importantly, mito-transferred ADSCs display prolonged cell survival, engraftment and horizontal transfer of exogenous mitochondria to surrounding cells in a full-thickness skin defect rat model with improved skin repair compared with nontreated ADSCs. These results demonstrate that intracellular mitochondrial transplantation is a promising strategy to engineer stem cells for tissue regeneration.
Collapse
Affiliation(s)
- Xudong Yao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Yuanzhu Ma
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Wenyan Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Zongsheng Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Junxin Lin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Qiulin He
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Hongwei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Wei Wei
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Mikael Björklund
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute), Zhejiang UniversityHainingChina
- Department of Sports MedicineZhejiang University School of MedicineHangzhouChina
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
22
|
Mundy DC, Goldberg JL. Nanoparticles as Cell Tracking Agents in Human Ocular Cell Transplantation Therapy. CURRENT OPHTHALMOLOGY REPORTS 2021. [DOI: 10.1007/s40135-021-00275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Bassetto M, Ajoy D, Poulhes F, Obringer C, Walter A, Messadeq N, Sadeghi A, Puranen J, Ruponen M, Kettunen M, Toropainen E, Urtti A, Dollfus H, Zelphati O, Marion V. Magnetically Assisted Drug Delivery of Topical Eye Drops Maintains Retinal Function In Vivo in Mice. Pharmaceutics 2021; 13:pharmaceutics13101650. [PMID: 34683941 PMCID: PMC8540400 DOI: 10.3390/pharmaceutics13101650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023] Open
Abstract
Barded-Biedl syndrome (BBS) is a rare genetic disorder with an unmet medical need for retinal degeneration. Small-molecule drugs were previously identified to slow down the apoptosis of photoreceptors in BBS mouse models. Clinical translation was not practical due to the necessity of repetitive invasive intravitreal injections for pediatric populations. Non-invasive methods of retinal drug targeting are a prerequisite for acceptable adaptation to the targeted pediatric patient population. Here, we present the development and functional testing of a non-invasive, topical, magnetically assisted delivery system, harnessing the ability of magnetic nanoparticles (MNPs) to cargo two drugs (guanabenz and valproic acid) with anti-unfolded protein response (UPR) properties towards the retina. Using magnetic resonance imaging (MRI), we showed the MNPs' presence in the retina of Bbs wild-type mice, and their photoreceptor localization was validated using transmission electron microscopy (TEM). Subsequent electroretinogram recordings (ERGs) demonstrated that we achieved beneficial biological effects with the magnetically assisted treatment translating the maintained light detection in Bbs-/- mice (KO). To our knowledge, this is the first demonstration of efficient magnetic drug targeting in the photoreceptors in vivo after topical administration. This non-invasive, needle-free technology expands the application of SMDs for the treatment of a vast spectrum of retinal degenerations and other ocular diseases.
Collapse
Affiliation(s)
- Marco Bassetto
- OZ Biosciences, Parc Scientifique de Luminy, Case 922, Zone Entreprise, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (A.W.)
| | - Daniel Ajoy
- INSERM, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, UMRS_U1112, Fédération de Médicine Translationelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France; (D.A.); (C.O.); (H.D.)
| | - Florent Poulhes
- OZ Biosciences, Parc Scientifique de Luminy, Case 922, Zone Entreprise, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (A.W.)
| | - Cathy Obringer
- INSERM, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, UMRS_U1112, Fédération de Médicine Translationelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France; (D.A.); (C.O.); (H.D.)
| | - Aurelie Walter
- OZ Biosciences, Parc Scientifique de Luminy, Case 922, Zone Entreprise, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (A.W.)
| | - Nadia Messadeq
- INSERM, Institute of Genetics and Molecular and Cellular Biology (IGBMC), 67640 Illkrich-Graffenstaden, France;
| | - Amir Sadeghi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Jooseppi Puranen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Mikko Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70150 Kuopio, Finland;
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (M.R.); (E.T.); (A.U.)
| | - Hélène Dollfus
- INSERM, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, UMRS_U1112, Fédération de Médicine Translationelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France; (D.A.); (C.O.); (H.D.)
- Laboratoire de Génétique Médicale, UMRS_U1112, Institut de Génétique Médicale d’Alsace, Fédération de Médicine Translationelle de Strasbourg, Hopiaux Universitaires de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France
| | - Olivier Zelphati
- OZ Biosciences, Parc Scientifique de Luminy, Case 922, Zone Entreprise, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (A.W.)
- Correspondence: (O.Z.); or (V.M.)
| | - Vincent Marion
- INSERM, Ciliopathies Modeling and Associated Therapies Group, Laboratoire de Génétique Médicale, UMRS_U1112, Fédération de Médicine Translationelle de Strasbourg, Université de Strasbourg, 67085 Strasbourg, France; (D.A.); (C.O.); (H.D.)
- ALMS Therapeutics, Parc d’Innovation, 650 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
- Correspondence: (O.Z.); or (V.M.)
| |
Collapse
|
24
|
Application of "Magnetic Anchors" to Align Collagen Fibres for Axonal Guidance. Gels 2021; 7:gels7040154. [PMID: 34698174 PMCID: PMC8544430 DOI: 10.3390/gels7040154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
The use of neural scaffolds with a highly defined microarchitecture, fabricated with standard techniques such as electrospinning and microfluidic spinning, requires surgery for their application to the site of injury. To circumvent the risk associated with aciurgy, new strategies for treatment are sought. This has led to an increase in the quantity of research into injectable hydrogels in recent years. However, little research has been conducted into controlling the building blocks within these injectable hydrogels to produce similar scaffolds with a highly defined microarchitecture. “Magnetic particle string” and biomimetic amphiphile self-assembly are some of the methods currently available to achieve this purpose. Here, we developed a “magnetic anchor” method to improve the orientation of collagen fibres within injectable 3D scaffolds. This procedure uses GMNP (gold magnetic nanoparticle) “anchors” capped with CMPs (collagen mimetic peptides) that “chain” them to collagen fibres. Through the application of a magnetic field during the gelling process, these collagen fibres are aligned accordingly. It was shown in this study that the application of CMP functionalised GMNPs in a magnetic field significantly improves the alignment of the collagen fibres, which, in turn, improves the orientation of PC12 neurites. The growth of these neurite extensions, which were shown to be significantly longer, was also improved. The PC12 cells grown in collagen scaffolds fabricated using the “magnetic anchor” method shows comparable cellular viability to that of the untreated collagen scaffolds. This capability of remote control of the alignment of fibres within injectable collagen scaffolds opens up new strategic avenues in the research for treating debilitating neural tissue pathologies.
Collapse
|
25
|
Schneider-Futschik EK, Reyes-Ortega F. Advantages and Disadvantages of Using Magnetic Nanoparticles for the Treatment of Complicated Ocular Disorders. Pharmaceutics 2021; 13:1157. [PMID: 34452117 PMCID: PMC8400382 DOI: 10.3390/pharmaceutics13081157] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023] Open
Abstract
Nanomaterials provide enormous opportunities to overcome the limitations of conventional ocular delivery systems, such as low therapeutic efficacy, side effects due to the systemic exposure, or invasive surgery. Apart from the more common ocular disorders, there are some genetic diseases, such as cystic fibrosis, that develop ocular disorders as secondary effects as long as the disease progresses. These patients are more difficult to be pharmacologically treated using conventional drug routes (topically, systemic), since specific pharmacological formulations can be incompatible, display increased toxicity, or their therapeutic efficacy decreases with the administration of different kind of chemical molecules. Magnetic nanoparticles can be used as potent drug carriers and magnetic hyperthermia agents due to their response to an external magnetic field. Drugs can be concentrated in the target point, limiting the damage to other tissues. The other advantage of these magnetic nanoparticles is that they can act as magnetic resonance imaging agents, allowing the detection of the exact location of the disease. However, there are some drawbacks related to their use in drug delivery, such as the limitation to maintain efficacy in the target organ once the magnetic field is removed from outside. Another disadvantage is the difficulty in maintaining the therapeutic action in three dimensions inside the human body. This review summarizes all the application possibilities related to magnetic nanoparticles in ocular diseases.
Collapse
Affiliation(s)
- Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Felisa Reyes-Ortega
- Visual Quality Research Group, Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital and University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
26
|
Nano-Biomaterials for Retinal Regeneration. NANOMATERIALS 2021; 11:nano11081880. [PMID: 34443710 PMCID: PMC8399153 DOI: 10.3390/nano11081880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the prominent segments of biological sciences that will be improved by nanostructure innovations. The present review was written to present a comprehensive insight into various emerging nanomaterials, such as nanoparticles, nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering and regeneration. Furthermore, the current status, future perspectives, and challenges of nanotechnology in tracking cells or nanostructures in the eye and their use in modified regenerative ophthalmology mechanisms have also been proposed and discussed in detail. In the present review, various research findings on the use of nano-biomaterials in retinal regeneration and retinal remediation are presented, and these findings might be useful for future clinical applications.
Collapse
|
27
|
Bassetto M, Sen M, Poulhes F, Arango-Gonzalez B, Bonvin E, Sapet C, Ueffing M, Zelphati O. New Method for Efficient siRNA Delivery in Retina Explants: Reverse Magnetofection. Bioconjug Chem 2021; 32:1078-1093. [PMID: 34081855 DOI: 10.1021/acs.bioconjchem.1c00132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevalence of retinal disorders associated with visual impairment and blindness is increasing worldwide, while most of them remain without effective treatment. Pharmacological and molecular therapy development is hampered by the lack of effective drug delivery into the posterior segment of the eye. Among molecular approaches, RNA-interference (RNAi) features strong advantages, yet delivering it to the inner layer of the retina appears extremely challenging. To address this, we developed an original magnetic nanoparticles (MNPs)-based transfection method that allows the efficient delivery of siRNA in all retinal layers of rat adult retinas through magnetic targeting. To establish delivery of RNAi throughout the retina, we have chosen organotypic retinal explants as an ex vivo model and for future high content screening of molecular drugs. Conversely to classic Magnetofection, and similar to conditions in the posterior chamber of the eye, our methods allows attraction of siRNA complexed to MNPs from the culture media into the explant. Our method termed "Reverse Magnetofection" provides a novel and nontoxic strategy for RNAi-based molecular as well as gene therapy in the retina that can be transferred to a wide variety of organ explants.
Collapse
Affiliation(s)
- Marco Bassetto
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| | - Merve Sen
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Florent Poulhes
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Elise Bonvin
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| | - Cedric Sapet
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Olivier Zelphati
- OZ Biosciences, Parc scientifique de Luminy, Case 922, zone entreprise, 13288 Marseille, France
| |
Collapse
|
28
|
Ahn YJ, Yun WS, Choi JS, Kim WC, Lee SH, Park DJ, Park JE, Key J, Seo YJ. Biodistribution of poly clustered superparamagnetic iron oxide nanoparticle labeled mesenchymal stem cells in aminoglycoside induced ototoxic mouse model. Biomed Eng Lett 2021; 11:39-53. [PMID: 33747602 DOI: 10.1007/s13534-020-00181-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, application of stem cell therapy in regenerative medicine has become an active field of study. Mesenchymal stem cells (MSCs) are known to have a strong ability for homing. MSCs labeled with superparamagnetic iron oxide nanoparticles (SPIONs) exhibit enhanced homing due to magnetic attraction. We have designed a SPION that has a cluster core of iron oxide-based nanoparticles coated with PLGA-Cy5.5. We optimized the nanoparticles for internalization to enable the transport of PCS nanoparticles through endocytosis into MSCs. The migration of magnetized MSCs with SPION by static magnets was seen in vitro. The auditory hair cells do not regenerate once damaged, ototoxic mouse model was generated by administration of kanamycin and furosemide. SPION labeled MSC's were administered through different injection routes in the ototoxic animal model. As result, the intratympanic administration group with magnet had the highest number of cells in the brain followed by the liver, cochlea, and kidney as compared to those in the control groups. The synthesized PCS (poly clustered superparamagnetic iron oxide) nanoparticles, together with MSCs, by magnetic attraction, could synergistically enhance stem cell delivery. The poly clustered superparamagnetic iron oxide nanoparticle labeled in the mesenchymal stem cells have increased the efficacy of homing of the MSC's to the target area by synergetic effect of magnetic attraction and chemotaxis (SDF-1/CXCR4 axis). This technique allows delivery of the stem cells to the areas with limited vasculatures. The nanoparticle in the biomedicine allows drug delivery, thus, the combination of nanomedicince together with the regenerative medicine will provide highly effective therapy.
Collapse
Affiliation(s)
- Ye Ji Ahn
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Wan Su Yun
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Jin Sil Choi
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Woo Cheol Kim
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Su Hoon Lee
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Dong Jun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Jeong Eun Park
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon- do 26493 South Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, 26426 South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do 26426 South Korea
| |
Collapse
|
29
|
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM, Segovia JC, Zapata AG. The Current Status of Mesenchymal Stromal Cells: Controversies, Unresolved Issues and Some Promising Solutions to Improve Their Therapeutic Efficacy. Front Cell Dev Biol 2021; 9:650664. [PMID: 33796536 PMCID: PMC8007911 DOI: 10.3389/fcell.2021.650664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies.
Collapse
Affiliation(s)
- David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano García-Arranz
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Rosa M Yáñez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Rosario Hervás-Salcedo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Alfonso Cortés
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Fernández-García
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Miriam Hernando-Rodríguez
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Óscar Quintana-Bustamante
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Juan A Bueren
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Damián García-Olmo
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain
| | - Jose M Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Medicine Department, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca, University of Murcia, Murcia, Spain.,Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain
| | - José C Segovia
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, Autonomous University of Madrid (UAM)), Madrid, Spain.,Centre for Cytometry and Fluorescence Microscopy, Complutense University, Madrid, Spain
| | - Agustín G Zapata
- Spanish Network of Cell Therapy (TerCel), Instituto de Salud Carlos III, Madrid, Spain.,Department of Cell Biology, Complutense University, Madrid, Spain
| |
Collapse
|
30
|
Yeo EF, Markides H, Schade AT, Studd AJ, Oliver JM, Waters SL, El Haj AJ. Experimental and mathematical modelling of magnetically labelled mesenchymal stromal cell delivery. J R Soc Interface 2021; 18:20200558. [PMID: 33593212 DOI: 10.1098/rsif.2020.0558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A key challenge for stem cell therapies is the delivery of therapeutic cells to the repair site. Magnetic targeting has been proposed as a platform for defining clinical sites of delivery more effectively. In this paper, we use a combined in vitro experimental and mathematical modelling approach to explore the magnetic targeting of mesenchymal stromal cells (MSCs) labelled with magnetic nanoparticles using an external magnet. This study aims to (i) demonstrate the potential of magnetic tagging for MSC delivery, (ii) examine the effect of red blood cells (RBCs) on MSC capture efficacy and (iii) highlight how mathematical models can provide both insight into mechanics of therapy and predictions about cell targeting in vivo. In vitro MSCs are cultured with magnetic nanoparticles and circulated with RBCs over an external magnet. Cell capture efficacy is measured for varying magnetic field strengths and RBC percentages. We use a 2D continuum mathematical model to represent the flow of magnetically tagged MSCs with RBCs. Numerical simulations demonstrate qualitative agreement with experimental results showing better capture with stronger magnetic fields and lower levels of RBCs. We additionally exploit the mathematical model to make hypotheses about the role of extravasation and identify future in vitro experiments to quantify this effect.
Collapse
Affiliation(s)
- E F Yeo
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK
| | - H Markides
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK.,Institute of Science and Technology in Medicine, Keele University, Keele, UK
| | - A T Schade
- Institute of Science and Technology in Medicine, Keele University, Keele, UK
| | - A J Studd
- Institute of Science and Technology in Medicine, Keele University, Keele, UK
| | - J M Oliver
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK
| | - S L Waters
- Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK
| | - A J El Haj
- Healthcare Technologies Institute, University of Birmingham, Birmingham, UK.,Institute of Science and Technology in Medicine, Keele University, Keele, UK
| |
Collapse
|
31
|
Sen M, Bassetto M, Poulhes F, Zelphati O, Ueffing M, Arango-Gonzalez B. Efficient Ocular Delivery of VCP siRNA via Reverse Magnetofection in RHO P23H Rodent Retina Explants. Pharmaceutics 2021; 13:pharmaceutics13020225. [PMID: 33562020 PMCID: PMC7914601 DOI: 10.3390/pharmaceutics13020225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The use of synthetic RNA for research purposes as well as RNA-based therapy and vaccination has gained increasing importance. Given the anatomical seclusion of the eye, small interfering RNA (siRNA)-induced gene silencing bears great potential for targeted reduction of pathological gene expression that may allow rational treatment of chronic eye diseases in the future. However, there is yet an unmet need for techniques providing safe and efficient siRNA delivery to the retina. We used magnetic nanoparticles (MNPs) and magnetic force (Reverse Magnetofection) to deliver siRNA/MNP complexes into retinal explant tissue, targeting valosin-containing protein (VCP) previously established as a potential therapeutic target for autosomal dominant retinitis pigmentosa (adRP). Safe and efficient delivery of VCP siRNA was achieved into all retinal cell layers of retinal explants from the RHO P23H rat, a rodent model for adRP. No toxicity or microglial activation was observed. VCP silencing led to a significant decrease of retinal degeneration. Reverse Magnetofection thus offers an effective method to deliver siRNA into retinal tissue. Used in combination with retinal organotypic explants, it can provide an efficient and reliable preclinical test platform of RNA-based therapy approaches for ocular diseases.
Collapse
Affiliation(s)
- Merve Sen
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Graduate Training Centre of Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Marco Bassetto
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Florent Poulhes
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Olivier Zelphati
- OZ Biosciences, Parc Scientifique de Luminy, CEDEX 9, 13288 Marseille, France; (M.B.); (F.P.); (O.Z.)
| | - Marius Ueffing
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Correspondence: (M.U.); (B.A.-G.)
| | - Blanca Arango-Gonzalez
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany;
- Correspondence: (M.U.); (B.A.-G.)
| |
Collapse
|
32
|
Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, Lobo GP, Valapala M, Kerur N, Passaglia CL, Mohapatra SS, Biswal MR. Emerging Nano-Formulations and Nanomedicines Applications for Ocular Drug Delivery. NANOMATERIALS 2021; 11:nano11010173. [PMID: 33445545 PMCID: PMC7828028 DOI: 10.3390/nano11010173] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Ocular diseases can deteriorate vision to the point of blindness and thus can have a major impact on the daily life of an individual. Conventional therapies are unable to provide absolute therapy for all ocular diseases due to the several limitations during drug delivery across the blood-retinal barrier, making it a major clinical challenge. With recent developments, the vast number of publications undergird the need for nanotechnology-based drug delivery systems in treating ocular diseases. The tool of nanotechnology provides several essential advantages, including sustained drug release and specific tissue targeting. Additionally, comprehensive in vitro and in vivo studies have suggested a better uptake of nanoparticles across ocular barriers. Nanoparticles can overcome the blood-retinal barrier and consequently increase ocular penetration and improve the bioavailability of the drug. In this review, we aim to summarize the development of organic and inorganic nanoparticles for ophthalmic applications. We highlight the potential nanoformulations in clinical trials as well as the products that have become a commercial reality.
Collapse
Affiliation(s)
- Dawin Khiev
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Zeinab A. Mohamed
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Riddhi Vichare
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
| | - Ryan Paulson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
| | - Sofia Bhatia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
| | - Glenn P. Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Mallika Valapala
- School of Optometry, Indiana University, Bloomington, IN 47401, USA;
| | - Nagaraj Kerur
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | | | - Shyam S. Mohapatra
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
- James A. Haley Veterans’ Hospital, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Manas R. Biswal
- MSPN Graduate Programs, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (D.K.); (Z.A.M.); (R.V.); (S.S.M.)
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (R.P.); (S.B.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-8333
| |
Collapse
|
33
|
Zahn D, Klein K, Radon P, Berkov D, Erokhin S, Nagel E, Eichhorn M, Wiekhorst F, Dutz S. Investigation of magnetically driven passage of magnetic nanoparticles through eye tissues for magnetic drug targeting. NANOTECHNOLOGY 2020; 31:495101. [PMID: 32946423 DOI: 10.1088/1361-6528/abb0b4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This paper elucidates the feasibility of magnetic drug targeting to the eye by using magnetic nanoparticles (MNPs) to which pharmaceutical drugs can be linked. Numerical simulations revealed that a magnetic field gradient of 20 T m-1 seems to be promising for dragging magnetic multicore nanoparticles of about 50 nm into the eye. Thus, a targeting magnet system made of superconducting magnets with a magnetic field gradient at the eye of about 20 T m-1 was simulated. For the proof-of-concept tissue experiments presented here the required magnetic field gradient of 20 T m-1 was realized by a permanent magnet array. MNPs with an optimized multicore structure were selected for this application by evaluating their stability against agglomeration of MNPs with different coatings in water for injections, physiological sodium chloride solution and biological media such as artificial tear fluid. From these investigations, starch turned out to be the most promising coating material because of its stability in saline fluids due to its steric stabilization mechanism. To evaluate the passage of MNPs through the sclera and cornea of the eye tissues of domestic pigs (Sus scrofa domesticus), a three-dimensionally printed setup consisting of two chambers (reservoir and target chamber) separated by the eye tissue was developed. With the permanent magnet array emulating the magnetic field gradient of the superconducting setup, experiments on magnetically driven transport of the MNPs from the reservoir chamber into the target chamber via the tissue were performed. The resulting concentration of MNPs in the target chamber was determined by means of quantitative magnetic particle spectroscopy. It was found that none of the tested particles passed the cornea, but starch-coated particles could pass the sclera at a rate of about 5 ng mm-2 within 24 h. These results open the door for future magnetic drug targeting to the eye.
Collapse
Affiliation(s)
- Diana Zahn
- Institut für Biomedizinische Technik und Informatik, Technische Universität Ilmenau, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnology 2020; 18:113. [PMID: 32799868 PMCID: PMC7429707 DOI: 10.1186/s12951-020-00670-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cell (MSC)-derived exosomes (Exos) are a promising therapeutic agent for cell-free regenerative medicine. However, their poor organ-targeting ability and therapeutic efficacy have been found to critically limit their clinical applications. In the present study, we fabricated iron oxide nanoparticle (NP)-labeled exosomes (Exo + NPs) from NP-treated MSCs and evaluated their therapeutic efficacy in a clinically relevant model of skin injury. We found that the Exos could be readily internalized by human umbilical vein endothelial cells (HUVECs), and could significantly promote their proliferation, migration, and angiogenesis both in vitro and in vivo. Moreover, the protein expression of proliferative markers (Cyclin D1 and Cyclin A2), growth factors (VEGFA), and migration-related chemokines (CXCL12) was significantly upregulated after Exo treatment. Unlike the Exos prepared from untreated MSCs, the Exo + NPs contained NPs that acted as a magnet-guided navigation tool. The in vivo systemic injection of Exo + NPs with magnetic guidance significantly increased the number of Exo + NPs that accumulated at the injury site. Furthermore, these accumulated Exo + NPs significantly enhanced endothelial cell proliferation, migration, and angiogenic tubule formation in vivo; moreover, they reduced scar formation and increased CK19, PCNA, and collagen expression in vivo. Collectively, these findings confirm the development of therapeutically efficacious extracellular nanovesicles and demonstrate their feasibility in cutaneous wound repair.
Collapse
|
35
|
Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM. Shattering barriers toward clinically meaningful MSC therapies. SCIENCE ADVANCES 2020; 6:eaba6884. [PMID: 32832666 PMCID: PMC7439491 DOI: 10.1126/sciadv.aba6884] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 05/11/2023]
Abstract
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Collapse
Affiliation(s)
- Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika M. J. Siren
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Deepak Bhere
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Nabeel Nissar
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael De Biasio
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Martina Heinelt
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meshael Alturki
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohanad Fallatah
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H. Alhasan
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
36
|
Amniotic membrane mesenchymal stem cells labeled by iron oxide nanoparticles exert cardioprotective effects against isoproterenol (ISO)-induced myocardial damage by targeting inflammatory MAPK/NF-κB pathway. Drug Deliv Transl Res 2020; 11:242-254. [PMID: 32441012 DOI: 10.1007/s13346-020-00788-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the present study is to investigate the protective effects of human amniotic membrane-derived mesenchymal stem cells (hAMSCs) labeled by superparamagnetic iron oxide nanoparticles (SPIONs) against isoproterenol (ISO)-induced myocardial injury in the presence and absence of a magnetic field. ISO was injected subcutaneously for 4 consecutive days to induce myocardial injury in male Wistar rats. The hAMSCs were incubated with 100 μg/ml SPIONs and injected to rats in magnet-dependent and magnet-independent groups via the tail vein. The size and shape of nanoparticles were determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Prussian blue staining was used to determine cell uptake of nanoparticles. Myocardial fibrosis, heart function, characterization of hAMSCs, and histopathological changes were determined using Masson's trichrome, echocardiography, flow cytometry, and H&E staining, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to the expression pro-inflammatory cytokines. Immunohistochemistry assay was used to determine the expression of nuclear factor-κB (NF-κB) and the Ras/mitogen-activated protein kinase (MAPK). SPION-labeled MSCs in the presence of magnetic field significantly improved cardiac function and reduced fibrosis and tissue damage by suppressing inflammation in a NF-κB/MAPK-dependent mechanism (p < 0. 05). Collectively, our findings demonstrate that SPION-labeled MSCs in the presence of magnetic field can be a good treatment option to reduce inflammation following myocardial injury. Graphical abstract.
Collapse
|
37
|
Wang Y, Du S, Liu T, Ren J, Zhang J, Xu H, Zhang H, Liu Y, Lu L. Schwann Cell Migration through Magnetic Actuation Mediated by Fluorescent-Magnetic Bifunctional Fe 3O 4·Rhodamine 6G@Polydopamine Superparticles. ACS Chem Neurosci 2020; 11:1359-1370. [PMID: 32233457 DOI: 10.1021/acschemneuro.0c00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerve injuries always cause dysfunction but without ideal strategies to assist the treatment and recovery successfully. The primary way to repair the peripheral nerve injuries is to bridge the lesions by promoting axon regeneration. Schwann cells acting as neuroglial cells play a pivotal role during axonal regeneration. The orderly and organized migration of Schwann cells is beneficial for the extracellular matrix connection and Büngner bands formation, which greatly promote the regeneration of axons by offering mechanical support and growth factors. Thus, the use of Schwann cells as therapeutic cells offers us an attractive method for neurorepair therapies, and the ability to direct and manipulate Schwann cell migration and distribution is of great significance in the field of cell therapy in regards to the repair and regeneration of the peripheral nerve. Herein, we design and characterize a type of novel fluorescent-magnetic bifunctional Fe3O4·Rhodamine 6G (R6G)@polydopamine (PDA) superparticles (SPs) and systematically study the biological behaviors of Fe3O4·R6G@PDA SP uptake by Schwann cells. The results demonstrate that our tailor-made Fe3O4·R6G@PDA SPs can be endocytosed by Schwann cells and then highly magnetize Schwann cells by virtue of their excellent biocompatibility. Furthermore, remote-controlling and noninvasive magnetic targeting migration of Schwann cells can be achieved on the basis of the high magnetic responsiveness of Fe3O4·R6G@PDA SPs. At the end, gene expression profile analysis is performed to explore the mechanism of Schwann cells' magnetic targeting migration. The results indicate that cells can sense external magnetic mechanical forces and transduce into intracellular biochemical signaling, which stimulate gene expression associated with Schwann cell migration.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Shulin Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Ting Liu
- Departments of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Jingyan Ren
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Jiayi Zhang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Hao Xu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P. R. China
| |
Collapse
|
38
|
Ahn YJ, Kong TH, Choi JS, Yun WS, Key J, Seo YJ. Strategies to enhance efficacy of SPION-labeled stem cell homing by magnetic attraction: a systemic review with meta-analysis. Int J Nanomedicine 2019; 14:4849-4866. [PMID: 31308662 PMCID: PMC6613362 DOI: 10.2147/ijn.s204910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Stem cells possess a promising potential in the clinical field. The application and effective delivery of stem cells to the desired target organ or site of injury plays an important role. This review describes strategies on understanding the effective delivery of stem cells labeled with superparamagnetic iron oxide nanoparticles (SPION) using an external magnet to enhance stem cell migration in vivo and in vitro. Fourteen total publications among 174 articles were selected. Stem cell type, SPION characteristics, labeling time, and magnetic force in vivo are considered important factors affecting the effective delivery of stem cells to the homing site. Most papers reported that the efficiency was increased when magnet is applied compared to those without. Ten studies analyzed the homing competency of SPION-labeled MSCs in vitro by observing the migration of the cell toward the external magnet. In cell-based experiments, the mechanism of magnetic attraction, the kind of nanoparticles, and various stem cells were studied well. Meta-analysis has shown the mean size of nanoparticles and degree of recovery or regeneration of damaged target organs upon in vivo studies. This strategy may provide a guideline for designing studies involving stem cell homing and further expand stem cell.
Collapse
Affiliation(s)
- Ye Ji Ahn
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Tae Hoon Kong
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jin Sil Choi
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Wan Su Yun
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Young Joon Seo
- Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, South Korea.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, South Korea
| |
Collapse
|
39
|
Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 2019; 15:421-438. [PMID: 31121468 PMCID: PMC6529790 DOI: 10.1016/j.isci.2019.05.004] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their therapeutic potential in regenerative medicine, owing to their ability to home damaged tissue and serve as a reservoir of growth factors and regenerative molecules. As such, clinical applications of MSCs are reliant on these cells successfully migrating to the desired tissue following their administration. Unfortunately, MSC homing is inefficient, with only a small percentage of cells reaching the target tissue following systemic administration. This attrition represents a major bottleneck in realizing the full therapeutic potential of MSC-based therapies. Accordingly, a variety of strategies have been employed in the hope of improving this process. Here, we review the molecular mechanisms underlying MSC homing, based on a multistep model involving (1) initial tethering by selectins, (2) activation by cytokines, (3) arrest by integrins, (4) diapedesis or transmigration using matrix remodelers, and (5) extravascular migration toward chemokine gradients. We then review the various strategies that have been investigated for improving MSC homing, including genetic modification, cell surface engineering, in vitro priming of MSCs, and in particular, ultrasound techniques, which have recently gained significant interest. Contextualizing these strategies within the multistep homing model emphasizes that our ability to optimize this process hinges on our understanding of its molecular mechanisms. Moving forward, it is only with a combined effort of basic biology and translational work that the potential of MSC-based therapies can be realized.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA.
| |
Collapse
|
40
|
Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury. Neurochem Res 2019; 45:171-179. [DOI: 10.1007/s11064-019-02808-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/23/2022]
|
41
|
Magnetically Assisted Control of Stem Cells Applied in 2D, 3D and In Situ Models of Cell Migration. Molecules 2019; 24:molecules24081563. [PMID: 31010261 PMCID: PMC6515403 DOI: 10.3390/molecules24081563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/19/2022] Open
Abstract
The success of cell therapy approaches is greatly dependent on the ability to precisely deliver and monitor transplanted stem cell grafts at treated sites. Iron oxide particles, traditionally used in vivo for magnetic resonance imaging (MRI), have been shown to also represent a safe and efficient in vitro labelling agent for mesenchymal stem cells (MSCs). Here, stem cells were labelled with magnetic particles, and their resulting response to magnetic forces was studied using 2D and 3D models. Labelled cells exhibited magnetic responsiveness, which promoted localised retention and patterned cell seeding when exposed to magnet arrangements in vitro. Directed migration was observed in 2D culture when adherent cells were exposed to a magnetic field, and also when cells were seeded into a 3D gel. Finally, a model of cell injection into the rodent leg was used to test the enhanced localised retention of labelled stem cells when applying magnetic forces, using whole body imaging to confirm the potential use of magnetic particles in strategies seeking to better control cell distribution for in vivo cell delivery.
Collapse
|
42
|
Noorwali A, Faidah M, Ahmed N, Bima A. Tracking iron oxide labelled mesenchymal stem cells(MSCs) using magnetic resonance imaging (MRI) in a rat model of hepatic cirrhosis. Bioinformation 2019; 15:1-10. [PMID: 31359992 PMCID: PMC6651036 DOI: 10.6026/97320630015001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023] Open
Abstract
Homing and tumor attenuation potential of BM-MSCs labelled with superparamagnetic iron-oxide nanoparticles (SPIONs) in a rat model of hepatic cirrhosis was evaluated. Rat BM-MSCs were derived, characterized and labelled with SPIONs (200 nm; 25 mg Fe/ml). Hepatic cirrhosis was induced in Wistar rats (n=30; 10/group) with carbon tetrachloride (CCl4; 0.3 mL/kg body weight) injected twice a week for 12 weeks. Group-I was administered vehicle (castor-oil) alone; Group-II received two doses of unlabelled BM-MSCs (3x106 cells) and Group-III received two doses of SPIONs labelled BM-MSCs (3x106 cells) via tail vein injection (0.5 ml) at weekly intervals. All animals were sacrificed after two weeks for histological, radiological and biochemical analysis. Derived BM-MSCs demonstrated MSCs related CD markers. Histology confirmed induction of hepatic cirrhosis with CCL4. Levels of alanine-aminotransferase, aspartate-aminotransferase,alkaline-phosphatase and gamma glutamyl-transferase returned to normal levels following treatment with BM-MSCs. Uptake and homing of SPIONs labelled BM-MSCs, and reduction in the size of cirrhotic nodules were confirmed using transmission electron microscopy and magnetic resonance imaging respectively. BM-MSCs reduced the pathological effects of CCL4 induced hepatic cirrhosis and labelling BMMSCs with SPIONs were non-toxic and enabled efficient tracking using non-invasive methods.
Collapse
Affiliation(s)
- Abdulwahab Noorwali
- Stem Cell Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mamdooh Faidah
- Department of Medical Laboratory,College of Health Sciences,King Abdulaziz University,Jeddah 21589 Saudi Arabia
| | - Naushad Ahmed
- Department of Radiology,King Abdulaziz University Hospital,King Abdulaziz University,Jeddah 21589, Saudi Arabia
| | - Abdulhadi Bima
- Department of Clinical Biochemistry,King Abdulaziz University Hospital,King Abdulaziz University,Jeddah 21 89,Saudi Arabia
| |
Collapse
|
43
|
The use of neodymium magnets in healthcare and their effects on health. North Clin Istanb 2019; 5:268-273. [PMID: 30688942 PMCID: PMC6323575 DOI: 10.14744/nci.2017.00483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/05/2017] [Indexed: 12/05/2022] Open
Abstract
The strong magnetic field properties of magnets have led to their use in many modern technologies, as well as in the fields of medicine and dentistry. Neodymium magnets are a powerful type of magnet that has been the subject of recent research. This review provides a brief explanation of the definition, history, and characteristics of rare earth magnets. In addition, a broad overview of results obtained in studies performed to date on the effects of magnets, and neodymium magnets in particular, on body systems, tissues, organs, diseases, and treatment is provided. Though they are used in the health sector in various diagnostic devices and as therapeutic tools, there is some potential for harmful effects, as well as the risk of accident. The research is still insufficient; however, neodymium magnets appear to hold great promise for both diagnostic and therapeutic purposes.
Collapse
|
44
|
Smolková B, Uzhytchak M, Lynnyk A, Kubinová Š, Dejneka A, Lunov O. A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers. J Funct Biomater 2018; 10:jfb10010002. [PMID: 30586923 PMCID: PMC6463085 DOI: 10.3390/jfb10010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Collapse
Affiliation(s)
- Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
45
|
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa D. Mesenchymal Stem Cell Functionalization for Enhanced Therapeutic Applications. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:55-77. [PMID: 30165783 DOI: 10.1089/ten.teb.2018.0118] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPACT STATEMENT Culture expansion of MSCs has detrimental effects on various cell characteristics and attributes (e.g., phenotypic changes and senescence), which, in addition to inherent interdonor variability, negatively impact the standardization and reproducibility of their therapeutic potential. The identification of innate distinct functional MSC subpopulations, as well as the description of ex vivo protocols aimed at maintaining phenotypes and enhancing specific functions have the potential to overcome these limitations. The incorporation of those approaches into cell-based therapy would significantly impact the field, as more reproducible clinical outcomes may be achieved.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Clara Sanjurjo-Rodriguez
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom.,4 Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña, Spain
| | - Elena Jones
- 3 Leeds Institute of Rheumatic and Musculoskeletal Disease, Saint James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Diego Correa
- 1 Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida.,2 Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
46
|
Kerans FFA, Lungaro L, Azfer A, Salter DM. The Potential of Intrinsically Magnetic Mesenchymal Stem Cells for Tissue Engineering. Int J Mol Sci 2018; 19:E3159. [PMID: 30322202 PMCID: PMC6214112 DOI: 10.3390/ijms19103159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
The magnetization of mesenchymal stem cells (MSC) has the potential to aid tissue engineering approaches by allowing tracking, targeting, and local retention of cells at the site of tissue damage. Commonly used methods for magnetizing cells include optimizing uptake and retention of superparamagnetic iron oxide nanoparticles (SPIONs). These appear to have minimal detrimental effects on the use of MSC function as assessed by in vitro assays. The cellular content of magnetic nanoparticles (MNPs) will, however, decrease with cell proliferation and the longer-term effects on MSC function are not entirely clear. An alternative approach to magnetizing MSCs involves genetic modification by transfection with one or more genes derived from Magnetospirillum magneticum AMB-1, a magnetotactic bacterium that synthesizes single-magnetic domain crystals which are incorporated into magnetosomes. MSCs with either or mms6 and mmsF genes are followed by bio-assimilated synthesis of intracytoplasmic magnetic nanoparticles which can be imaged by magnetic resonance (MR) and which have no deleterious effects on MSC proliferation, migration, or differentiation. The stable transfection of magnetosome-associated genes in MSCs promotes assimilation of magnetic nanoparticle synthesis into mammalian cells with the potential to allow MR-based cell tracking and, through external or internal magnetic targeting approaches, enhanced site-specific retention of cells for tissue engineering.
Collapse
Affiliation(s)
- Fransiscus F A Kerans
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Lisa Lungaro
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Asim Azfer
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Donald M Salter
- Centre for Genomics and Experimental Medicine, MRC IGMM, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
47
|
Naseroleslami M, Aboutaleb N, Parivar K. The effects of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in the presence of a magnetic field on attenuation of injury after heart failure. Drug Deliv Transl Res 2018; 8:1214-1225. [PMID: 30128798 DOI: 10.1007/s13346-018-0567-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Migration of stem cells after transplantation reduces their therapeutic effects. In this study, we hypothesized that superparamagnetic iron oxide nanoparticles (SPION)-labeled mesenchymal stem cells (MSCs) in the presence of magnetic field may have a capability to increase regenerative ability after heart failure (HF). A rat model of ISO (isoproterenol)-HF was established to investigate the effects of SPION-labeled MSCs on tissue regeneration in the presence and absence of magnetic field. Hydrodynamic size, shape, and formation of chemical bonds between SPION and polyethylene glycol (PEG) were measured using dynamic light scattering (DLS), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). The MRI was used to monitor SPION-labeled MSCs in vivo. Cell and tissue uptake of nanoparticles were determined by Prussian blue staining, atomic absorption spectroscopy (AAS), and inductively coupled plasma spectroscopy (ICP). Purity of the MSCs, heart function, myocardial fibrosis, and histologic damage were evaluated using flow-cytometry, echocardiography, Masson's trichrome, and H&E staining respectively. Various spectroscopic and microscopic analyses revealed that hydrodynamic size of SPION was 40 ± 2 and their shape was spherical. FTIR confirmed the presence of PEG on the surface of nanoparticles. The presence of magnetic field significantly increased cell homing. Highly purified MSCs population was detected by flow-cytometry. Using SPION-labeled MSCs in the presence of magnetic field markedly improved heart function and myocardial hypertrophy and reduced fibrosis (p < 0.05). Collectively, our results demonstrated that SPION-labeled MSCs in the presence of magnetic field might contribute to regeneration after HF.
Collapse
Affiliation(s)
- Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran university of Medical Sciences, Tehran, Iran.
- Department of Physiology, Iran university of Medical Sciences, Tehran, Iran.
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
48
|
Harrison R, Lugo Leija HA, Strohbuecker S, Crutchley J, Marsh S, Denning C, El Haj A, Sottile V. Development and validation of broad-spectrum magnetic particle labelling processes for cell therapy manufacturing. Stem Cell Res Ther 2018; 9:248. [PMID: 30257709 PMCID: PMC6158868 DOI: 10.1186/s13287-018-0968-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background Stem cells are increasingly seen as a solution for many health challenges for an ageing population. However, their potential benefits in the clinic are currently curtailed by technical challenges such as high cell dose requirements and point of care delivery, which pose sourcing and logistics challenges. Cell manufacturing solutions are currently in development to address the supply issue, and ancillary technologies such as nanoparticle-based labelling are being developed to improve stem cell delivery and enable post-treatment follow-up. Methods The application of magnetic particle (MP) labelling to potentially scalable cell manufacturing processes was investigated in a range of therapeutically relevant cells, including mesenchymal stromal cells (MSC), cardiomyocytes (CMC) and neural progenitor cells (ReN). The efficiency and the biological effect of particle labelling were analysed using fluorescent imaging and cellular assays. Results Flow cytometry and fluorescent microscopy confirmed efficient labelling of monolayer cultures. Viability was shown to be retained post labelling for all three cell types. MSC and CMC demonstrated higher tolerance to MP doses up to 100× the standard concentration. This approach was also successful for MP labelling of suspension cultures, demonstrating efficient MP uptake within 3 h, while cell viability was unaffected by this suspension labelling process. Furthermore, a procedure to enable the storing of MP-labelled cell populations to facilitate cold chain transport to the site of clinical use was investigated. When MP-labelled cells were stored in hypothermic conditions using HypoThermosol solution for 24 h, cell viability and differentiation potential were retained post storage for ReN, MSC and beating CMC. Conclusions Our results show that a generic MP labelling strategy was successfully developed for a range of clinically relevant cell populations, in both monolayer and suspension cultures. MP-labelled cell populations were able to undergo transient low-temperature storage whilst maintaining functional capacity in vitro. These results suggest that this MP labelling approach can be integrated into cell manufacturing and cold chain transport processes required for future cell therapy approaches. Electronic supplementary material The online version of this article (10.1186/s13287-018-0968-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Harrison
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Hilda Anaid Lugo Leija
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephanie Strohbuecker
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - James Crutchley
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Sarah Marsh
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alicia El Haj
- Institute for Science and Technology in Medicine-Keele University, Stoke-on-Trent, ST4 7QB, UK
| | - Virginie Sottile
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), School of Medicine, The University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
49
|
Thomas BB, Zhu D, Lin TC, Kim YC, Seiler MJ, Martinez-Camarillo JC, Lin B, Shad Y, Hinton DR, Humayun MS. A new immunodeficient retinal dystrophic rat model for transplantation studies using human-derived cells. Graefes Arch Clin Exp Ophthalmol 2018; 256:2113-2125. [PMID: 30215097 DOI: 10.1007/s00417-018-4134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA.
| | - Danhong Zhu
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tai-Chi Lin
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Young Chang Kim
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Magdalene J Seiler
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Juan Carlos Martinez-Camarillo
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Bin Lin
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Yousuf Shad
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - David R Hinton
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
50
|
Marcus M, Smith A, Maswadeh A, Shemesh Z, Zak I, Motiei M, Schori H, Margel S, Sharoni A, Shefi O. Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles. NANOMATERIALS 2018; 8:nano8090707. [PMID: 30201889 PMCID: PMC6163445 DOI: 10.3390/nano8090707] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022]
Abstract
Growth factors play an important role in nerve regeneration and repair. An attractive drug delivery strategy, termed “magnetic targeting”, aims to enhance therapeutic efficiency by directing magnetic drug carriers specifically to selected cell populations that are suitable for the nervous tissues. Here, we covalently conjugated nerve growth factor to iron oxide nanoparticles (NGF-MNPs) and used controlled magnetic fields to deliver the NGF–MNP complexes to target sites. In order to actuate the magnetic fields a modular magnetic device was designed and fabricated. PC12 cells that were plated homogenously in culture were differentiated selectively only in targeted sites out of the entire dish, restricted to areas above the magnetic “hot spots”. To examine the ability to guide the NGF-MNPs towards specific targets in vivo, we examined two model systems. First, we injected and directed magnetic carriers within the sciatic nerve. Second, we injected the MNPs intravenously and showed a significant accumulation of MNPs in mouse retina while using an external magnet that was placed next to one of the eyes. We propose a novel approach to deliver drugs selectively to injured sites, thus, to promote an effective repair with minimal systemic side effects, overcoming current challenges in regenerative therapeutics.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Alexandra Smith
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Ahmad Maswadeh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Department of Neurosurgery, Sheba Medical Center, Ramat Gan 5290002, Israel.
| | - Ziv Shemesh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Idan Zak
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Menachem Motiei
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Hadas Schori
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Shlomo Margel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Amos Sharoni
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Physics, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| |
Collapse
|