1
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Zhang L, Jia G, Li Z, Sun S, Chen Y, Zhao J, Wang X, Xu W, Jing F, Jiang Y, Li X. Design, synthesis, and anti-cancer evaluation of the novel conjugate of gemcitabine's ProTide prodrug based on CD13. Bioorg Chem 2025; 157:108293. [PMID: 40022845 DOI: 10.1016/j.bioorg.2025.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
NUC1031 is a gemcitabine ProTide prodrug which is currently undergoing phase III. CD13 inhibitor bestatin is utilized as an adjunct therapy in conjunction with chemotherapy for cancer treatment, which has limitations in cytotoxic efficacy. In this study, we designed and synthesized a novel series of bestatin-gemcitabine's ProTide prodrug conjugates aimed at enhancing the antitumor efficacy of NUC1031. The representative compound 5f demonstrates a 10-fold increase in anti-proliferative activity compared to NUC-1031, with an IC50 of 8.5 nM against the prostate cancer cell line 22Rv1. In vitro and in vivo pharmacokinetic studies revealed that compound 5f gradually degrades into the metabolic product 17, potentially extending its anti-tumor activity. 5f demonstrates significant in vivo anti-tumor activity in 22Rv1 xenograft tumor models. Our findings indicate that 5f shows strong potential for further development as a candidate for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhongqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yuxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jianchun Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Xuejian Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
| | - Wenfang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Fanbo Jing
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Shandong, Qingdao, China..
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China..
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China..
| |
Collapse
|
3
|
Bogdanović B, Fagret D, Ghezzi C, Montemagno C. Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine-Glycine-Aspartate) Strategies. Pharmaceuticals (Basel) 2024; 17:1556. [PMID: 39598465 PMCID: PMC11597078 DOI: 10.3390/ph17111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Integrins, an important superfamily of cell adhesion receptors, play an essential role in cancer progression, metastasis, and angiogenesis, establishing them as prime targets for both diagnostic and therapeutic applications. Despite their significant potential, integrin-targeted therapies have faced substantial challenges in clinical trials, including variable efficacy and unmet high expectations. Nevertheless, the consistent expression of integrins on tumor and stromal cells underscores their ongoing relevance and potential. Traditional RGD-based imaging and therapeutic agents have faced limitations, such as inconsistent target expression and rapid systemic clearance, which have reduced their effectiveness. To overcome these challenges, recent research has focused on advancing RGD-based strategies and exploring innovative solutions. This review offers a thorough analysis of the latest developments in the RGD-integrin field, with a particular focus on addressing previous limitations. It delves into new dual-targeting approaches and cutting-edge RGD-based agents designed to improve both tumor diagnosis and therapeutic outcomes. By examining these advancements, this review illuminates new pathways for enhancing the specificity and efficacy of integrin-targeted therapies, paving the way for more effective cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Bojana Bogdanović
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | - Daniel Fagret
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | - Catherine Ghezzi
- INSERM, CHU Grenoble Alpes, Laboratory of Bioclinical Radiopharmaceutics, University Grenoble Alpes, 38000 Grenoble, France; (B.B.); (D.F.); (C.G.)
| | | |
Collapse
|
4
|
Sajiki D, Yoshida N, Muramatsu H, Sakaguchi K, Maeda N, Yokoyama N, Miyajima Y, Tanaka M, Takahashi Y, Hama A. Clinical features of immature leukemias in children. Int J Hematol 2024; 120:117-127. [PMID: 38687412 DOI: 10.1007/s12185-024-03771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL), mixed phenotypic acute leukemia (MPAL), and acute myeloid leukemia with minimal differentiation (AML-M0) all originate from immature hematopoietic progenitor cells and have a poor prognosis. We investigated the clinical characteristics of these immature leukemias in 17 children (ETP-ALL: 8, MPAL: 5, AML-M0: 4) at seven institutions. Clinical and laboratory findings were comparable across disease types. Eleven and six patients received ALL- and AML-oriented induction chemotherapy, with six and four achieving complete remission (CR), respectively. Five additional patients achieved CR after salvage with the other type of chemotherapy. Eight patients received hematopoietic cell transplantation (HCT) in first CR, and six survived without relapse. However, six of seven patients who did not receive HCT during first CR relapsed; all underwent HCT later, and only three survived. The 5-year event-free survival (EFS) and overall survival (OS) rate were 37% and 69%, respectively. Patients who achieved CR after induction chemotherapy and received HCT in first CR had favorable EFS and OS. Notably, all patients who received HCT in first CR survived 5 years after diagnosis. Appropriate induction chemotherapy and HCT in first CR could improve the outcome of immature leukemias.
Collapse
Affiliation(s)
- Daichi Sajiki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Yoshida
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, 453-8511, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimiyoshi Sakaguchi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoko Maeda
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Norifumi Yokoyama
- Department of Pediatric Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Yuji Miyajima
- Department of Pediatrics, Anjo Kosei Hospital, Anjo, Japan
| | - Makito Tanaka
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, 3-35 Michishita-Cho, Nakamura-Ku, Nagoya, 453-8511, Japan.
| |
Collapse
|
5
|
Zhang W, Blank A, Kremenetskaia I, Nitzsche A, Acker G, Vajkoczy P, Brandenburg S. CD13 expression affects glioma patient survival and influences key functions of human glioblastoma cell lines in vitro. BMC Cancer 2024; 24:369. [PMID: 38519889 PMCID: PMC10960415 DOI: 10.1186/s12885-024-12113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
CD13 (APN) is an Alanyl-Aminopeptidase with diverse functions. The role of CD13 for gliomas is still unknown. In this study, data of glioma patients obtained by TCGA and CGGA databases were used to evaluate the survival rate and prognostic value of CD13 expression level. Protein expression of CD13 was confirmed by immunofluorescence staining of fresh patient tissues. Eight human glioblastoma cell lines were studied by RT-PCR, Western Blot, immunofluorescence staining and flow cytometry to define CD13 expression. Cell lines with different CD13 expression status were treated with a CD13 inhibitor, bestatin, and examined by MTT, scratch and colony formation assaysas well as by apoptosis assay and Western Blots. Bioinformatics analysis indicated that patients with high expression of CD13 had poor survival and prognosis. Additionally, CD13 protein expression was positively associated with clinical malignant characteristics. Investigated glioblastoma cell lines showed distinct expression levels and subcellular localization of CD13 with intracellular enrichment. Bestatin treatment reduced proliferation, migration and colony formation of glioma cells in a CD13-dependent manner while apoptosis was increased. In summary, CD13 has an impact on glioma patient survival and is important for the main function of specific glioma cells.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anne Blank
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anja Nitzsche
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Güliz Acker
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Experimental Neurosurgery, Charité- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
6
|
Guo S, Wang J, Wang Q, Wang J, Qin S, Li W. Advances in peptide-based drug delivery systems. Heliyon 2024; 10:e26009. [PMID: 38404797 PMCID: PMC10884816 DOI: 10.1016/j.heliyon.2024.e26009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Drug delivery systems (DDSs) are designed to deliver drugs to their specific targets to minimize their toxic effects and improve their susceptibility to clearance during targeted transport. Peptides have high affinity, low immunogenicity, simple amino acid composition, and adjustable molecular size; therefore, most peptides can be coupled to drugs via linkers to form peptide-drug conjugates (PDCs) and act as active pro-drugs. PDCs are widely thought to be promising DDSs, given their ability to improve drug bio-compatibility and physiological stability. Peptide-based DDSs are often used to deliver therapeutic substances such as anti-cancer drugs and nucleic acid-based drugs, which not only slow the degradation rate of drugs in vivo but also ensure the drug concentration at the targeted site and prolong the half-life of drugs in vivo. This article provides an profile of the advancements and future development in functional peptide-based DDSs both domestically and internationally in recent years, in the expectation of achieving targeted drug delivery incorporating functional peptides and taking full advantage of synergistic effects.
Collapse
Affiliation(s)
- Sijie Guo
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
7
|
Huang PS, Wang LY, Wang YW, Tsai MM, Lin TK, Liao CJ, Yeh CT, Lin KH. Evaluation and Application of Drug Resistance by Biomarkers in the Clinical Treatment of Liver Cancer. Cells 2023; 12:869. [PMID: 36980210 PMCID: PMC10047572 DOI: 10.3390/cells12060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Liver cancer is one of the most lethal cancers in the world, mainly owing to the lack of effective means for early monitoring and treatment. Accordingly, there is considerable research interest in various clinically applicable methods for addressing these unmet needs. At present, the most commonly used biomarker for the early diagnosis of liver cancer is alpha-fetoprotein (AFP), but AFP is sensitive to interference from other factors and cannot really be used as the basis for determining liver cancer. Treatment options in addition to liver surgery (resection, transplantation) include radiation therapy, chemotherapy, and targeted therapy. However, even more expensive targeted drug therapies have a limited impact on the clinical outcome of liver cancer. One of the big reasons is the rapid emergence of drug resistance. Therefore, in addition to finding effective biomarkers for early diagnosis, an important focus of current discussions is on how to effectively adjust and select drug strategies and guidelines for the treatment of liver cancer patients. In this review, we bring this thought process to the drug resistance problem faced by different treatment strategies, approaching it from the perspective of gene expression and molecular biology and the possibility of finding effective solutions.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Yi-Wen Wang
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, New Taipei Municipal Tu Cheng Hospital, New Taipei 236, Taiwan
| | - Tzu-Kang Lin
- Neurosurgery, School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Neurosurgery, Department of Surgery, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan
| | - Chia-Jung Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Kwang-Huei Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (P.-S.H.); (C.-J.L.)
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| |
Collapse
|
8
|
Feng J, Wang Y, Li B, Yu X, Lei L, Wu J, Zhang X, Chen Q, Zhou Y, Gou J, Li H, Tan Z, Dai Z, Li X, Guan F. Loss of bisecting GlcNAcylation on MCAM of bone marrow stoma determined pro-tumoral niche in MDS/AML. Leukemia 2023; 37:113-121. [PMID: 36335262 DOI: 10.1038/s41375-022-01748-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Bone marrow (BM) stroma plays key roles in supporting hematopoietic stem cell (HSC) growth. Glycosylation contributes to the interactions between HSC and surrounding microenvironment. We observed that bisecting N-acetylglucosamine (GlcNAc) structures, in BM stromal cells were significantly lower for MDS/AML patients than for healthy subjects. Malignant clonal cells delivered exosomal miR-188-5p to recipient stromal cells, where it suppressed bisecting GlcNAc by targeting MGAT3 gene. Proteomic analysis revealed reduced GlcNAc structures and enhanced expression of MCAM, a marker of BM niche. We characterized MCAM as a bisecting GlcNAc-bearing target protein, and identified Asn 56 as bisecting GlcNAc modification site on MCAM. MCAM on stromal cell surface with reduced bisecting GlcNAc bound strongly to CD13 on myeloid cells, activated responding ERK signaling, and thereby promoted myeloid cell growth. Our findings, taken together, suggest a novel mechanism whereby MDS/AML clonal cells generate a self-permissive niche by modifying glycosylation level of stromal cells.
Collapse
Affiliation(s)
- Jingjing Feng
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China
| | - Bingxin Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Xinwen Yu
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Lei Lei
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Jinpeng Wu
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Xin Zhang
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | | | - Yue Zhou
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Junjie Gou
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Hongjiao Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zengqi Tan
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiang Li
- Institute of Hematology, Provincial Key Laboratory of Biotechnology, School of Medicine, Northwest University, Xi'an, China.
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
9
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
10
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
- Correspondence: (D.B.); (A.S.)
| | - Adilkhan Yeskendir
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
- Correspondence: (D.B.); (A.S.)
| |
Collapse
|
11
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
12
|
Yue K, Hou X, Jia G, Zhang L, Zhang J, Tan L, Wang X, Zhang Z, Li P, Xu W, Li X, Jiang Y. Design, synthesis and biological evaluation of hybrid of ubenimex-fluorouracil for hepatocellular carcinoma therapy. Bioorg Chem 2021; 116:105343. [PMID: 34544027 DOI: 10.1016/j.bioorg.2021.105343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
In our previous study, we discovered a ubenimex-fluorouracil (5FU) conjugates BC-02, which displays significant in vivo anti-tumor activity, however, the instability of BC-02 in plasma limits its further development as a drug candidate. Herein, we designed and synthesized four novel ubenimex-5FU conjugates by optimizing the linkers between ubenimex and 5FU based on BC-02. Representative compound 20 is more stable than BC-02 in human plasma and displays about 100 times higher CD13 inhibitory activity than the positive control ubenimex. Meanwhile, the antiproliferative activity of 20 was comparable with 5FU in vitro. The preliminary mechanism study indicated that compound 20 exhibited significant anti-invasion and anti-angiogenesis activities in vitro. Furthermore, compound 20 obviously inhibits tumor growth and metastasis in vivo and prolong the survival time of tumor-bearing mice. Our study may have an important implication reference for the design of more druglike mutual prodrug, and compound 20 can be used as a lead compound for further design and development.
Collapse
Affiliation(s)
- Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xiaohan Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Liang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jian Zhang
- College of Pharmacy, Weifang Medical University, 261053 Wei'fang, Shandong, PR China
| | - Leqiao Tan
- Weifang Bochuang International Biological Medicinal Institute, Weifang, Shandong 261061, PR China
| | - Xuejian Wang
- College of Pharmacy, Weifang Medical University, 261053 Wei'fang, Shandong, PR China
| | - Zhaolin Zhang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, Shandong 261061, PR China
| | - Peixia Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenfang Xu
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong 266071, PR China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China.
| |
Collapse
|