1
|
Chen Y, Roselli S, Panicker N, Brzozowski JS, Skerrett-Byrne DA, Murray HC, Verrills NM. Proteomic and phosphoproteomic characterisation of primary mouse embryonic fibroblasts. Proteomics 2024; 24:e2300267. [PMID: 37849217 DOI: 10.1002/pmic.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Fibroblasts are the most common cell type in stroma and function in the support and repair of most tissues. Mouse embryonic fibroblasts (MEFs) are amenable to isolation and rapid growth in culture. MEFs are therefore widely used as a standard model for functional characterisation of gene knockouts, and can also be used in co-cultures, commonly to support embryonic stem cell cultures. To facilitate their use as a research tool, we have performed a comprehensive proteomic and phosphoproteomic characterisation of wild-type primary MEFs from C57BL/6 mice. EIF2/4 and MTOR signalling pathways were abundant in both the proteome and phosphoproteome, along with extracellular matrix (ECM) and cytoskeleton associated pathways. Consistent with this, kinase enrichment analysis identified activation of P38A, P90RSK, P70S6K, and MTOR. Cell surface markers and matrisome proteins were also annotated. Data are available via ProteomeXchange with identifier PXD043244. This provides a comprehensive catalogue of the wild-type MEF proteome and phosphoproteome which can be utilised by the field to guide future work.
Collapse
Affiliation(s)
- Yanfang Chen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| | - Severine Roselli
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| | - Nikita Panicker
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Cancer Detection and Therapies Program, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| | - David A Skerrett-Byrne
- The Priority Research Centre for Reproductive Science, Hunter Medical Research Institute, The University of Newcastle; and the Infertility and Reproduction Research Program, Callaghan, New South Wales, Australia
| | - Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle; and Precision Medicine Program, Callaghan, New South Wales, Australia
| |
Collapse
|
2
|
Abstract
Mouse embryonic fibroblasts (MEFs) are primary fibroblasts purified from mouse embryos at a defined time post-fertilization. MEFs have versatile applications, including use as feeder cell layers or sources of untransformed primary cells for a variety of biological assays. MEFs are most commonly isolated between embryonic day (E)12.5 and E13.5 but can be isolated from embryos as early as E8.5 and as late as E15.5. The individual embryos are harvested by carefully removing uterine tissue, yolk sac, and placenta. The embryos are euthanized, and non-mesenchymal tissues, such as the fetal liver and heart, are removed before tissue homogenization. The remaining fetal tissue is homogenized by mechanical mincing using a sterile blade, followed by enzymatic digestion and resuspension. During tissue dissociation, the duration of trypsin-EDTA/DNase digestion and enzyme concentration are critical parameters to produce high-quality MEFs with the highest rates of cell viability and proliferation potential. MEFs can be cryopreserved at passage (P) 0 if >80% confluent, passaged for further expansion before freezing down, or directly utilized for downstream applications, i.e., preparation as feeder cell layers. Primary MEFs possess a limited proliferation capacity of ∼20 cell divisions, beyond which the percentage of senescent cells rapidly increases; thus, cultures should only be expanded/passaged to a maximum of P5. Critical for cell viability during cryopreservation and thawing of MEFs is the slow decrease in temperature when freezing, the rapid increase when thawing, the use of a cryoprotective agent, and an optimal cell density. While it is critical to generate high-quality MEFs to standardize and optimize preparation procedures and utilize fresh reagents, some variability in proliferation capacity and cell viability between MEF preparations remains. Thus, MEF preparation, culture, and cryopreservation procedures are continuously being optimized. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Purification, passaging, and expansion of MEFs Supporting Protocol: Cryopreservation and thawing of MEFs.
Collapse
Affiliation(s)
- Rita Ferreira
- ACRF Department of Cancer Biology and Therapeutics and Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, Canberra, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics and Division of Genome Sciences and Cancer, John Curtin School of Medical Research, Australian National University, Acton, Canberra, Australia
| |
Collapse
|
3
|
The Role of Genetically Modified Human Feeder Cells in Maintaining the Integrity of Primary Cultured Human Deciduous Dental Pulp Cells. J Clin Med 2022; 11:jcm11206087. [PMID: 36294410 PMCID: PMC9605397 DOI: 10.3390/jcm11206087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Tissue-specific stem cells exist in tissues and organs, such as skin and bone marrow. However, their pluripotency is limited compared to embryonic stem cells. Culturing primary cells on plastic tissue culture dishes can result in the loss of multipotency, because of the inability of tissue-specific stem cells to survive in feeder-less dishes. Recent findings suggest that culturing primary cells in medium containing feeder cells, particularly genetically modified feeder cells expressing growth factors, may be beneficial for their survival and proliferation. Therefore, the aim of this study was to elucidate the role of genetically modified human feeder cells expressing growth factors in maintaining the integrity of primary cultured human deciduous dental pulp cells. Feeder cells expressing leukemia inhibitory factor, bone morphogenetic protein 4, and basic fibroblast growth factor were successfully engineered, as evidenced by PCR. Co-culturing with mitomycin-C-treated feeder cells enhanced the proliferation of newly isolated human deciduous dental pulp cells, promoted their differentiation into adipocytes and neurons, and maintained their stemness properties. Our findings suggest that genetically modified human feeder cells may be used to maintain the integrity of primary cultured human deciduous dental pulp cells.
Collapse
|
4
|
Stem Cells and Their Derivatives-Implications for Alveolar Bone Regeneration: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms222111746. [PMID: 34769175 PMCID: PMC8583713 DOI: 10.3390/ijms222111746] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Oral and craniofacial bone defects caused by congenital disease or trauma are widespread. In the case of severe alveolar bone defect, autologous bone grafting has been considered a “gold standard”; however, the procedure has several disadvantages, including limited supply, resorption, donor site morbidity, deformity, infection, and bone graft rejection. In the last few decades, bone tissue engineering combined with stem cell-based therapy may represent a possible alternative to current bone augmentation techniques. The number of studies investigating different cell-based bone tissue engineering methods to reconstruct alveolar bone damage is rapidly rising. As an interdisciplinary field, bone tissue engineering combines the use of osteogenic cells (stem cells/progenitor cells), bioactive molecules, and biocompatible scaffolds, whereas stem cells play a pivotal role. Therefore, our work highlights the osteogenic potential of various dental tissue-derived stem cells and induced pluripotent stem cells (iPSCs), the progress in differentiation techniques of iPSCs into osteoprogenitor cells, and the efforts that have been made to fabricate the most suitable and biocompatible scaffold material with osteoinductive properties for successful bone graft generation. Moreover, we discuss the application of stem cell-derived exosomes as a compelling new form of “stem-cell free” therapy.
Collapse
|
5
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
6
|
Cheng S, Li D, Zhang RZ, Zhu J, Wang L, Liu Q, Chen RH, Liu XM. Characterization of Induced Pluripotent Stem Cells from Human Epidermal Melanocytes by Transduction with Two Combinations of Transcription Factors. Curr Gene Ther 2020; 19:395-403. [PMID: 32072883 DOI: 10.2174/1566523220666200211105228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In order to generate induced Pluripotent Stem Cells (iPSCs) more efficiently, it is crucial to identify somatic cells that are easily accessible and possibly require fewer factors for conversion into iPSCs. METHODS Human epidermal melanocytes were transduced with lentiviral vectors carrying 3 transcription factors (OCT-4, KLF-4 and c-MYC, 3F) or 4 transcription factors (OCT-4, KLF-4, c-MYC and SOX-2, 4F). Once the clones had formed, assays related to stem cell pluripotency, including alkaline phosphatase staining, DNA methylation levels, expression of stem cell markers and ultrastructure analysis were carried out. The iPSCs obtained were then induced to differentiate into the cells representing the three embryonic layers in vitro. RESULTS Seven days after the transduction of epidermal melanocytes with 3F or 4F, clones were formed that were positive for alkaline phosphatase staining. Fluorescent staining with antibodies against OCT-4 and SOX-2 was strongly positive, and the cells showed a high nucleus-cytoplasm ratio and active karyokinesis. No melanosomes were found in the cytoplasm by ultrastructural analysis. There were obvious differences in DNA methylation levels between the cloned cells and their parental cells. However, there was not a significant difference between 3F or 4F transfected clonal cells. Meanwhile, the iPSCs successfully differentiated into the three germ layer cells in vitro. CONCLUSION Human epidermal melanocytes do not require ectopic SOX-2 expression for conversion into iPSCs, and may serve as an alternative source for deriving patient-specific iPSCs with fewer genetic elements.
Collapse
Affiliation(s)
- Sai Cheng
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.,Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, China
| | - Di Li
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Ru-Zhi Zhang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jing Zhu
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Li Wang
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Qi Liu
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Ren-He Chen
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Xiao-Ming Liu
- Department of Dermatology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| |
Collapse
|
7
|
Wang AYL, Loh CYY. Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplant 2019; 28:112S-131S. [PMID: 31722555 PMCID: PMC7016470 DOI: 10.1177/0963689719886534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
The term episomal induced pluripotent stem cells (EiPSCs) refers to somatic cells that are reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrative episomal vector methods. This reprogramming process has a better safety profile compared with integrative methods using viruses. There is a current trend toward using episomal plasmid reprogramming to generate iPSCs because of the improved safety profile. Clinical reports of potential human cell sources that have been successfully reprogrammed into EiPSCs are increasing, but no review or summary has been published. The functional applications of EiPSCs and their potential uses in various conditions have been described, and these may be applicable to clinical scenarios. This review summarizes the current direction of EiPSC research and the properties of these cells with the aim of explaining their potential role in clinical applications and functional restoration.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Both the authors contributed equally to this article
| | - Charles Yuen Yung Loh
- St Andrew’s Center for Burns and Plastic Surgery, Chelmsford, United Kingdom
- *Both the authors contributed equally to this article
| |
Collapse
|
8
|
Increased Expression of Cell Surface SSEA-1 is Closely Associated with Naïve-Like Conversion from Human Deciduous Teeth Dental Pulp Cells-Derived iPS Cells. Int J Mol Sci 2019; 20:ijms20071651. [PMID: 30987116 PMCID: PMC6480091 DOI: 10.3390/ijms20071651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Stage-specific embryonic antigen 1 (SSEA-1) is an antigenic epitope (also called CD15 antigen) defined as a Lewis X carbohydrate structure and known to be expressed in murine embryonal carcinoma cells, mouse embryonic stem cells (ESCs), and murine and human germ cells, but not human ESCs/induced pluripotent stem cells (iPSCs). It is produced by α1,3-fucosyltransferase IX gene (FUT9), and F9 ECCs having a disrupted FUT9 locus by gene targeting are reported to exhibit loss of SSEA-1 expression on their cell surface. Mouse ESCs are pluripotent cells and therefore known as “naïve stem cells (NSCs).” In contrast, human ESCs/iPSCs are thought to be epiblast stem cells (EpiSCs) that are slightly more differentiated than NSCs. Recently, it has been demonstrated that treatment of EpiSCs with several reprograming-related drugs can convert EpiSCs to cells similar to NSCs, which led us to speculate that SSEA-1 may have been expressed in these NSC-like EpiSCs. Immunocytochemical staining of these cells with anti-SSEA-1 revealed increased expression of this epitope. RT-PCR analysis also confirmed increased expression of FUT9 transcripts as well as other stemness-related transcripts such as REX-1 (ZFP42). These results suggest that SSEA-1 can be an excellent marker for human NSCs.
Collapse
|
9
|
Soda M, Saitoh I, Murakami T, Inada E, Iwase Y, Noguchi H, Shibasaki S, Kurosawa M, Sawami T, Terunuma M, Kubota N, Terao Y, Ohshima H, Hayasaki H, Sato M. Repeated human deciduous tooth-derived dental pulp cell reprogramming factor transfection yields multipotent intermediate cells with enhanced iPS cell formation capability. Sci Rep 2019; 9:1490. [PMID: 30728386 PMCID: PMC6365514 DOI: 10.1038/s41598-018-37291-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/30/2018] [Indexed: 01/26/2023] Open
Abstract
Human tissue-specific stem cells (hTSCs), found throughout the body, can differentiate into several lineages under appropriate conditions in vitro and in vivo. By transfecting terminally differentiated cells with reprogramming factors, we previously produced induced TSCs from the pancreas and hepatocytes that exhibit additional properties than iPSCs, as exemplified by very low tumour formation after xenogenic transplantation. We hypothesised that hTSCs, being partially reprogrammed in a state just prior to iPSC transition, could be isolated from any terminally differentiated cell type through transient reprogramming factor overexpression. Cytochemical staining of human deciduous tooth-derived dental pulp cells (HDDPCs) and human skin-derived fibroblasts following transfection with Yamanaka’s factors demonstrated increased ALP activity, a stem cell marker, three weeks after transfection albeit in a small percentage of clones. Repeated transfections (≤3) led to more efficient iPSC generation, with HDDPCs exhibiting greater multipotentiality at two weeks post-transfection than the parental intact HDDPCs. These results indicated the utility of iPSC technology to isolate TSCs from HDDPCs and fibroblasts. Generally, a step-wise loss of pluripotential phenotypes in ESCs/iPSCs occurs during their differentiation process. Our present findings suggest that the reverse phenomenon can also occur upon repeated introduction of reprogramming factors into differentiated cells such as HDDPCs and fibroblasts.
Collapse
Affiliation(s)
- Miki Soda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan.
| | - Tomoya Murakami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Mie Kurosawa
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tadashi Sawami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Miho Terunuma
- Department of Oral Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Biology of the Hard Tissue, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Intrapancreatic Parenchymal Injection of Cells as a Useful Tool for Allowing a Small Number of Proliferative Cells to Grow In Vivo. Int J Mol Sci 2017; 18:ijms18081678. [PMID: 28767080 PMCID: PMC5578068 DOI: 10.3390/ijms18081678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
In vivo inoculation of cells such as tumor cells and induced pluripotent stem (iPS)/embryonic stem (ES) cells into immunocompromised mice has been considered as a powerful technique to evaluate their potential to proliferate or differentiate into various cell types originating from three germ cell layers. Subcutaneous grafting and grafting under the kidney capsule have been widely used for this purpose, but there are some demerits such as the requirement of a large number of tumor cells for inoculation and frequent failure of tumorigenesis. Therefore, grafting into other sites has been explored, including intratesticular or intramuscular grafting as well as grafting into the cochleae, liver, or salivary glands. In this study, we found that intrapancreatic parenchymal injection of cells is useful for allowing a small number of cells (~15 × 103 cells or ~30 cell clumps μL−1·site−1) to proliferate and sometimes differentiate into various types of cells. It requires only surgical exposure of the pancreas over the dorsal skin and subsequent injection of cells towards the pancreatic parenchyma under dissecting microscope-based observation using a mouthpiece-controlled glass micropipette. We now name this technology “intrapancreatic parenchymal cell transplantation (IPPCT)”, which will be useful, especially when only a small number of cells or colonies are available.
Collapse
|
11
|
Murakami T, Saitoh I, Sato M, Inada E, Soda M, Oda M, Domon H, Iwase Y, Sawami T, Matsueda K, Terao Y, Ohshima H, Noguchi H, Hayasaki H. Isolation and characterization of lymphoid enhancer factor-1-positive deciduous dental pulp stem-like cells after transfection with a piggyBac vector containing LEF1 promoter-driven selection markers. Arch Oral Biol 2017; 81:110-120. [PMID: 28500952 DOI: 10.1016/j.archoralbio.2017.04.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 03/28/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Lymphoid enhancer-binding factor-1 (LEF1) is a 48-kD nuclear protein that is expressed in pre-B and T cells. LEF1 is also an important member of the Wnt/β-catenin signaling pathway that plays important roles in the self-renewal and differentiation of embryonic stem cells. We speculated that LEF1 might function in the stem cells from human exfoliated deciduous teeth (SHED). In this study, we attempted to isolate such LEF1-positive cells from human deciduous dental pulp cells (HDDPCs) by genetic engineering technology, using the human LEF1 promoter. DESIGN A piggyBac transposon plasmid (pTA-LEN) was introduced into HDDPCs, using the Neon® transfection system. After G418 selection, the emerging colonies were assessed for EGFP-derived fluorescence by fluorescence microscopy. Reverse transcription polymerase chain reaction (RT-PCR) analysis was performed using RNA isolated from these colonies to examine stem cell-specific transcript expression. Osteoblastic or neuronal differentiation was induced by cultivating the LEF1-positive cells with differentiation-inducing medium. RESULTS RT-PCR analysis confirmed the expression of several stem cell markers, including OCT3/4, SOX2, REX1, and NANOG, in LEF1-positive HDDPCs, which could be differentiated into osteoblasts and neuronal cells. CONCLUSIONS The isolated LEF1-positive HDDPCs exhibited the properties of stem cells, suggesting that LEF1 might serve as a marker for SHED.
Collapse
Affiliation(s)
- Tomoya Murakami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Soda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masataka Oda
- Department of Microbiology and Infection Control Science Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tadashi Sawami
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Kazunari Matsueda
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Graduate University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| |
Collapse
|
12
|
Inada E, Saitoh I, Kubota N, Soda M, Matsueda K, Murakami T, Sawami T, Kagoshima A, Yamasaki Y, Sato M. Alkaline phosphatase and OCT-3/4 as useful markers for predicting susceptibility of human deciduous teeth-derived dental pulp cells to reprogramming factor-induced iPS cells. ACTA ACUST UNITED AC 2016; 8. [PMID: 27641728 DOI: 10.1111/jicd.12236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/03/2016] [Indexed: 01/08/2023]
Abstract
AIM The aim of the present study was to prove that primary cells enriched with stem cells are more easily reprogrammed to generate induced pluripotent stem (iPS) cells than those with scarce numbers of stem cells. METHODS We surveyed the alkaline phosphatase (ALP) activity in five primarily-isolated human deciduous teeth-derived dental pulp cells (HDDPC) with cytochemical staining to examine the possible presence of stem cells. Next, the expression of stemness-specific factors, such as OCT(Octumer-binding transcription factor)3/4, NANOG, SOX2(SRY (sex determining region Y)-box 2), CD90, muscle segment homeodomain homeobox (MSX) 1, and MSX2, was assessed with a reverse transcription polymerase chain reaction method. Finally, these isolated HDDPC were transfected with plasmids carrying genes coding Yamanaka factors to determine whether these cells could be reprogrammed to generate iPS cells. RESULTS Of the five primarily-isolated HDDPC, two (HDDPC-1 and -5) exhibited higher degrees of ALP activity. OCT-3/4 expression was also prominent in those two lines. Furthermore, these two lines proliferated faster than the other three lines. The transfection of HDDPC with Yamanaka factors resulted in the generation of iPS cells from HDDPC-1 and -5. CONCLUSION The number of cells with the stemness property of HDDPC differs among individuals, which suggests that HDDPC showing an increased expression of both ALP and OCT-3/4 can be more easily reprogrammed to generate iPS cells after the forced expression of reprogramming factors.
Collapse
Affiliation(s)
- Emi Inada
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Soda
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Kazunari Matsueda
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tomoya Murakami
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Tadashi Sawami
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Akiko Kagoshima
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Youichi Yamasaki
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Sato
- Frontier Science Research Center, Kagoshima University, Kagoshima, Japan
| |
Collapse
|