1
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
2
|
Bonsack B, Heyck M, Kingsbury C, Cozene B, Sadanandan N, Lee JY, Borlongan CV. Fast-tracking regenerative medicine for traumatic brain injury. Neural Regen Res 2020; 15:1179-1190. [PMID: 31960797 PMCID: PMC7047809 DOI: 10.4103/1673-5374.270294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/22/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury remains a global health crisis that spans all demographics, yet there exist limited treatment options that may effectively curtail its lingering symptoms. Traumatic brain injury pathology entails a progression from primary injury to inflammation-mediated secondary cell death. Sequestering this inflammation as a means of ameliorating the greater symptomology of traumatic brain injury has emerged as an attractive treatment prospect. In this review, we recapitulate and evaluate the important developments relating to regulating traumatic brain injury-induced neuroinflammation, edema, and blood-brain barrier disintegration through pharmacotherapy and stem cell transplants. Although these studies of stand-alone treatments have yielded some positive results, more therapeutic outcomes have been documented from the promising area of combined drug and stem cell therapy. Harnessing the facilitatory properties of certain pharmaceuticals with the anti-inflammatory and regenerative effects of stem cell transplants creates a synergistic effect greater than the sum of its parts. The burgeoning evidence in favor of combined drug and stem cell therapies warrants more elaborate preclinical studies on this topic in order to pave the way for later clinical trials.
Collapse
Affiliation(s)
- Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Blaise Cozene
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
3
|
Ehrhart J, Sanberg PR, Garbuzova-Davis S. Plasma derived from human umbilical cord blood: Potential cell-additive or cell-substitute therapeutic for neurodegenerative diseases. J Cell Mol Med 2018; 22:6157-6166. [PMID: 30334335 PMCID: PMC6237605 DOI: 10.1111/jcmm.13898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
Limited efficacy of current therapeutic approaches for neurodegenerative disease has led to increased interest in alternative therapies. Cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may be a potential therapeutic. Benefits of CBP injection into rodent models of aging or ischaemic stroke have been demonstrated, though how benefits are elicited is still unclear. The present study evaluated various factors within the same samples of CBP and human adult blood plasma/sera (ABP/S). Also, autologous CBP effects vs. ABP/S or foetal bovine serum supplements on mononuclear cells from hUCB (MNC hUCB) in vitro were determined. Results showed significantly low concentrations of pro-inflammatory cytokines (IL-2, IL-6, IFN-γ, and TNF-α) and elevated chemokine IL-8 in CBP. Significantly higher levels of VEGF, G-CSF, EGF and FGF-basic growth factors were determined in CBP vs. ABP/S. Autologous CBP media supplements significantly increased MNC hUCB viability and decreased apoptotic cell activity. We are first to demonstrate the unique CBP composition of cytokines and growth factors within the same CBP samples derived from hUCB. Also, our novel finding that autologous CBP promoted MNC hUCB viability and reduced apoptotic cell death in vitro supports CBP's potential as a sole therapeutic or cell-additive agent in developing therapies for various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
4
|
Dela Peña IC, Yang S, Shen G, Fang Liang H, Solak S, Borlongan CV. Extension of Tissue Plasminogen Activator Treatment Window by Granulocyte-Colony Stimulating Factor in a Thromboembolic Rat Model of Stroke. Int J Mol Sci 2018; 19:ijms19061635. [PMID: 29857523 PMCID: PMC6032420 DOI: 10.3390/ijms19061635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
When given beyond 4.5 h of stroke onset, tissue plasminogen activator (tPA) induces deleterious side effects in the ischemic brain, notably, hemorrhagic transformation (HT). We examined the efficacy of granulocyte-colony stimulating factor (G-CSF) in reducing delayed tPA-induced HT, cerebral infarction, and neurological deficits in a thromboembolic (TE) stroke model, and whether the effects of G-CSF were sustained for longer periods of recovery. After stroke induction, rats were given intravenous saline (control), tPA (10 mg/kg), or G-CSF (300 μg/kg) + tPA 6 h after stroke. We found that G-CSF reduced delayed tPA-associated HT by 47%, decreased infarct volumes by 33%, and improved motor and neurological deficits by 15% and 25%, respectively. It also prevented delayed tPA treatment-induced mortality by 46%. Immunohistochemistry showed 1.5- and 1.8-fold enrichment of the endothelial progenitor cell (EPC) markers CD34+ and VEGFR2 in the ischemic cortex and striatum, respectively, and 1.7- and 2.8-fold increases in the expression of the vasculogenesis marker von Willebrand factor (vWF) in the ischemic cortex and striatum, respectively, in G-CSF-treated rats compared with tPA-treated animals. Flow cytometry revealed increased mobilization of CD34+ cells in the peripheral blood of rats given G-CSF. These results corroborate the efficacy of G-CSF in enhancing the therapeutic time window of tPA for stroke treatment via EPC mobilization and enhancement of vasculogenesis.
Collapse
Affiliation(s)
- Ike C Dela Peña
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Samuel Yang
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Guofang Shen
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Hsiao Fang Liang
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Sara Solak
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Corey S, Ghanekar S, Sokol J, Zhang JH, Borlongan CV. An update on stem cell therapy for neurological disorders: cell death pathways as therapeutic targets. Chin Neurosurg J 2017. [DOI: 10.1186/s41016-016-0071-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
6
|
Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17:837-851. [DOI: 10.1080/14712598.2017.1323862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
7
|
Napoli E, Borlongan CV. Recent Advances in Stem Cell-Based Therapeutics for Stroke. Transl Stroke Res 2016; 7:452-457. [PMID: 27515852 PMCID: PMC5065756 DOI: 10.1007/s12975-016-0490-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 01/27/2023]
Abstract
Regenerative medicine for central nervous system disorders, including stroke, has challenged the non-regenerative capacity of the brain. Among the many treatment strategies tailored towards repairing the injured brain, stem cell-based therapeutics have been demonstrated as safe and effective in animal models of stroke, and are being tested in limited clinical trials. We address here key lab-to-clinic translational research that relate to efficacy, safety, and mechanism of action underlying stem cell therapy. Recognizing the multi-pronged cell death processes associated with stroke that will likely require combination therapies, we next discuss potent drugs and novel technologies directed at improving the functional outcomes of stem cell-based therapeutics. We also examine discrepant transplant regimens between preclinical studies and clinical trials, as well as missing appropriate control arm (i.e., stroke subjects undergoing rehabilitation) on which to directly compare the therapeutic benefits of cell therapy. Finally, the bioethics of cell therapy is presented in order to assess its prevailing social status. With preliminary results now being reported from on-going clinical trials of stem cell therapy for stroke, a careful assessment of the true functional benefits of this novel treatment will further direct the future of regenerative medicine for neurological disorders.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, University of California Davis, Davis, CA, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Anderson JD, Pham MT, Contreras Z, Hoon M, Fink KD, Johansson HJ, Rossignol J, Dunbar GL, Showalter M, Fiehn O, Bramlett CS, Bardini RL, Bauer G, Fury B, Hendrix KJ, Chedin F, EL-Andaloussi S, Hwang B, Mulligan MS, Lehtiö J, Nolta JA. Mesenchymal stem cell-based therapy for ischemic stroke. Chin Neurosurg J 2016. [DOI: 10.1186/s41016-016-0053-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
9
|
Corrigan F, Arulsamy A, Teng J, Collins-Praino LE. Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. J Neurotrauma 2016; 34:971-986. [PMID: 27630018 DOI: 10.1089/neu.2016.4589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death worldwide, affecting as many as 54,000,000-60,000,000 people annually. TBI is associated with significant impairments in brain function, impacting cognitive, emotional, behavioral, and physical functioning. Although much previous research has focused on the impairment immediately following injury, TBI may have much longer-lasting consequences, including neuropsychiatric disorders and cognitive impairment. TBI, even mild brain injury, has also been recognized as a significant risk factor for the later development of dementia and Alzheimer's disease. Although the link between TBI and dementia is currently unknown, several proposed mechanisms have been put forward, including alterations in glucose metabolism, excitotoxicity, calcium influx, mitochondrial dysfunction, oxidative stress, and neuroinflammation. A treatment for the devastating long-term consequences of TBI is desperately needed. Unfortunately, however, no such treatment is currently available, making this a major area of unmet medical need. Increasing the level of neurotrophic factor expression in key brain areas may be one potential therapeutic strategy. Of the neurotrophic factors, granulocyte-colony stimulating factor (G-CSF) may be particularly effective for preventing the emergence of long-term complications of TBI, including dementia, because of its ability to reduce apoptosis, stimulate neurogenesis, and increase neuroplasticity.
Collapse
Affiliation(s)
- Frances Corrigan
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Alina Arulsamy
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Jason Teng
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| |
Collapse
|
10
|
Peña ID, Borlongan CV. Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke. Transl Stroke Res 2016; 6:421-9. [PMID: 26482176 DOI: 10.1007/s12975-015-0430-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 01/26/2023]
Abstract
Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis,and produce behavioral and functional improvement through their "bystander effects." Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates,which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of cotreatment with granulocyte-colony stimulating factor (GCSF)and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here,we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of GCSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells(EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine the safety and efficacy of this intervention in both preclinical and clinical stroke studies.
Collapse
|
11
|
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142:45-67. [PMID: 27166858 DOI: 10.1016/j.pneurobio.2016.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
12
|
Exploring Erythropoietin and G-CSF Combination Therapy in Chronic Stroke Patients. Int J Mol Sci 2016; 17:463. [PMID: 27043535 PMCID: PMC4848919 DOI: 10.3390/ijms17040463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 01/13/2023] Open
Abstract
Erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) are known to have neuroprotective actions. Based on previous reports showing the synergistic effects of EPO+G-CSF combination therapy in experimental models, we investigated the safety of EPO+G-CSF combination therapy in patients with chronic stroke. In a pilot study, 3 patients were treated with EPO and G-CSF for 5 consecutive days, with follow-up on day 30. In an exploratory double-blind study, 6 patients were allocated to treatment with either EPO+G-CSF or placebo. Treatment was applied once a day for 5 days per month over 3 months. Participants were followed up for 6 months. To substantiate safety, vital signs, adverse events, and hematological values were measured on days 0, 5, and 30 in each cycle and on day 180. Functional outcomes were determined on day 0 and 180. In the laboratory measurements, EPO+G-CSF combination therapy significantly elevated erythropoietin, CD34⁺ hematopoietic stem cells, white blood cells, and neutrophils on day 5 of each cycle. There were no observations of serious adverse events. In the functional outcomes, the grip power of the dominant hand was increased in the EPO+G-CSF treatment group. In conclusion, this exploratory study suggests a novel strategy of EPO+G-CSF combination therapy for stroke patients.
Collapse
|
13
|
Mashkouri S, Crowley MG, Liska MG, Corey S, Borlongan CV. Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inflammation following traumatic brain injury. Neural Regen Res 2016; 11:1379-1384. [PMID: 27857726 PMCID: PMC5090825 DOI: 10.4103/1673-5374.191197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The pathologic process of chronic phase traumatic brain injury is associated with spreading inflammation, cell death, and neural dysfunction. It is thought that sequestration of inflammatory mediators can facilitate recovery and promote an environment that fosters cellular regeneration. Studies have targeted post-traumatic brain injury inflammation with the use of pharmacotherapy and cell therapy. These therapeutic options are aimed at reducing the edematous and neurodegenerative inflammation that have been associated with compromising the integrity of the blood-brain barrier. Although studies have yielded positive results from anti-inflammatory pharmacotherapy and cell therapy individually, emerging research has begun to target inflammation using combination therapy. The joint use of anti-inflammatory drugs alongside stem cell transplantation may provide better clinical outcomes for traumatic brain injury patients. Despite the promising results in this field of research, it is important to note that most of the studies mentioned in this review have completed their studies using animal models. Translation of this research into a clinical setting will require additional laboratory experiments and larger preclinical trials.
Collapse
Affiliation(s)
- Sherwin Mashkouri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Marci G Crowley
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael G Liska
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
14
|
Umbilical cord blood donation: public or private? Bone Marrow Transplant 2015; 50:1271-8. [PMID: 26030051 DOI: 10.1038/bmt.2015.124] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/15/2015] [Indexed: 02/01/2023]
Abstract
Umbilical cord blood (UCB) is a graft source for patients with malignant or genetic diseases who can be cured by allogeneic hematopoietic cell transplantation (HCT), but who do not have an appropriately HLA-matched family or volunteer unrelated adult donor. Starting in the 1990s, unrelated UCB banks were established, accepting donations from term deliveries and storing UCB units for public use. An estimated 730 000 UCB units have been donated and stored to date and ~35 000 UCB transplants have been performed worldwide. Over the past 20 years, private and family banks have grown rapidly, storing ~4 million UCB units for a particular patient or family, usually charging an up-front and yearly storage fee; therefore, these banks are able to be financially sustainable without releasing UCB units. Private banks are not obligated to fulfill the same regulatory requirements of the public banks. The public banks have released ~30 times more UCB units for therapy. Some countries have transitioned to an integrated banking model, a hybrid of public and family banking. Today, pregnant women, their families, obstetrical providers and pediatricians are faced with multiple choices about the disposition of their newborn's cord blood. In this commentary, we review the progress of UCB banking technology; we also analyze the current data on pediatric and adult unrelated UCB, including the recent expansion of interest in transplantation for hemoglobinopathies, and discuss emerging studies on the use of autologous UCB for neurologic diseases and regenerative medicine. We will review worldwide approaches to UCB banking, ethical considerations, criteria for public and family banking, integrated banking ideas and future strategies for UCB banking.
Collapse
|